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Great achievements have been made in network embedding based on single-layer networks. However, there are a variety of
scenarios and systems that can be presented as multiplex networks, which can reveal more interesting patterns hidden in the data
compared to single-layer networks. In the field of network embedding, in order to project the multiplex network into the latent
space, it is necessary to consider richer structural information among network layers. However, current methods for multiplex
network embedding mostly focus on the similarity of nodes in each layer of the network, while ignoring the similarity between
different layers. In this paper, for multiplex network embedding, we propose a Layer Information Similarity Concerned Network
Embedding (LISCNE) model considering the similarities between layers. Firstly, we introduce the common vector for each node
shared by all layers and layer vectors for each layer where common vectors obtain the overall structure of the multiplex network
and layer vectors learn semantics for each layer. We get the node embeddings in each layer by concatenating the common vectors
and layer vectors with the consideration that the node embedding is related not only to the surrounding neighbors but also to the
overall semantics. Furthermore, we define an index to formalize the similarity between different layers and the cross-network
association. Constrained by layer similarity, the layer vectors with greater similarity are closer to each other and the aligned node
embedding in these layers is also closer. To evaluate our proposed model, we conduct node classification and link prediction tasks
to verify the effectiveness of our model, and the results show that LISCNE can achieve better or comparable performance
compared to existing baseline methods.

1. Introduction

In the past few decades, network embedding has obtained
remarkable achievements. 'e basic idea is converting a
node into a low-dimensional space in which the network
structure and properties can be preserved effectively. In the
early period, traditional models such asMDS [1], Isomap [2],
LLE [3], and LE [4] are mainly based on dimensionality
reduction technologies. 'ese models are not suitable for
large networks due to their computational complexity. As
Word2Vec [5] plays a vital role in the field of natural
language processing, random walk-based methods that
regard nodes in the network as words are proposed, such as
DeepWalk [6] and Node2Vec [7]. In recent years, with the
continuous development of deep learning, SDNE [8], DNGR

[9], and GCNs [10] have developed neural networks into
network embedding models.

'e methods mentioned above are all designed for
single-layer networks. Figure 1(a) shows an example of a
single-layer network, through which we can see that there is
only one relation in the network. However, there are still
many complex scenarios in the real world that cannot be
described by single-layer networks. For example, the same
set of individuals in social networks may participate in
Twitter, Facebook, or Weibo for different purposes. Inter-
actions in different social networks can be represented by a
single-layer network. Each layer of the network has a specific
relationship and specific semantics. However, these single-
layer networks do not operate in isolation and there are
always connections between them. Instead, these complex
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scenes can be represented as a multiplex network, which is
also a multilayer network in which layers share the same set
of nodes. Each layer in a multiplex network represents a
particular relationship of nodes, and the structure of each
layer is typically associated. Figure 1(b) illustrates an ex-
ample of an undirected multiplex network, and it has a
unique structure in different layers while there also exist
correlations between layers. Unlike the single-layer network,
there are three relationships among a set of nodes, each of
which describes a unique interaction in the given network
structure. Multiplex relationships cannot be captured using
single-layer methods. 'erefore, it is necessary to conduct
in-depth research on multiplex network embedding.

Compared with the single-layer network, one of the
challenges for multiplex network embedding is how to
aggregate the diverse types of structure in different layer
networks without destroying their unique properties. To
solve this problem, MCGE [11], MANE [12], and MVNE
[13] use the tensor factorization to concurrently capture the
main local structure and correlations between different
layers. MNE [14] and MGCN [15] define one common
vector shared by all layers to capture the shared information
in all layer networks and low-dimensional node vectors in
each layer to capture the unique properties. In addition to
introducing the common vector, CrossMNA [16] also in-
troduces a layer vector to extract the semantic meaning.
One2Multi [17] uses one encoder to encode the most in-
formative network from which we can extract the shared
information and multiple decoders to reconstruct all layers
learning the specific structure in each layer. DMNE [18] and
MrMine [19] take advantage of the links between subgraphs
or communities to learn the cross-network relationships.

While each layer in the multiplex network is constructed
from different semantics and makes the structure of each

layer different, the varying relatedness between different
semantics leads to diverse structural similarities between
different layers. For example, we can observe from
Figure 1(b) that layer2 and layer3 have more of the same
edges between nodes compared to layer1, that is, the
structure of layer2 and layers3 is more similar than that of
layer1. Also, the similarity of any two layers is always dif-
ferent, which leads to the divergence in different layers of
network analysis. It has been proved that considering inter-
layer similarity can significantly improve the performance of
link prediction [20] and community detection [21] in
multiplex networks. Hence, it is an essential feature that
should not be ignored in multiplex network embedding.
However, the existing methods can obtain embedded rep-
resentations of a multiplex network, and most of them fail to
consider the similarities between different layers which is an
important characteristic in the multiplex network.

To incorporate layer similarities when learning node
vectors or layer vectors, we propose a novel model, Layer
Information Similarity Concerned Network Embedding
(LISCNE), and our model takes advantage of the common
and local features in multiplex networks and exploits layer
similarity at the same time.

Specifically, we firstly obtain node embeddings by
concatenating common vector for each node shared by all
layers and layer vector for each layer. Common vectors
capture characteristics shared by cross layer by merging all
the networks into a new single-layer network and training
the common vector for each node in the new network. In
addition, layer vectors learn the overall semantics for each
layer. 'en, to model the layer similarity, we define an index
to formalize the similarity between different layers. With the
constraint of layer similarities, we force the vectors with
greater similarity to be closer.
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Figure 1: 'e toy examples of single-layer network and multiplex network. (a) Single-layer network. (b) Multiplex network.
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'e major contributions are summarized as follows:

(i) After investigating the existing multiplex network
embedding methods, we find that the methods
consider the node connectivity among layers but
ignore the inter-layer similarities.

(ii) We propose a novel Layer Information Similarity
Concerned Network Embedding (LISCNE) model,
which effectively exploits the overall and local
structure in multiplex networks and combines the
concept of layer vectors with layer similarity at the
same time.

(iii) We conduct experiments to evaluate the proposed
method using several real-world datasets on link
prediction and node classification tasks. Compared
with existing benchmark methods, LISCNE can
achieve better or comparable performance.

2. Related Work

In this section, we review related work from two main
aspects, namely, single-layer network embedding and
multiplex network embedding.

2.1. Single-Layer Network Embedding. By assuming that the
more similar the structure of nodes is, the closer their
representation vectors are, the network embedding can learn
latent low-dimensional representations for the nodes or
links in a network. Earlier studies [2, 3, 22–24] were mainly
based on matrix factorization. Isomap [2] obtained the
shortest path dij between node i and node j by constructing
a neighborhood graph with connectivity algorithms and
then obtained the vector presentation by minimizing the
function of (dij − ‖ui − uj‖)2. GraRep [24] defined a node
transition probability and preserved k-order proximity.
Inspired by Word2Vec [5], new types of methods
[6, 7, 25, 26] using skip-gram model [27] have gradually
emerged.'e goal of the skip-grammodel is to maximize the
co-occurrence probability based on the context in a
sentence:

max 
vi∈V



vj∈context vi( )

Pr ϕ vi( |ϕ vj  .
(1)

DeepWalk [6] regarded each vertex in the network as a
word. It applied the Depth-First Sampling (DFS) strategy to
obtain walk sequences when conducting random walks and
performed the skip-gram algorithm for training the se-
quences. Node2Vec [7] employed a biased random walk
strategy when getting the walk sequence. It defined two pa-
rameters p and q to adjust between BFS and DFS during
random walks. Topo2Vec [26] used a greedy goal-based
searching strategy to generate the node context and obtain the
local and global topologically proximal nodes in a network.
While these random walk-based methods cannot model the
nonlinear structural information, some methods based on
deep neural networks [8–10, 28–30] have been proposed. Both
SDNE [8] and DNGR [9] used deep autoencoders, where
SDNE used the encoder to preserve the first- and second-

order proximity of nodes, while DNGR captured higher-order
proximity by using PPMI matrix which is indirectly trans-
formed by the probabilistic co-occurrence matrix created by
random surfing. GCNs [10] iteratively aggregated previous
node embeddings and their neighbor embeddings to learn the
new node embeddings. VGAE [28] was an inference model
parameterized by a two-layer GCN. Pedronette and Latecki
[31] proposed rank-based self-training to improve the accu-
racy of GCNs on semisupervised classification tasks. Recently,
some novel algorithms [32–34] in the field of Contrastive Self-
Supervised Learning have yielded good results. 'e core is to
measure the similarities of sample pairs in a representation
space, and the similarity between positive samples is much
greater than the negative samples. 'ese models are per-
formed on the single-layer network. More discussion and
methods for network embedding can be found in [35–38].

2.2. Multiplex Network Embedding. To better represent the
multiplex networks used to describe the real-world data,
there also exist various works for multiplex network
embedding.

MCGE [11] applied tensor factorization and defined a
multiview kernel tensor to obtain common latent factors
that capture the global structure information. Random
walks have been applied in network embedding
[14, 19, 39–42]. MNE [14] learned two vectors for a node at
the same time, i.e., a common vector sharing by all layers
and a lower-dimensional vector for an individual layer.
'en, it introduced a transformation matrix to align these
two vectors. PMNE’s [39] network aggregation and result
aggregation are essentially single-layer approaches. Con-
sidering the interactions between layers, the co-analysis
method can traverse between layers with a probability r

when taking a random walk. GATNE [43] proposed a
unified framework to address the problem of embedding
learning for attributed multiplex heterogeneous networks,
and GATNE-T was a generalization of MNE [14] when
training edge embeddings directly. MrMine [19] simulta-
neously learned the multinetwork representation at three
resolutions of network, subgraph, and nodes, and it further
constructed cross-resolution including network-subgraph,
subgraph-node, node-node context. HMNE [44] defined a
heuristic 3D interactive walk and sampled sequences of
node cross layers. It preserved cross-layer neighborhood of
nodes and learned information of multitype relations into a
unified embedding space.

MVE [45] learned the robust representation by promoting
the collaboration of different layers and different weights
which were assigned to layers during voting. CrossMNA [16]
defined a network vector extracting the semantic meaning of
the network and an inter-vector reflecting the common
features of the anchor nodes in different networks.'en, these
two vectors were added to form an intra-vector, which
preserved the specific structural feature for a node in its
selected network. MGCN [46] extended GCN to multiplex
networks, which defined a general vector and dimension-
specific vector to capture the common and individual layer
information. TCMGC [47] developed a multilayer GCN to
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capture the structure and multiview information. DMNE [18]
used an encoder for all individual networks and regularized
the cross-network embeddings through two types of loss
functions to penalize the embedding inconsistency. DMGI
[48] was an unsupervised model based on DGI [49]. In an
individual layer, it performed the DGI algorithm to get the
relation-type specific embedding and then took advantage of
the multiplexity of the network by introducing consensus
regularization and multiheaded attention mechanisms.
MEGAN [50] was amultiplex GAN that designed amultilayer
generator to model multilayer connectivity to generate fake
samples and a node pair discriminator to enforce the gen-
erator to more accurately t the distribution of multilayer
network connectivity. One2Multi [17] used the network with
the most information as the input of encoder to learn the
shared information of all the networks and then used a
multidecoder to reconstruct the multiplex network from the
shared information.

All the single-layer models mentioned above are ef-
fective for single network embedding; however, they do not
consider the correlation in the multiplex network. In ad-
dition, the GCN-based multiplex network embedding
models only consider the local information in the network,
while other models ignore the similarities between layers.
Our model combines the similarities between the layers
and can simultaneously capture the local and global in-
formation in the network and the multiplex relationships
between layers.

3. Notations and Problem Formulation

We begin with a formal definition of multiplex network,
followed by the problem formulation. For the sake of clarity,
the main notations are summarized in Table 1.

Definition 1 (multiplex network). A multiplex network
consists of a set of N nodes V � (v1, v2, . . . , vN) and L layer.
All layers share the same set of nodes V and the nodes form
diverse structures in each layer. 'e structure layer l can be
represented as εl. We denote this multiplex network as
G � G1, G2, . . . , GL  � V, ε{ }, where ε � ε1, ε2, . . . , εL .

Given such a multiplex network with L layers, the goal of
our work is to learn low-dimensional embeddings Zl

i ∈ Rd

for each node vi on each individual network Gl, where d is
the dimension of the embedding. 'e learned representa-
tions can be used as features in a variety of applications such
as node classification and visualization, relationship mining,
and link prediction. In our experiments, we perform both
link prediction and node classification tasks to verify the
effectiveness of the learned embedding.

4. Layer Information Similarity Concerned
Network Embedding

As the nodes in each layer of themultiplex network are same,
they shared the common information and the same node
may show some similar features among layers. However, the
structure among nodes in each layer is formed by different

semantics and thus leads to quite diverse local structures of
this node in each layer, and the varying relatedness between
different semantics also leads to diverse structural similar-
ities between different layers. In this paper, we propose
LISCNE which models the common and local features in
multiplex networks and exploits layer similarity at the same
time.

Figure 2 illustrates the framework of LISCNE for a three-
layer multiplex network. 'e architecture contains two
components. 'e first part is modeling the common vector
for all nodes that are shared by the counterpart nodes among
different layers. 'e second part is learning the node em-
bedding in each layer by integrating the common layer and
layer vector introduced to capture distinct semantic infor-
mation of different networks. 'e last part is describing the
process of training layer vectors with layer similarities. 'e
embedding for node vi in layer l is defined as

Z
l
i � f ui + r

l
 , (2)

where f is the map function integrating common vector and
layer vector to get the final node presentation. In our model,
we use concatenation as the map function. LISCNE specifies
the relationship of different networks by the layer similar-
ities, i.e., S12 indicates the index of structural similarity of
network G1 and network G2. By adding layer similarities to
the layer vector, it can associate within-network and cross-
network structure information.

Next, we will describe our model LISCNE in detail and
introduce it in three parts: common feature modeling,
learning node embedding in each layer, and integrating the
similarity between layers.

4.1. Common Feature Modeling. In this part, we learn the
common feature shared by the counterpart nodes among
different layer networks in the multiplex network. Firstly, we
use a network aggregationmethod to aggregate all layers into
a new single-layer network, where multiple edges are not
allowed. Specifically, we set the new network as
Gnew � V, εnew , and for the edge in εl ∈ ε1, ε2, . . . , εL , we
add the edge in εnew. 'e process is shown in Figure 3. 'en,
over the obtained new network, we learn the common vector

Table 1: Main symbols and their definitions.

Symbol Definition
L 'e number of layers in the multiplex network
Gl 'e network for layer l in the multiplex network
N 'e number of nodes
V 'e node set of the multiplex network
εl 'e edge set of l-th network
rl 'e layer vector for l-th network
ui 'e common vector for node vi

U 'e common vector matrix for all nodes
Zl

i 'e embedding vector for node vi in network Gl

d1 'e dimension of common vector
d2 'e dimension of layer vector
d 'e dimension of final node vector
S 'e similarity matrix between networks
Sαβ 'e similarity between networks Gα and Gβ
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matrix U for all nodes. We take node vi as an example; to get
the common vector ui, our goal is to maximize the prob-
ability of its neighbors’ context in the given walk sequence:

maxP vi− w, . . . , vi+w|vi; ui( , (3)

where w is half of the window size and the neighbors of vi are
vi− w, . . . vi+w.

Based on the assumption of conditional independence
and using the logarithmic probability, it can be further
factorized as

L1 � 
vi∈V


i− c≤j≤i+c,j≠i

log P vj|vi , (4)

where P(vj|vt) can be defined with a softmax function as

P vj|vt  �
exp u

T
j ui 

k∈Vexp u
T
k ui 

, (5)

where ui and uj are the common vectors for the input node
vi and context vj, respectively.

4.2. Learning Node Embedding in Each Layer. As discussed
before, each layer in a multiplex network has distinct in-
formation, and to capture the specific structure for an
individual network, we introduce the layer vector that maps
single layers into a latent space, i.e., the layer vector rl for
the individual graph Gl. To obtain the overall structure of
the multiplex network and layer vectors and learn se-
mantics for each layer simultaneously, we get the node
embedding for each layer by concatenating them. For a
random node vi, the embedding in layer Gl can be defined
as Vl

i � ui

����rl.
To preserve local neighborhoods of nodes in each layer,

our goal is to maximize the probability of specific neighbors’
context in each individual layer:

L2 � 
l


vi∈V



vj∈Cl vi( )

log P vj|vi; Z
l
i ,

(6)

where Cl(vi) is the context of node vi in layer Gl and
P(vj|vi; Vl

i) can be defined as

s ss

Modeling the common feature

Modeling layer feature
With layer similarities

U

r1 r2
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Figure 2: 'e simple framework of LISCNE.
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Figure 3: 'e process of aggregating the multiplex network into a single-layer network.
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P vj|vi; V
l
i  �

exp Z
lT
j Z

l
i 

k∈Vexp Z
lT
k Z

l
i 

, (7)

where Vl
i and Vl

j are the node embeddings for the input node
vi and context vj, respectively.

4.3. Integrating the Similarity between Layer-Networks.
'e layer vector learned above can capture the distinct
structure information within the layer, while in the multi-
plex network, there is another essential characteristic, which
is the similarity between layers varying from layer to layer.
Najari et al. [20] testified that incorporating the inter-layer
similarities can improve the link prediction performance.
'erefore, inspired by their study, we thought of using
similarities to enhance embedding capabilities. We added
constraints for layer vectors with the similarities between
this layer and other layers.'rough integrating into the layer
similarity, we made the layer vector capture the cross-layer
and within-layer information simultaneously.

Firstly, in our model, we used the Global Overlap Rate
(GOR) algorithm to measure the similarity among layers in
multiple networks. In detail, given two layers α and β in a
multiplex network, an overlap edge means that the same
node pair simultaneously exist in both networks. 'e global
overlap between layers α and β is denoted by Sαβ, which
represents the total number of overlapping edges observed in
layers α and β. It can be formulated as

S
αβ

�
εα ∩ εβ





εα ∪ εβ



, (8)

where εα is the total number of edges in layer α.'e range of
Sαβ is in [0,1], and the higher the value, the more the
similarity between layers. Particularly, Sαβ � 0 represents
that there are no overlapping edges between layers, indi-
cating that the layers are not related; otherwise, Sαβ � 1
means that the layers are completely correlated. 'e
similarity Sαβ between layer α and β is the same as similarity
Sβα of layer β and α, and this can also be seen from equation
(8).

After illustrating the definition, the next problem we
should deal with is how to incorporate it into the model. To
address this issue, we assume that if the structures of the two
layers are more similar, their representation in the vector
space should be closer. We force the following equation to
obtain the minimum value:

L3 � 
αβ

r
α

− r
β

�����

�����S
αβ

. (9)

From equation (9), we can employ stochastic gradient
descent to minimize I3 function as follows:

r
l

� r
l
− 

β

r
l
− r

β

r
l
− r

β
�����

�����2

S
lβ

. (10)

4.4. Time Complexity Analysis. Our loss function includes
two components.'e first part is maximizing the probability-

specific neighbors’ context in each individual layer to learn the
node embedding in each layer, where the main processes of
time consumption include getting random walk sequences
and skip-gram training, just as the ordinary random walk
algorithm. Assuming that the number of nodes is N, the
number of edges in each layer is M, the walking length is T,
and the number of walking sequences per node is t, the
complexity of sampling all sequences is O(M) + O(N∗T∗t).
Besides, the complexity of optimization of N∗t sequences
with the skip-grammodel is O(N log N).'erefore, the time
complexity of learning the node embedding in each layer is
O(M) + O(N) + O(N log N).'e second part is integrating
the similarity between layer-networks. In this part, we exploit
the structural similarity between pairs of two layers, and the
time complexity is O(L∗(L − 1)). In real-world network data,
the number of layers of L is often very small. 'e time
complexity of this part is relatively insignificant compared to
that of the first part of learning node embedding in each layer.
So, the overall time complexity of our model is
L∗(O(M) + tOn(N)q + hO(N log N)).

5. Experiments

In this section, we conduct experiments to validate the
proposed LISCNE. To compare our model with some state-
of-the-art single-layer embedding methods and multiplex
network embedding methods, we perform link prediction
and node classification tasks on several datasets with dif-
ferent types of networks.

5.1. Datasets. We employ five real-world multinetwork
datasets from three different fields: social, co-authorship,
and genetic. 'e basic statistical information of the datasets
is presented in Table 2.

All these datasets are downloaded from the CoMuNe
lab’s website (https://comunelab.fbk.eu/data.php). 'e de-
tailed descriptions are as follows:

(i) CKM [51]: by asking the physicians in Illinois,
Bloomington, Quincy, and Galesburg three ques-
tions, this dataset is classified into three types of
relationships. Its ground truth is related to node
labels; therefore, we also use this dataset to perform
the node classification task.

(ii) PIERRE [52]: this dataset maps layers to different
working tasks within the Pierre Auger Collabora-
tion. Based on the keywords and contents of all
submissions between 2010 and 2012, the multiplex
network is divided into 16 layers.

(iii) ARABIDOPSIS [53, 54]: based on BioGRID, this
multiplex network considers genetic interactions of
different types of organisms. 'e multiplex network
used in the paper makes use of the following layers:
direct interaction, physical association, additive ge-
netic interaction defined by inequality, suppressive
genetic interaction defined by inequality, synthetic
genetic interaction defined by inequality, association,
and colocalization.
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(iv) MUS [53, 54]: the dataset is also based on BioGRID.
'e layers in this dataset are physical association,
association, direct interaction, colocalization, ad-
ditive genetic interaction defined by inequality,
synthetic genetic interaction defined by inequality,
and suppressive genetic interaction defined by
inequality.

(v) Arxiv [52]: choosing papers with “networks” in the
title or abstract up to May 2014 in arxiv, the dataset
is divided into 13 layers corresponding to different
categories with 14,489 nodes.

5.2. Baseline Models. To show the performance of our
model, the following six baseline models are implemented
for comparison, which can be classified into single-layer
network embedding and multiplex network embedding.

(i) DeepWalk [6]: this is a classic single-layer network
embeddingmethod, which applies a randomwalk to
get walk sequences and then conducts the skip-gram
algorithm on the sequences to train the model.

(ii) Node2Vec [7]: this is also a typical single-layer
network embedding model, which utilizes two pa-
rameters to take control of the traverse probability
in taking the random walk strategies.

(iii) PMNE [39]: this is a multiplex network embedding
model that consists of three methods, where net-
work aggregation and result aggregation simply
merge all networks or the embedding results of all
networks into one, while co-analysis takes the in-
teraction among layers. PMNE_n, PMNE_r, and
PMNE_c are used to denote the network aggrega-
tion, result aggregation, and co-analysis,
respectively.

(iv) MNE [14]: this is a multiplex network embedding
model that defines two different dimensional vec-
tors for a node to capture the common information
in the whole network and the specific features in a
single layer, respectively.

(v) CrossMNA [16]: this is a multiplex network em-
bedding model and also a model for network
alignment. It learns simultaneously inter-vector
sharing by the anchor nodes in different networks
and a network vector for each single layer.

5.3. Experimental Setting. For our model, we set both the
common vector dimension and layer vector dimension to
100, and thus after concatenation, the final node embedding
vector dimension is 200. For the sake of fairness, we set all

the dimensions of final vectors compared with our models as
200. Additionally, for DeepWalk, we set the walk to 20 and
the walk length to 80 for each node taking a random walk.
For Node2Vec, we empirically set p � 2 and q � 0.5. For
PMME, we follow the default setting in the original paper,
which sets α, p, and q to 0.5. For MNE, we set the additional
vector dimension to 10 and the common vector dimension
to 200. For CrossMNA, according to the original paper, we
set the dimension of the inter-layer vector to 200 and the
dimension of the network vector to 100.

5.4. Evaluation Metrics. We perform link prediction and
node classification tasks to validate the efficiency of our
model. For the link prediction task, we execute experiments
in each layer and take the average as the final results. 'en,
we randomly divide datasets into testing sets and training
sets. When predicting each positive edge, we also randomly
sample unconnected node pairs as a negative edge.We adopt
the ROC-AUC evaluation metric to test model performance,
that is, the higher the value of AUC is, the better the model
performs. For the node classification task, we train all data to
get node embeddings of individual layers through our model
and baseline models, get the average node embedding of all
layers, and then inject the embeddings into a classifier to
evaluate the effect. In our experiment, we select a logistic
regression classier and choose the F1 (weighted) and pre-
cision (weighted) as evaluation metrics.

5.5. Performance on Link Prediction. For single-layer
methods, we train the node embedding for each layer and
use it to predict links in the corresponding layer. For the
three methods of PMNE, which take different strategies to
aggregate the representations of all layers into one, we take
the final node embedding to predict links in all layers. For all
models, we average the AUC values of all relation types as
final results. In experiments, we take five-fold cross-vali-
dation for all datasets.

'e results are shown in Table 3, from which we can
draw the following observations:

(i) 'e proposed LISCNEmodel can stably outperform
or achieve comparable performance with all the
baseline methods.'e results show that merging the
layer similarity into models can exactly improve the
performance.

(ii) 'e multiplex network models almost perform
better than single-layer models. Meanwhile, these
single-layer models in different datasets vary a lot,
e.g., in PIERRE dataset, DeepWalk and Node2Vec

Table 2: Statistics of datasets.

Dataset Network type Layers Nodes Edges Directed/undirected
CKM Social 3 246 1,551 Directed
PIERRE Co-authorship 16 514 7,153 Undirected
ARABIDOPSIS Genetic 7 6,980 18,654 Directed
MUS Genetic 7 7,747 19,842 Directed
Arxiv Co-authorship 13 14,489 59,026 Undirected

Complexity 7



perform poorly. In other words, considering the
intersection across layers is essential.

(iii) LISCNE, CrossMNA, and MNE are more effective
than PMNE’s three methods. PMNE models learn
an overall vector for each node by aggregating all
layers, while LISCNE, CrossMNA, and MNE all
simultaneously define a vector to capture the
common information and another vector to capture
the distinct information about each specific layer.

5.6. Performance over Common Vector Embedding
Dimension. Figure 4 shows the performance of our model as
the embedding dimension of the common vector increases.
It can be clearly seen from the figure that the larger the
dimension, the better the prediction effect. When the di-
mension reaches 10, the curve tends to stabilize. Here, for the
sake of both accuracy and computational complexity, we set
the common vector dimension d1 to 100.

5.7. Performance on Node Classification. In the node clas-
sification task, we choose the CKMdataset with reliable node
labels to conduct the experiment and take the companies as
the classification label. In addition, the ones injected into the
classifier are average node vectors for node embeddings in
individual layers. For single-layer networkmethods, we train
all nodes in each layer and get the average of node vectors in
each layer. ForMNE, CrossMNA, and ourmodel, we also get
the average of node vectors of intra-vector in individual
layers. 'en, all the node representations and corresponding
node labels in each layer are divided into training and testing
datasets to train the classifier. In our experiment, we use a
logistic classifier and evaluate the classification performance
with the metrics accuracy, precision, and F1, respectively,
which can be defined as follows:

accuracy �
TP + TN

TP + FP + TN + FN
,

precision �
TP

TP + FP
,

F1 �
2TP

2TP + FN + FP
.

(11)

As shown in Figure 5, the results prove the effectiveness
of our model, where our model LISCNE can provide the best
performance in terms of F1 and precision and achieve

comparable accuracy with PMNE_n and PMNE_c. How-
ever, the effectiveness of multiplex network embedding
models like CrossMNA on the link prediction task is not
obvious. 'is may be because every model injected into the
classifier is the average of node embedding in all layers. 'e
effect of average is somewhat like aggregation and gets the
shared information in all layers.

6. Conclusion and Future Work

In this paper, we propose an effective method called
LISCNE for multiplex network embedding. LISCNE de-
fines a common vector for all counterpart nodes in the
multiplex network and also introduces a layer vector for
each layer. Moreover, when learning layer vectors, it first
merges the layer similarities to simultaneously capture
intra-layer information and cross-network information.
We have performed link prediction and node classification
tasks to test LISCNE and conducted extensive experiments

Table 3: Results of link prediction on different datasets.

Model CKM PIERRE ARABIDOPSIS MUS Arxiv
Node2Vec 0.707 0.572 0.525 0.651 0.753
DeepWalk 0.7 0.589 0.563 0.626 0.759
PMNE_n 0.781 0.8 0.828 0.867 0.872
PMNE_r 0.789 0.65 0.586 0.62 0.782
PMNE_c 0.763 0.516 0.529 0.563 0.599
MNE 0.785 0.791 0.765 0.779 0.834
CrossMNA 0.828 0.733 0.845 0.879 0.922
LISCNE 0.883 0.792 0.825 0.888 0.924
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Figure 4: Performance over the dimension d1 of common vector
embedding.
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Figure 5: 'e performance of node classification on CKM.
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to verify the effectiveness of our proposed model. 'is
model is applicable to aligned networks and certain net-
works, in which one node in some network is only con-
nected to one node in another network.

Unfortunately, this kind of network cannot cover lots of
scenarios in the real world, e.g., the association between a
collaboration graph of researchers and a citation graph of
papers, where an author can cite papers on multiple topics.
In the future, we will extend our model to more manifold
networks, for example, one node in some network is
connected to several nodes in another network through
different weights.
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and R. D. Hjelm, “Deep graph infomax,” http://arxiv.org/abs/
1809.10341.

[33] H. Hafidi, M. Ghogho, P. Ciblat, and A. Swami, “Graphcl:
contrastive self-supervised learning of graph representations,”
http://arxiv.org/abs/2007.08025.

[34] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L.Wang, “Deep graph
contrastive representation learning,” http://arxiv.org/abs/
2006.04131.

[35] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network
embedding,” IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 5, pp. 833–852, 2018.

[36] H. Cai, V. W. Zheng, and K. C. C. Chang, “A comprehensive
survey of graph embedding: problems, techniques, and ap-
plications,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 30, no. 9, pp. 1616–1637, 2018.

[37] P. Goyal and E. Ferrara, “Graph embedding techniques,
applications, and performance: a survey,” Knowledge-Based
Systems, vol. 151, pp. 78–94, 2018.

[38] D. Jin, Z. Yu, P. Jiao, S. Pan, P. S. Yu, andW. Zhang, “A survey
of community detection approaches: From statistical mod-
eling to deep learning,” http://arxiv.org/abs/2101.01669 CoRR
abs/2101.01669.

[39] W. Liu, P. Y. Chen, S. Yeung, T. Suzumura, and L. Chen,
“Principled multilayer network embedding,” in Proceedings of
the 2017 IEEE International Conference on Data Mining
Workshops (ICDMW), pp. 134–141, IEEE, New Orleans, LA,
USA, November 2017.

[40] M. Zitnik and J. Leskovec, “Predicting multicellular function
through multi-layer tissue networks,” Bioinformatics, vol. 33,
no. 14, pp. i190–i198, 2017.

[41] A. Bagavathi and S. Krishnan, “Multi-net: a scalable multiplex
network embedding framework,” in Proceedings of the In-
ternational Conference on Complex Networks and their Ap-
plications, pp. 119–131, Springer, Basel, Switzerland,
December 2018.

[42] C. Park, C. Yang, Q. Zhu, D. Kim, H. Yu, and J. Han,
“Unsupervised differentiable multi-aspect network embed-
ding,” http://arxiv.org/abs/2006.04239.

[43] Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, and J. Tang,
“Representation learning for attributed multiplex heteroge-
neous network,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, KDD ’19, pp. 1358–1368, Association for Computing
Machinery, New York, NY, USA, July 2019.

[44] M. Gong, W. Liu, Y. Xie, Z. Tang, and M. Xu, “Heuristic 3D
interactive walk for multilayer network embedding,” IEEE
Transactions on Knowledge and Data Engineering, p. 1, 2020.

[45] Q. Meng, T. Jian, J. Shang, R. Xiang, and J. Han, “An at-
tention-based collaboration framework for multi-view net-
work representation learning,” in Proceedings of the 2017
ACM on Conference on Information and Knowledge Man-
agement (CIKM ’17), pp. 1767–1776, Singapore, November
2017.

[46] Y. Ma, S. Wang, C. C. Aggarwal, D. Yin, and J. Tang, “Multi-
dimensional graph convolutional networks,” in Proceedings of
the 2019 SIAM International Conference on Data Mining,
pp. 657–665, SIAM, Champaign, IL, USA, May 2019.

[47] R. Wang, L. Li, X. Tao, X. Dong, P. Wang, and P. Liu, “Trio-
based collaborative multi-view graph clustering with multiple
constraints,” Information Processing & Management, vol. 58,
no. 3, Article ID 102466, 2021.

[48] C. Park, J. Han, and H. Yu, “Deep multiplex graph infomax:
attentive multiplex network embedding using global infor-
mation,” Knowledge-Based Systems, vol. 197, Article ID
105861, 2020.

[49] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio,
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