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Abstract—Mobile Edge Computing (MEC) revolutionizes the
traditional cloud-based computing paradigm by moving resources
in proximity to the network edge, aiming to cater to the rigorous
requirements of emerging latency-sensitive applications. However,
the escalating resource demands intensify the competition among
user devices (UDs). Thus, it is essential to coordinate task offloading
and resource scheduling while ensuring fairness among users in
MEC. Despite the crucial role of user fairness in motivating task of-
floading in MEC, it is often overlooked in existing literature. There-
fore, we in this paper propose a caching-enhanced MEC framework
and formulate a collaborative service caching, task offloading, and
multi-resource allocation problem to maximize average user satis-
faction. Multiple factors contribute to the difficulty in solving the
optimization problem, including constrained resource capabilities,
user mobility, service heterogeneity, and spatial demand coupling.
Consequently, we transform the origin problem into two distinct
subproblems – the service caching and task offloading problem, and
the multi-resource allocation problem, respectively. Then, the Ad-
vantage Actor-Critic (A2C) based approach is proposed to address
the former problem, while a Lagrangian duality-based approach
is adopted to tackle the latter problem. The simulation results
demonstrate the superior performance of the proposed solution
in comparison to several baseline methods.

Index Terms—Service caching, task scheduling, multi-resource
allocation, advantage actor-critic, edge computing.

I. INTRODUCTION

MOBILE Cloud Computing (MCC), with its abundant,
configurable, and shareable resources, was once per-

ceived as an efficient solution to the challenges posed by the
computation-intensive applications from mobile user devices
(UDs). UDs can offload the computation tasks to the cloud
center, enabling efficient data processing in MCC. However, the
primary limitation of MCC arises from the protracted latency in
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data transmission across backbone networks, posing a signifi-
cant impediment to time-critical applications such as healthcare
monitoring, autonomous driving, and real-time gaming. Then,
Mobile Edge Computing (MEC) is proposed to address this
inherent limitation in MCC, by offloading the computation tasks
from UDs to the edge server (ES) for execution. This computing
paradigm not only brings resources closer to UDs but also
substantially decreases the latency in data transmission [1], [2].
MEC optimizes the efficiency of task processing in terms of
both time and energy consumption, by allowing for real-time
interactions and minimizing network latency.

The majority of studies within the MEC framework concen-
trate on enhancing computation offloading performance through
the optimization of task offloading and resource allocation
strategies. Despite massive efforts to improve the performance
of MEC systems, several challenges remain that require ur-
gent attention. For example, tasks generated by UDs frequently
demonstrate heterogeneity in terms of input data size, computing
resource demands, and latency constraints. An optimal resource
scheduling strategy at the network edge must address the fierce
competition for bandwidth and computing resources among nu-
merous tasks [3]. Furthermore, a computation task generated by
a UD typically comprises two distinct components: user-specific
data and associated databases/libraries. The latter component
often significantly surpasses the former in size, particularly
for some AI-based applications that process large datasets. Of-
floading such tasks usually results in substantial transmission
delays over the fronthaul network, thereby degrading the MEC
performance.

Last but not least, the issue of user fairness is often ignored
during task offloading in MEC. As a pivotal performance metric,
user fairness not only fosters the motivation for task offloading in
MEC, but also ensures equitable access to computing and com-
munication resources of the edge server among heterogeneous
UDs. Unfair resource allocation could lead to serious conse-
quences for disadvantaged UDs in time-critical scenarios. For
example, in the realm of online multi-player games, substantial
disparities in latency can undermine the equity of competitive
gaming, resulting in an unjust advantage for players with lower
latency connections. Current works [4], [5], [6] focus on user
fairness in MEC environments from various perspectives, but
often overlook the primary motivation for introducing the MEC
paradigm, which is to reduce the latency of offloaded tasks.
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Therefore, MEC systems should strive to balance the processing
latency of latency-sensitive tasks with equitable resource allo-
cation, thereby preventing service monopolization by specific
users or applications.

To address the aforementioned issues, we introduce a fairness-
aware caching-assisted edge computing framework in this pa-
per. On the one hand, we cache the second component of
computation task, i.e., task-associated databases/libraries, also
referred to as services, at the ES/edge node (EN). Thus, only the
user-specific data in computation tasks need to be offloaded in
MEC, thereby substantially reducing the volume of transmitted
data and effectively minimizing transmission latency [7]. On
the other hand, we not only prioritize the minimization of
task completion latency, but also place significant emphasis
on ensuring fairness among users. Specifically, we employ a
logarithmic function that uses the the difference between the
maximal tolerable latency and the actual task completion time
as its parameter to achieve proportional fairness. This logarith-
mic function exhibits desirable mathematical properties while
aligning with the original intent of the MEC paradigm.

The goal of this paper is to jointly optimize service caching,
task scheduling, and resource allocation strategies in MEC,
and we formulate the optimization problem as a mixed-integer
nonlinear programming (MINLP) problem. To solve this NP-
hard optimization problem, we transform the origin problem
into two distinct subproblems – the service caching and task
offloading problem, and the multi-resource allocation problem,
respectively. Then, the Advantage Actor-Critic (A2C) based
approach is proposed to address the former problem, while a
Lagrangian duality-based approach is adopted to tackle the latter
problem. Furthermore, we integrate the proportional fairness
criteria [8] by the logarithmic function to attain fairness goals.

The main contributions of this paper are listed as follows:
� We integrate the fairness issue into the MEC system, given

the critical role of fairness in ensuring equitable access to
computing and communication resources among heteroge-
neous UDs. Specifically, we propose using the difference
between the maximal tolerable latency and the actual task
completion time as a fairness metric to achieve proportional
fairness.

� For the multi-service and multi-user edge computing sce-
nario with cache assistance, we propose a collaborative
service caching, task scheduling, and multi-resource al-
location problem in MEC. This problem takes into con-
sideration task deadlines, energy constraints, and various
resource limitations, aiming to maximize the overall user
satisfaction.

� The optimization problem is first decoupled. Then we in-
troduced an A2C-based algorithm with the aim to learn and
approximate near-optimal solutions for stochastic schedul-
ing problems, particularly in caching and offloading deci-
sions. In the following steps, we adopt Lagrangian duality-
based methods to determine optimal resource allocation
policy for offloaded tasks in ES.

� Through extensive simulation experiments, we compared
the performance of several baseline strategies with our
proposed solution. The results demonstrated the significant
superiority of our approach.

The remainder of this paper is organized as follows: Section II
reviews and discusses related research in the caching domain.
Section III describes the system model, while Section IV defines
the problem formulation. Section V introduces a multi-resource
allocation algorithm based on Lagrangian dual theory. Sec-
tion VI presents and demonstrates the A2C-based caching and
task offloading model. Section VII provides the performance
evaluation results of the proposed methods, and Section VIII
summarizes the main conclusions and discusses future research
directions.

II. RELATED WORKS

Compared to conventional MEC, cache-assisted task offload-
ing offers significant potential for optimizing energy consump-
tion, response time, and other performance metrics, making
it a key research area in mobile edge computing [24], [25].
Additionally, user fairness, as a key performance metric for
assessing the satisfaction level of users, should not be neglected
during task offloading in MEC systems. In this section, we
review the most relevant studies, analyze their contributions,
and compare them with our work presented in this paper.

A. Fairness-Aware Optimization for MEC

Considering the complex computing demands of power In-
ternet of Things devices, Li et al. [5] proposed a two-layer
edge computing framework consisting of an edge server layer
and an access point layer. Specifically, a fairness mechanism
based on the Theil index was introduced to achieve balanced
allocation within the system. The Industrial Internet of Things
(IIoT) devices rely on computing resources to facilitate efficient
data exchange and task offloading. In [10], the authors proposed
a fairness-aware task offloading approach by formulating a
multi-constraint optimization problem and solving it using a
weighted max-min fairness algorithm.

Scheduling fairness can significantly impact the average QoS
of vehicles in the vehicular edge computing paradigm. To ad-
dress this, a dependent task offloading scheduling algorithm was
proposed in [11], where scheduling fairness was integrated into
the constraints. Specifically, a task sorting algorithm was uti-
lized to determine the task scheduling sequence. Subsequently,
a Q-learning-based approach was employed to solve the task
offloading problem. Finally, scheduling fairness was ensured
through a back-adjustment mechanism.

In an uncrewed aerial vehicles (UAVs)-assisted MEC system,
UAVs can serve as computing nodes for offloading tasks from
ground users. To ensure fairness, where each ground user has
an equal opportunity to offload tasks, Karmakar et al. [12]
proposed a fairness-aware secure task offloading approach. They
utilized proportional fairness as the fairness metric and aimed
to minimize the secrecy rate using SARSA-based deep rein-
forcement learning (DRL) technology. Extensive simulations
demonstrated the performance of their approach. UAVs can also
be used to shorten the latency in computation tasks in disaster
scenarios. For instance, Wang et al. [13] explored task offloading
in the given scenario and proposed a practical RIS phase shift
mechanism to ensure fairness among ground terminals. Specif-
ically, they employed a deep deterministic policy gradient
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(DDPG) algorithm to address the formulated optimization prob-
lem. In another study, Fu et al. [14] emphasized energy efficiency
(EE) fairness among IoT nodes within a UAV-assisted MEC
network. To achieve this, they formulated a joint optimization
problem involving multiple decision variables, aiming to en-
hance the computation EE of the least efficient IoT node.

Authors in [15] formulated a MINLP problem to minimize
the maximum weighted energy while ensuring the fairness in
IRS-assisted MEC system. A bisection search based approach
was adopted to solve the subproblems. Extensive simulations
were conducted to evaluate the performance of the MEC system,
and the simulation results proved their advantages compared to
several benchmark schemes.

B. Service Caching Assisted Task Offloading Optimization

In [16], Dai et al. combined task offloading with service
caching in a cloud-fog scenario. Their goal was to make offload-
ing decisions through non-cooperative games and dynamically
cache services and adjust offloading decisions based on service
popularity, thereby minimizing task delay and local energy
consumption. In a multi-cell MEC system, Xu et al. [17]
formulated the joint caching and offloading problem with the
aim of minimizing computation latency. They devised an online
algorithm based on Lyapunov optimization, which incorporates
a decentralized approach using a variant of Gibbs sampling to
facilitate distributed coordination among base stations.

Tang et al. [18] focused on application-oriented caching in
vehicular edge computing, formulating an optimization problem
to minimize the average response time. Due to the complex-
ity of addressing this optimization challenge, they propose a
Lyapunov-based greedy heuristic to derive the caching scheme
across a long time horizon. The work in [19] focuses on service
placement, task scheduling, and resource allocation in cloud-
edge collaborative systems, aiming to minimize the overall
task delay. The study simplifies the problem using Lyapunov
optimization principles, transforming it into a deterministic
problem for each time slot, and develops an iterative algorithm
to comprehensively address the problem.

Moreover, researchers continue to explore the utilization of
reinforcement learning techniques to achieve more efficient
resource utilization and task processing. Wang et al. [20] de-
tailed a methodology that employs asynchronous Advantage
Actor-Critic design to simultaneously optimize service caching,
computation offloading, and resource allocation within a three-
tier edge-cloud framework. The aim is to cater to the latency
constraints of mobile users while minimizing the costs associ-
ated with cloud service centers. In [21], Yan et al. introduced a
cloud-edge computing framework for the Intelligent Meteoro-
logical System, focusing on service caching. They derived the
service caching strategy using deep deterministic policy gradient
(DDPG) to achieve optimal service coverage rates and minimal
processing latency.

Tang et al. in [22] proposed a fairness-aware long-term
cache sharing mechanism to promote the sharing of caching
services in cloud computing environments. Specifically, their ap-
proach aimed to optimize cache usage efficiency while ensuring

Fig. 1. System model.

system fairness. This policy was implemented in Alluxio, and
simulation results demonstrated that the strategy effectively
maximized cache utilization while maintaining fair resource
allocation across users. Chen et al. [23] highlighted the demands
of end users and investigated a digital twin service caching and
request routing problem. An optimization problem was formu-
lated to maximize the minimum task completion ratio while
ensuring fairness among MEC servers. An online algorithm
was proposed to address this problem, and extensive simulations
were conducted to demonstrate its effectiveness and efficiency.

C. Summary and Comparison

The aforementioned studies on fairness-aware optimization
and service caching in MEC systems have made significant
progress; however, they are limited by inherent constraints that
hinder their effectiveness in dynamic, multi-service MEC envi-
ronments. On the one hand, fairness metrics are introduced to
balance resource allocation among users, but these approaches
often neglect the interplay between task deadlines and energy
consumption constraints. On the other hand, many works assume
static service caching, which not only fails to adapt to the high
dynamics of task arrivals but also underestimates the long-term
costs associated with service replacement. Specifically, the com-
parison between related works and ours is summaried in Table I.

Overall, these studies either oversimplify system dynamics or
fail to integrate fairness considerations with caching-offloading
interactions. Our contribution lies in addressing these gaps
through a unified, fairness-aware optimization framework that
demonstrates proven scalability and efficiency. Specifically, we
aim to integrate service caching, task scheduling, bandwidth
resource allocation, and computing resource allocation into a
cohesive optimization framework while ensuring fairness among
users. Compared to existing studies that focus on only one or
two dimensions of the aforementioned optimization aspects, our
approach offers a more comprehensive optimization across all
these dimensions.

III. SYSTEM MODEL

In the depicted scenario shown in Fig. 1, the system model
comprises a remote cloud, an ES, and multiple user devices.
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TABLE I
EXISTING LITERATURE COMPARISON

The ES, equipped with caching and computation capabilities,
is positioned alongside the base station (BS), enabling potential
task offloading from UDs to the ES through wireless networks.
The optimization period T is segmented into distinct intervals
referred to as time slots, i.e., T = {1, 2, . . . , T}. The set of
UDs, is indexed by N = {1, 2, . . . , N}, capable of generating
computation-intensive tasks. Assume that each UD n generates
at most one computation task in each time slot. The task is
assumed to be atomic and indivisible, and can be described by
the input data size, computing resource demands, and delay con-
straints. Particularly, a task ttn generated by UD n in time slot t
can be expressed as ttn = (dtn, s

t
n, l

max,t
n ), where dtn denotes the

input data size of the task, stn represents the required computing
resources (CPU cycles) for the task, and lmax,t

n indicates the
maximum tolerable delay for the task.

As previously mentioned, each computation task is associated
with a corresponding service (i.e., the second component). The
set of services is indexed byA = {a1, a2, . . . , aK} and K is the
number of services that can be cached at the edge. Each service
k has different storage requirement hk. It should be noted that a
single service can be associated with multiple computation tasks.
Define αt

n,k ∈ {0, 1} to indicate the correspondence between
task n and service k in time slot t. αt

n,k = 1 indicates that
the task ttn requests service k in slot t, and αt

n,k = 0, other-
wise. δ(t) = {δt1, δt2, . . . , δtK} denotes the caching profile of K
services in time slot t, where δtk ∈ {0, 1} is a binary variable.
δtk = 1 denotes that service k is cached at the edge and δtk = 0
denotes that service k is not cached in time slot t. Thus, we
have

∑
k∈K δ

t
khk ≤ C, whereinC denotes the maximum storage

capacity achievable at the ES.
Let βt

n =
∑

k∈K α
t
n,kδ

t
k denote whether the service needed

by task ttn is cached in time slot t. For instance, βt
n = 1 denotes

the service associated with ttn is cached at the ES, and βt
n = 0

denotes the service associated with ttn is not cached. Each
task can be processed locally, and only those tasks with their
associated services cached at the edge can be offloaded for
execution. Thus, define a binary offloading decision variable
λt
n ∈ {0, 1}, where λt

n = 0 indicates that the task is executed

locally, and λt
n = 1 indicates that the task is offloaded to the

edge for execution.
At the beginning of each time slot, UDs which generate tasks

will disseminate the requests, along with beacon information,
to the ES. Given the caching profile in the previous time slot
and designed evaluation metric, ES determines which services
should be cached and which tasks should be offloaded. It should
be noted that the ES can download and cache services from a
remote cloud, in accordance with an established cache update
policy. ES starts to execute a task only when both its required
service and input data are available.

A. Task Processed Locally

Let f l
n denote the average processing frequency (in CPU

cycles per second) of UD n for local computation. Thus,
the total processing time of task n for local execution is
expressed as:

Lt
l = stn/f

l
n. (1)

B. Task Offloading to the Edge

The Dynamic Spectrum Access (DSA) technology can effi-
ciently allocate spectrum resources among UDs, while satisfying
the diverse communication requirements of different UDs in
realtime scenarios [26]. Define B(t) = {bt1, bt2, . . . , btN} as a
bandwidth distribution vector, indicating the spectrum resources
assigned to each task in a single time slot. Hence, the inequation∑

n∈N λt
nb

t
n ≤W holds, since the communication resources

allocation across all offloaded tasks should not surpass the total
uplink bandwidth capacity W .

The latency associated with transmitting input data from UD
n to the ES via the wireless communication channel can be
mathematically expressed as:

le,tn,trs = dtn/r
e,t
n , (2)
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where re,tn represents the achievable uplink data rate, which is
expressed as:

re,tn = btn log

(
1 +

gtnpn
N0btn

)
, (3)

wherepn signifies the transmission power of UDn,gtn represents
the wireless channel gain between UD n and the ES during time
slot t, and N0 denotes the spectral density of noise power.

If a task can be offloaded to the ES for execution, the requested
service k must be accessible at the ES. If this service was not
stored in the ES during the previous time interval, it must be
downloaded by the ES from the remote cloud. Denote by rc,t

the transmission rate between the ES and the remote cloud. Then,
the time taken for downloading service k from the cloud to the
ES is

lc,tn,ser =
max(βt

n − βt−1
n , 0)

∑K
k=1 α

t
n,khk

rc,t
, (4)

where βt
n − βt−1

n can indicate the caching update decision for
the required service in time slot t. When βt

n − βt−1
n = 1, it

means that the required service was not cached in the prior time
interval but will be included in current time slot t.βt

n − βt−1
n = 0

means that the caching status of the required service remains
the same across time slot t and t− 1. When βt

n − βt−1
n = −1,

it denotes that the necessary service was cached during previous
time interval but will be removed in time slot t.

Define the vector fe(t) = {fe,t
1 , fe,t

2 , . . . , fe,t
N } to denote the

allocation of computing resources among the tasks offloaded to
the ES during time slot t, where fe,t

n represents the amount
of CPU-cycle frequency assigned to accomplish a particular
computation task. Denote by Fe the total computing resources
available at the ES. Thus, the computing resources fe,t

n (∀n ∈
N ) should satisfy the constraint:

∑
n∈N λt

nf
e,t
n ≤ Fe. Then, the

execution latency for task ttn can be described as:

le,tn,exe = stn/f
e,t
n . (5)

The overall completion time of offloading task can be summa-
rized as:

Lt
e = max(le,tn,trs, l

c,t
n,ser) + le,tn,exe. (6)

The energy consumption for executing the task at ES can be
formulated as:

ee,tn,exe = kestnf
e,t
n

2
, (7)

where ke signifies the effective switched capacitance coeffi-
cient associated with the ES. Additionally, the total storage
consumption required for caching selected services within the
ES is represented by ee,tstr =

∑
k∈K δ

t
kγk, where γk denotes the

average static power consumption for caching service k. The
total energy consumption for accomplish offloading tasks within
time slot t is calculated as:

Et
e = ee,tstr +

N∑
n=1

λt
ne

e,t
n,exe. (8)

The symbols employed within this article are concisely compiled
and summarized in Table II for reference and clarity.

TABLE II
NOTATIONS AND DESCRIPTIONS

IV. PROBLEM FORMULATION

At the beginning, the satisfaction function is defined, en-
compassing both system response latency and fairness among
users, thereby offering a comprehensive evaluation of the over-
all user experience in the task offloading scenario. Following
other works [27], [28], a logarithmic function is also employed
to achieve proportional fairness. The satisfaction function for
completing task ttn is defined as:

St
n = log(1 + φ+ lmax,t

n − (λt
nL

t
e + (1− λt

n)L
t
l)), (9)

where φ calibrates the satisfaction metric to ensure the non-
negativity.

Our objective is to maximize the average satisfaction of
all tasks while adhering to the constraints on task completion
delay and energy consumption. The optimization problem is
formulated as:

P1 : max
δ(t),λ(t),fe(t),B(t)

lim
T→∞

1

T

∑T

t=1

∑
n∈N

St
n (10)

s.t. λt
nL

t
e + (1− λt

n)L
t
l ≤ lmax,t

n ,

∀n ∈ N , ∀t ∈ T , (10a)

Et
e ≤ Q, ∀t ∈ T , (10b)∑

k∈K
δtkh

t
k ≤ C, ∀t ∈ T , (10c)

∑
n∈N

λt
nb

t
n ≤W, ∀t ∈ T , (10d)

∑
n∈N

λt
nf

e,t
n ≤ Fe, ∀t ∈ T , (10e)

btn ≥ 0, ∀n ∈ N , ∀t ∈ T , (10f)

fe,t
n ≥ 0, ∀n ∈ N , ∀t ∈ T ,

(10g)

δtk ∈ {0, 1}, ∀n ∈ N , ∀t ∈ T ,
(10h)

λt
n ∈ {0, 1}, ∀n ∈ N , ∀t ∈ T ,

(10i)
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where condition (10b) specifies that the completion delay for
each task should not surpass its permissible latency limit, while
(10c) imposes a limit on the energy consumption of tasks on
the ES, ensuring it does not exceed the predefined threshold.
Constraint (10d) ensures that the storage requirement of cached
services during one time slot remain within the maximal storage
capacity of the ES. Conditions (10e) and (10f) implies that the
total computation and communication capacity allocated across
all tasks during the time slot t should not exceed the total
resources available within the ES.

Remark: The optimization problem P1 is a prototypical
mixed-integer nonlinear programming (MINLP) problem, and
the computational cost of obtaining an optimal solution in
large-scale MEC environment is excessively high. The inter-
dependencies between tasks and resources further complicate
the solution space, resulting in an exponential increase in com-
putational requirements as the problem size expands. To address
these challenges, we partition the original problem into two
subproblems: the service caching and task offloading (SC&TO)
problem, and the multi-resource allocation (MRA) problem,
which are addressed separately in Sections Sections VI and V,
respectively.

V. MULTI-RESOURCE ALLOCATION ALGORITHM

Examining the formulation of problem P1, it is evident that
the resource allocation decision at the ES in time slot t can
only impact task completion delay and energy consumption at
the ES. Thus, given a SC&TO strategy in time slot t, we only
need to focus on MRA problem in the slot t. To streamline
the MRA problem, we decompose it into two sub-problems:
a bandwidth resource allocation (BRA) problem and a CPU
frequency allocation (CRA) problem. The two subproblems
can be addressed in an alternative and iterative manner until
convergence is achieved.

A. Communication Resource Allocation Problem

Based on the preceding analysis, given caching, offloading,
and CPU frequency allocation decisions in a single time slot,
the BRA problem assumes the following structure,

P1.1 : max
B(t)

∑
n∈N

St
n

(10a), (10d), (10f). (11)

Lemma 1: Within the optimal solution set of problem P1.1,
there always exists a solution such that le,tn,trs ≥ lc,tn,ser holds for
all the offloaded tasks.

Proof: First, it is obvious that when btn > 0, le,tn,trs = dtn/r
e,t
n

decreases monotonically with respect to btn. Due to space limi-
tations, the proof is not included here.

Letbt�be an element in the set of optimal solutions to problem
P1.1.

Case 1: The requested services for the offloaded tasks were
all cached in the previous time slot, then the inequality le,tn,trs ≥
lc,tn,ser holds for all the offloaded tasks.

Case 2: There exists a task ttn (n ∈ N ) requesting a service
that is not cached in the ES, and the inequality le,tn,trs < lc,tn,ser

holds. In the meanwhile, there exists an offloading task ttm ∈ N
whose requested service was cached in the ES in the previous
time slot t− 1. le,tn,trs is monotonically decreasing with respect

to btn, and we can slightly decrease btn
� to btn

�′, i.e., btn
�′
=

btn
� − ε, where ε is a small positive number to guarantee that btn

�′

satisfies the inequality le,tn,trs < lc,tn,ser. Then, this communication
resource surplus ε can be allocated to task ttm. By doing so,
it is obvious that the value for the optimization objective of
P1.1 increases, so we can find a better optimal solution btn

�′ in
contrast to btn

�. It contradicts the assumption that btm
� is one

of optimal solutions to problem P1.1. Therefore, the inequality
le,tn,trs ≥ lc,tn,ser holds true for all offloading tasks in this case.

Case 3: None of the requested services for offloaded tasks
are cached in the ES, and there exists a task ttn (∀n ∈ N ) that
satisfies the inequality le,tn,trs < lc,tn,ser. Similarly, we can slightly

decrease btn
� to btn

�′, i.e., btn
�′
= btn

� − ε, where ε is a small
positive number such that btn

�′ satisfies the equality le,tn,trs =
lc,tn,ser. In this case, the optimization objective of P1.1 remains
unchanged. Thus, there exists an optimal solution where the
inequality le,tn,trs ≥ lc,tn,ser holds true for all the offloaded tasks.

Based on Lemma 1, we can reframe problem P1.1 as P1.1.1,
with the optimal solution set of P1.1.1 being a subset of the
optimal solution set of P1.1,

P1.1.1 : max
B(t)

∑
n∈N

St
n (12)

s.t. le,tn,trs ≥ lc,tn,ser,

(10a), (10d), (10f). (12a)

Lemma 2: The following equivalent problem can be ex-
pressed by reformulating problem P1.1.1 as:

P1.1.1 : max
B(t)

∑
n∈N

St
n
′

(13)

s.t. btn ≥ bmin,t
n , ∀n ∈ N , ∀t ∈ T , (13a)

btn ≤ bmax,t
n , ∀n ∈ N , ∀t ∈ T ,

(10d). (13b)

Here,

St
n
′
= 1 + φ+ lmax,t

n −
(

λt
n

(
dtn
re,tn

+le,texe

)
+ (1− λt

n)L
t
l

)
,

(14)

bmin,t
n =

{
H
(
lmax,t
n − stn

fe,t
n

)
, λt

n = 1;

0, λt
n = 0,

(15)

where

H

(
lmax,t
n − stn

fe,t
n

)
= −1

/⎛
⎝
⎛
⎝W−1

⎛
⎝ −dtn ln 2N0

(lmax,t
n − stn

fe,t
n

)peng
t
n

e

−dtn ln2N0

(l
max,t
n −

stn

f
e,t
n

)pengtn

⎞
⎟⎠+

dtn ln 2N0

(lmax,t
n − stn

fe,t
n

)peng
t
n

⎞
⎟⎠ lmax,t

n − stn
fe,t
n

dtn ln 2

⎞
⎟⎠,

(16)
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and

bmax,t
n =

⎧⎨
⎩
H(lc,tn,ser), βt

n − βt−1
n = 1, λt

n = 1;
W, βt

n − βt−1
n = 0, λt

n = 1;
0, others,

(17)

where

H(lc,tn,ser) = − 1

/((
W−1

(
−dtn ln 2N0

lc,tn,serpeng
t
n

e

−dtn ln2N0

l
c,t
n,serpengtn

+
dtn ln 2N0

lc,tn,serpeng
t
n

)
lc,tn,ser

dtn ln 2

)
, (18)

and W−1(·) is Lambert W function.
Proof: Due to le,tn,trs ≥ lc,tn,ser, St

n can be simplified to St
n
′.

To facilitate calculations, constraints (10b), (10g) have been
simplified to (13a), where bmin,t

n is the minimal computing
resource needed to satisfy constraint (10b) for those offloaded
tasks, and bmax,t

n is the maximum bandwidth allocation satis-
fying le,tn,trs = lc,tn,ser for these offloaded tasks whose required
service has not been cached in the ES.

Consider the following equation,

le,tn,trs =
dtn
re,tn

=
dtn

btn log2 (1 +
gt
npn

N0btn
)
� C0. (19)

That is,

dtnln2

C0btn
= ln

(
1 +

gtnpn
N0btn

)
. (20)

By applying the natural exponential operation and certain
transformations to both sides, we have(

−dtnln2N0

C0p
t,e
n gtn

− dtnln2

C0btn

)
e
− dtnln2N0

C0p
t,e
n gtn

− dtnln2

C0btn

= − dtnln2N0

C0p
t,e
n gtn

e
− dtnln2N0

C0p
t,e
n gtn . (21)

Let x = − dt
nln2N0

C0p
t,e
n gt

n

− dt
nln2
C0btn

, the above expression becomes

xex = −dtnln2N0

C0p
t,e
n gtn

e
− dtnln2N0

C0p
t,e
n gtn . (22)

Consequently, we can solve the equation for x by

x = W−1

(
−dtnln2N0

C0p
t,e
n gtn

e
− dtnln2N0

C0p
t,e
n gtn

)
, (23)

and btn can be expressed as

btn = H(C0) = −1
/((

W−1

(
−dtnln2N0

C0p
t,e
n gtn

e
− dtnln2N0

C0p
t,e
n gtn

)

+
dtnln2N0

C0p
t,e
n gtn

)
C0

dtnln2

)
. (24)

For those offloaded tasks, dt
n

re,tn
≤ lmax,t

n − stn
fe,t
n

holds, therefore,

bmin,t
n = H(lmax,t

n − stn
fe,t
n

). For these offloading tasks whose

required service has not been cached at ES, dt
n

re,tn
≥ lc,tn,ser, thus,

bmax,t
n = H(lc,tn,ser).

Lemma 3: Given the caching decision δ(t), offloading
scheme λ(t), and computing resource allocation fe(t), respec-
tively, P1.1.1 exhibits convexity w.r.t. B(t).

Proof: First, we need to prove the concavity of the objective
function with respect to btn. Define St′

n,in as the inner part

of St′
n , i.e., St

n,in
′
= 1 + φ+ lmax,t

n − (λt
n(

dt
n

re,tn
+ le,texe) + (1−

λt
n)l

l,t
tol). It is obvious that only the term dt

n

re,tn
is dependent on btn.

Thus, proving the concavity of St′
n,in is equivalent to prove the

convexity of dt
n

re,tn
w.r.t. btn. Since

∂2 dt
n

re,tn

∂btn
2 = dtn ln 2

⎛
⎜⎝2
((

1 + gt
npn

N0btn

)
ln
(
1 + gt

npn

N0btn

)
− gt

npn

N0btn

)2
(btn)

3
(
1 + gt

npn

N0btn

)2
ln
(
1 + gt

npn

N0btn

)3

+

gt
npn

N0btn

2
ln
(
1 + gt

npn

N0btn

)
(btn)

3
(
1 + gt

npn

N0btn

)2
ln
(
1 + gt

npn

N0btn

)3
⎞
⎟⎠ ≥ 0,

(25)

dt
n

re,tn
is convex with respect to btn, rendering the concavity of

St′
n,in with respect to btn. Given the concave nature and non-

decreasing properties of the logarithmic function,
∑

n∈N St′
n,in

remains concave with respect to btn . Moreover, considering that
(13a), (13b) and (10e) are linear constraints, problem P1.1.1 is
inherently convex.

Thus, the Lagrangian function takes the following form

L(B(t), θ) =
∑
n∈N

St
n
′ − θ

(∑
n∈N

λt
nb

t
n −W

)
,

(13a), (13b). (26)

The optimal solution requirements for P1.1.1 are dictated by
the Karush-Kuhn-Tucker conditions, as follows

∂St
n
′

∂btn
− λt

nθ = 0, (27a)

θ

(∑
n∈N

λt
nb

t
n −W

)
= 0,

(10d), (13a), (13b). (27b)

Lemma 4: From the equation (27a), it can be deduced that btn
monotonically decreases with respect to θ and θ monotonically
decreases with respect to btn.

Proof: Deriving both sides of the equation (27a) gives

∂ ∂St
n
′

∂btn

∂θ
− ∂λt

nθ

∂θ
= 0, (28)

i.e.

∂ ∂St
n
′

∂btn

∂btn

∂btn
∂θ
− λt

n = 0. (29)
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Then we have

∂btn
∂θ

=
λt
n

∂2St
n
′

∂btn
2

. (30)

Since only the term −dt
n

re,tn
inSt

n
′ is related to btn, based on the chain

rule of differentiation, the original expression can be rewritten
as:

∂btn
∂θ

=
λt
n

∂2 −d
t
n

r
e,t
n

∂btn
2

. (31)

From Lemma 2, it follows that
∂2 dtn

r
e,t
n

∂btn
2 ≥ 0. Additionally, since

λt
n ≥ 0, we conclude that ∂btn

∂θ ≤ 0. Consequently, btn is mono-
tonically decreasing with respect to θ. As the monotonicity of
the inverse function is the same as that of the original function,
θ is monotonically decreasing with respect to btn.

With above analysis, we have proposed an efficient algorithm
of problem P1.1.1. According to (27a), θ can be expressed
as a function of btn as θ(btn). According to Lemma 3, the
minimum and maximum values of θ for each task, denoted
as θmin,t

n = θ(bmax,t
n ) and θmax,t

n = θ(bmin,t
n ). Meanwhile, the

maximum and minimum values of θ are given by:

θmin,t = max(θmin,t
n ), (32)

θmax,t = min(θmax,t
n ). (33)

Step 1: When comparing θ with the respective minimum and
maximum values θmin,t

n and θmax,t
n for each task, if θ falls within

the range defined by θmin,t
n and θmax,t

n , then the corresponding
btn will also lie between bmin,t

n and bmax,t
n . Considering (27a),

(13a), and (13b), the communication allocation variables btn can
be expressed as a function of θ

btn =

⎧⎨
⎩
bmin,t
n , θ < θmin,t

n ;
bmax,t
n , θ > θmax,t

n ;
btn(θ), otherwise,

(34)

where btn(θ) is the solution to (27a). Due to its monotonic nature,
we can employ a binary search algorithm to determine btn.

Step 2: Based on the B(t) obtained from Step 1, assess
whether it satisfies constraint (10e), and also employ the bi-
section method to update θ.

Step 3: Repeat Step 1 and 2 until θ converges. The detailed
steps are outlined in Algorithm 1.

Remark: The algorithm optimizes the bandwidth btn using a
bisection search approach over the resource space bounded by
the interval between θmin

n and θmax
n ; Optimally determining

θmin
n and θmax

n requires the time complexity of O(N) where
N is the number of total tasks in the worst case. For large N,
the O(N) per-iteration complexity of BRA is still acceptable.
Furthermore, the adoption of parallelization techniques (e.g.,
GPU acceleration for gradient computations) and approximation
methods can reduce the computational time.

Algorithm 1: Communication Resource Allocation Algo-
rithm.

1: Initialization:
2: O: the set of offloading tasks;
3: fe(t): the computing resource allocation strategy for
O;

4: tolb, tolθ: the tolerance error for B(t), θ;
5: Calculate bmin,t

n , bmax,t
n based on (15), (17);

6: repeat
7: θmin

n = θ(bmax,t
n );

8: θmax
n = θ(bmin,t

n );
9: Calculate θmin, θmax based on (32), (33);

10: θ = (θmax + θmin)/2;
11: for n ∈ O do
12: if θ ≤ θmin

n then
13: btn = bmax,t

n ;
14: else if θ ≥ θmax

n then
15: btn = bmin,t

n ;
16: else
17: repeat
18: btn = (bmin,t

n + bmax,t
n )/2;

19: if f(btn) = 0 then
20: break;
21: else if f(btn) < 0 then
22: bmax,t

n = btn;
23: else
24: bmin,t

n = btn;
25: end if
26: until |f(btn)| ≤ tolb
27: end if
28: end for
29: if

∑
n∈O b

t
n > W then

30: θmin = θ;
31: else
32: θmax = θ;
33: end if
34: until |θmin − θmax| < tolθ

B. Computing Resource Allocation Algorithm

Given fixed caching, offloading, and bandwidth allocation
decisions, the CRA problem is formulated as:

P1.2 : max
fe(t)

∑
n∈N

St
n (35)

s.t. fe,t
n ≥ fmin,e,t

n , ∀n ∈ N ,

(10b), (10e). (35a)

Here, (10b), (10h) has been simplified to (35a), and fmin,e,t
n

is the minimum computing resource required to satisfy the
latency constraint. Since the second-order derivative of P1.2

with respect to fe
n, ∂2St

n

∂fe,t
n

2 ≤ 0, the optimization problem P1.2

with the presence of linear and convex constraints can be estab-
lished as a convex problem. Thus P1.2 is addressed using the
Lagrangian dual method, where primal variables are iteratively
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Algorithm 2: Computing Resource Allocation Algorithm.
1: Initialization:
2: O: the set of offloading tasks;
3: b(t): the communication resource allocation strategy

for O;
4: tolfe : the tolerance error for fe(t);
5: i←− 0;
6: repeat
7: Update Lagrange multipliers νn, μ, and ω based on

(37), respectively;
8: Calculate fe(t) based on (38);
9: i←− i+ 1;

10: until |fe
n(i)− fe

n(i− 1)| < tolfe

optimized with fixed Lagrange multipliers, and Lagrange multi-
pliers are determined based on optimized primal variables. The
Lagrangian function is expressed as:

L(fe(t),ν, μ, ω) =
∑
n∈N

St
n −

∑
n∈N

νn(f
e,t
n,min − fe,t

n )

−μ
(∑

n∈N
λt
nk

estnf
e,t
n

2
+
∑
k∈K

δtkγk−Q
)

− ω

(∑
n∈N

λt
nf

e,t
n − Fe

)
, (36)

where the coefficients ν,μ andω represent Lagrange multipliers
linked to minimum resource constraint (35a), energy threshold
(10c), and upper resource constraint (10f), respectively. Specifi-
cally, the Lagrange multipliers are iteratively updated as follows:

νn(i+ 1) = [νn(i) + c1(f
e,t
n,min − fe,t

n )]+,

μ(i+ 1) = [μ(i) + c2(E
t
e −Q)]+,

ω(i+ 1) =

[
ω(i) + c3

(∑
n∈N

λt
nf

e,t
n − Fe

)]+
. (37)

Here, [·]+ representsmax(0, ·), while c1, c2, c3 stand for positive
gradient step sizes, with i indicating the current iteration number
in the optimization process. Following the determination of
Lagrange multiplier values, fe(t) is computed by solving the
following function,

∂L

∂fe,t
n

=
1

ln 2St
n

λt
ns

t
n

fe
n
2 + ν

λt
ns

t
n

fe
n
2 − 2μλt

nk
estnf

e,t
n − ωλt

n = 0.

(38)

The details on solving the CRA problem is outlined in Algo-
rithm 2. Note that Algorithms 1 and 2 are employed to manage
communication and computing resource allocation separately.
Through iterative resolution of these distinct challenges, we
achieve optimal resource allocation based on certain service
caching and task offloading state, as outlined in Algorithm 3.

Algorithm 3: Multi-Resource Allocation Algorithm.
1: Initialization:
2: O: the set of offloading tasks;
3: Set feasible solutions for b(t) and fe(t) randomly;
4: repeat
5: Calculate fe(t) based on Algorithm 1;
6: Calculate B(t) based on Algorithm 2;
7: until Convergence condition satisfied

VI. SERVICE CACHING AND TASK OFFLOADING ALGORITHM

BASED ON RL METHOD

In this section, we adopt an A2C-based framework to make
the service caching and task offloading decisions. The schematic
depiction of the proposed ACSCTO algorithm is presented in
Fig. 2, which comprises two main modules: the service caching
module (SCM) and the task offloading module (TOM). The
SCM is responsible for generating service caching decision,
and then SCM relay the decision to TOM. The TOM makes
task offloading decisions, based on received caching decision.
Subsequently, using Algorithm 3, it computes the corresponding
rewards and transfers them back to the SCM. The iterative
process is repeated to further refine the strategies for service
caching and task scheduling. The descriptions of these two
modules will be provided in Section VI-A and VI-B.

A. Service Caching Module

1) Input Specification and Pre-Processing: Based on the
A2C algorithm, the service caching module comprises two net-
works: the actor network and the critic network. Both networks
share the same input, referred to as scat , as shown in Fig. 3,
encompassing task information, service information, and the
caching state from the previous time slot. Task information
includes the required service number, task input data size, nec-
essary CPU cycles, task deadline, and channel gain between
each task and the ES. Service information encompasses service
caching, energy consumption and storage requirements. Each
feature of task ttn is transformed into an one-hot vector to high-
light the correspondence between tasks and services, followed
by the concatenation operation of all feature vectors.

2) Network Architecture and Output Specification: Apart
from the distinction in input and output outcomes, both the actor
and critic networks demonstrate a similar network structure, with
the depicted architecture of the critic network shown in Fig. 4.

The two-dimensional input scat in the critic network is ini-
tially flattened and then undergoes a group layer normalization
process. This process can realize the normalization of hetero-
geneous features with the same mean and variance [29]. Then,
we concatenate the output of the normalization layer with ac-
tion acat , and the result can be obtained through dense layers.
Given the limited storage capacity of the ES, the output of the
actor network must satisfy the constraint

∑
k∈K δ

t
nhk ≤ C. Note

that, creating a model with constrained output can bring about
computational challenges [30], so we opt for an unconstrained
definition of model action. The actor network’s output undergoes
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Fig. 2. The framework of the proposed algorithm ACSCTO.

Fig. 3. Matrix representation of caching model inputs.

Fig. 4. Critic network architecture.

a softmax transformation, ensuring that their summation equals
1. This result, referred to as Proca, denotes the probability
distribution of each service to be cached in the ES. To determine
the caching decision acat , we conduct non-repetitive sampling
based on Procat until the cumulative storage of the selected
services exceeds the maximum caching capacity of the ES.

Regarding the critic network, we have adopted a more efficient
approach to augment the learning capacity of the critic, distin-
guishing it from conventional critic networks. As illustrated in
Fig. 4, instead of exclusively generating a single state value,
the critic network produces the values for each service in the
current time slot. The output can be represented as a vector of
size K and the element of the vector is expressed as V (scat , ak).
It shall be noted that, the notation ak in this context should be
clarified as representing servicek, rather than denoting an action.
With the assistance of the task offloading model, we also map

rewards to each service, referred as Rca
t , with details provided

in Section VI-B2.
3) Model Learning: We employ backpropagation algorithm

and rewards Rca
t derived from the task offloading model to

optimize the weights and biases of both the actor and critic
networks. During each iteration of training, the actor network,
parameterized by φa, outputs a probability distribution, which
dictates the likelihood of caching each service on the ES. Mean-
while, the critic network, parameterized by θc, provides a more
detailed assessment of state values to better evaluate the efficacy
of the selected actions. We denote the critic’s output value vector
as V (scat ; θc), where θc is updated by

dθc ← dθc + αc∇θc(V (scat ; θc)− V̂ (scat ; θc))
2. (39)

The gradient term is the Mean Square Error (MSE) of the
predicted value vector with the target value, and

V̂ (scat ; θc) = Rca
t + γcV (scat ; θc). (40)

The learning process alternates between policy evaluation and
policy improvement. The optimal policy is learned by

dφa ← dφa − αa∇φa
log(π(scat ;φa))(V̂ (scat ; θc)

− V (scat ; θc)). (41)

Following the experience replay technique, at each time step,
we store the newly generated transition {scat , acat , Rca

t , scat+1} in
a replay memory with a limited capacity ofMca. As new samples
are generated, they replace the oldest ones in the memory when
it reaches full capacity. Then, a batch of samples is randomly
selected from this memory for updating the critic and actor
networks by (39), (41). By iteratively adjusting the network
parameters, both the actor and critic networks progressively
enhance their performance and develop the ability to make more
informed decisions during the service caching process.

B. Task Offloading Module

1) Model Structure and Model Learning: As depicted in
Fig. 5, the task offloading model, parameterized by φo, takes
scat combined with acat as input, denoted as sofft . Following
the flattening and normalization processes described earlier, the
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Fig. 5. The schematics of task offloading model.

Fig. 6. The calculation process of Rca
t .

input passes through dense layers and then undergoes a sigmoid
function, restricting the output oofft to the value range [0, 1]. The
output is continuous and we need binary offloading decisions, so
we perform an order-preserving quantization method to obtain
M binary operations [31]. Subsequently, we utilize the service
caching decision acat to generate a mask vector representing
the tasks available for offloading, thereby obtaining M feasible
operations. Finally, based on these feasible operations, the user
satisfaction value is calculated, and the offloading action aofft

with the highest user satisfaction is recorded.
Within each time frame, the best actions along with their

corresponding input states, are stored in an initial memory buffer
with a capacity of Moff . Then by randomly selecting a batch of
samples from Moff , we update the network parameters through

dφo ← dφo − αo∇φo
((1− aofft )(1− log(oofft ))

+ aofft log(oofft )), (42)

where the gradient term represents the average cross-entropy
loss between the TOM output oofft and the recorded offloading
action aofft .

2) Reward of Service Caching Module: According to the
aforementioned descriptions, for each acat , the corresponding
aofft can lead to the highest user satisfaction. As depicted
in Fig. 6, the Algorithm 3 is then employed to generate the
optimal resource allocation strategy given any feasible caching
and offloading decision. With this resource allocation strategy,
we compute the offloading reward Roff

t , representing the user
satisfaction for each task, and the no-offloading rewardRno−off

t ,
signifying the user satisfaction for each task when no services
are cached. In other words, all the tasks are executed locally.
The difference between Roff

t and Rno−off
t provides the reward

for caching each service. By aggregating the rewards for tasks
requesting the same service, we determine the caching reward

Algorithm 4: ACSCTO.
1: Initialization:
2: Caching critic network parameter θc;
3: Caching actor network parameter φa;
4: Offloading network parameter φo;
5: Replay memory Memca, Memoff with size Mca and

Moff ;
6: for t = 1, . . ., T do
7: Caching actor network generate acat as the caching

decision in time slot t;
8: Delivery acat to offloading network, generate

offloading decision aofft in time slot t;
9: Store the tuple (sofft , aofft ) in replay memory

Memoff ;
10: Obtain resource allocation decision using Algorithm

3;
11: Perform generate actions, obtain reward Rca

t and
next state scat+1;

12: Store the tuple (scat , acat , Rca
t , scat+1) in replay

memory Memca;
13: if Memca and Memoff are full then
14: Sample a batch from Memca and update the critic

and actor network according to (39) and (41),
respectively;

15: Sample a batch from Memoff and update the
offloading network according to (42);

16: end if
17: t←− t+ 1;
18: end for

for each service, denoted as Rca
t , which can guide the service

caching module training.
Algorithm 4 offers a comprehensive overview of the model

update process and iterative optimization procedure of the pro-
posed ACSCTO algorithm. To determine the optimal scheduling
decisions for each time slot, we iteratively update the service
caching module and task offloading module and utilize the
alogrithm 3 to determine the best resource allocation strategy.
This decomposition of the problem allows the model to dy-
namically adapt to the environment and address the specific
requirements of complex users and services more effectively.

VII. PERFORMANCE EVALUATION

In this section, we conduct a comprehensive performance
evaluation of the proposed optimization method, employing
diverse metrics to assess its efficacy.

A. Experimental Setups

The depicted cloud-edge framework in this paper is meticu-
lously designed and rigorously stimulated. Within this frame-
work, a total of 10 services are presented, and each service
requires storage resources that follow a uniform distribution
ranging from 1 GB to 4 GB. The energy consumption for caching
each service per application adheres to a uniform distribution
between 2 to 5. The central BS with an edge server is located
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TABLE III
NOTATIONS AND DESCRIPTIONS

within a 100x100 unit area, and surrounded by uniformly dis-
tributed UDs. The computation tasks involve input data sizes
ranging uniformly from 1 MB to 6 MB, CPU requirements
spanning from 1 GHz to 5 GHz, and task deadlines uniformly
ranging from 0.7 to 3 seconds. The ES features a storage capacity
of 10 GB, a computation capacity of 40 GHz, and a network
capacity totaling 30 GHz. In relation to the service request for
each task, we employ a request transition model [32], [33], [34].
Specifically, the transition probability of requesting any service
k in current time slot, given the previous request for service
i, adheres to a uniform distribution. In addition, the primary
simulation parameters are shown in Table III.

B. Evaluation Metrics

To assess the effectiveness of the proposed ACSCTO algo-
rithm, we consider key metrics in the edge computing scenario.

1) Average user satisfaction: The average satisfaction level
of users, calculated by (9).

2) Average response time: The average duration to respond
to user requests.

3) Tasks completion rate: The ratio of tasks completed within
the specified deadlines to the total number of tasks.

4) Inter-user fairness: The fairness degree among users, in-
dicated by the variance of task completion times.

Other important metrics include: Average overtime: the mean
excess time tasks surpass their specified deadlines; Energy
consumption: The average energy consumption at ES during
each simulation period.; Average service downloading delay
and Average task offloading number.

C. Baseline Algorithms

In our performance evaluation, we compare our proposed
algorithm against the following baseline algorithms:

AC with even allocation (AC-ea): This approach adopts
the same caching and offloading policies as presented in the
ACSCTO algorithm, while uniformly allocating communica-
tion [35] and computing resources (i.e., bandwidth and CPU
frequency) to the offloaded tasks [36].

AC with single value (AC-sv): Compared to AC-ea, this ap-
proach utilizes the Advantage Actor-Critic framework to es-
timate a single state value [37], rather than estimate multiple
values as described in Section VI-A2.

AC without decomposition (AC-wd): This approach utilizes
the Advantage Actor-Critic framework to estimate the state
function, and directly determines both caching and offloading
action policies to improve overall system performance [38].

Fig. 7. The convergence performance.

Popularity caching (PC): This approach makes caching de-
cisions according to their popularity, and the popularity of one
service is defined based on the frequency of service requests [39].

Local Computing (LC): All the tasks are executed locally.

D. Convergence Performance

In Fig. 7, we compare the convergence speed and final reward
performance of four Actor-Critic-based algorithms: ACSCTO,
AC-ea, AC-sv, and AC-wd, within a cache-assisted edge com-
puting environment comprising 30 UDs. The reward at each
time slot is denoted as

∑
k∈KR

c
t,ka. All curves are plotted using

a moving average with a window size of 500.
During the training process, the reward performance of var-

ious exploration methods exhibited dynamic characteristics.
These algorithms demonstrated rapid convergence in the initial
stage (t < 5000), followed by a gradual slowdown, and then
approach convergence at approximately 20,000 time frames.
There are some fluctuations, due to the stochastic nature of the
MEC environment.

Although these algorithms exhibited similar convergence
speeds, significant differences were observed in their final re-
wards. For instance, due to the multiple value simulation ap-
proach of AC-ea, its average reward exceeded that of AC-sv,
validating the efficacy of our proposed approach. Furthermore,
ACSCTO exhibited the highest final reward performance, com-
pared to other three algorithms. The simulation result highlights
the advantage of the ACSCTO algorithm in optimizing edge
resource allocation and task scheduling.

E. Evaluation With Baseline Algorithms

A comprehensive evaluation of all algorithms was conducted,
and the evaluation metrics include average user satisfaction,
average response time, task completion rate, and inter-user
fairness. Fig. 8 presents the simulation results obtained from
simulating 10000 time slots on the test data set.

Fig. 8(a) illustrates the average user satisfaction across all
algorithms when the number of UDs is set to 30. Given the
stringently configured MEC environment, the average user sat-
isfaction for all algorithms is negative. Among the baseline
algorithms, AC-ev and AC-sr exhibit higher user satisfaction
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Fig. 8. Comparison of ACSCTO model with baselines.

compared to other baseline algorithms. Notably, the user satis-
faction and task completion rate of the AC-ev model surpasses
that of AC-sr, attributed to the former’s precise evaluation of
each service’s value. Fig. 8(g) and (h) reveal that compared to
AC-sr, AC-ev approach allocates less time to service updates, but
demonstrates a higher rate of task offloading to the edge server.
It indicates that AC-ev possesses the capability to optimize
service caching decisions, thereby resulting in reduced service
downloading delay, improved task offloading decisions, and
heightened user satisfaction.

The user satisfaction achieved by ACSCTO algorithm sur-
passes that of the top-performing baseline algorithm, AC-ev,
since ACSCTO can inherit all the previously discussed strengths
of AC-ev algorithm. Furthermore, the integration of a convex
optimizer for resource allocation in ACSCTO enhances the
overall algorithm’s upper limit. Hence, ACSCTO demonstrates
swift adaptation to task workload behaviors and offers greater
flexibility in resource allocation. When faced with urgent of-
floading tasks, ACSCTO model assigns more transmission and
computing resources to prevent delays surpassing the time limit,
thereby averting penalty due to delayed task completion.

Consequently, as shown in Fig. 8(b), (c), (d), and (e), the
ACSCTO strategy yields the shortest average task response
times, lowest average overtime, highest task completion rate
and fairness among all scheduling policies. Hence, ACSCTO
can efficiently address the stringent latency constraints of time-
critical applications, such as healthcare monitoring, autonomous
driving, and real-time gaming, as exemplified in the previous
section. Moreover, the energy consumption of the ACSCTO
algorithm in the ES remains comparable to that of the best
baseline algorithm, AC-ev. The ACSCTO algorithm can achieve
prior utilization of the limited resources available in the ES.

In Fig. 8, the green bars represent the AC-wd algorithm,
which, unlike the ACSCTO algorithm, does not separate
the caching module from the offloading module. Instead, it

utilizes the A2C framework to identify the optimal caching
and offloading actions. However, it fails to comprehend the
correspondence between services and tasks. Due to the absence
of task selection aligned with the caching service will result in a
significant reduction in rewards, as depicted in Fig. 8(h), the task
scheduling strategy of the AC-wo method is more aggressive,
resulting in the offloading of the highest number of tasks to the
resource-constrained ES. Consequently, its performance is the
poorest among all AC-based algorithms.

The PC algorithm is a heuristic method designed to place
frequently requested services on the ES and prioritize offloading
more urgent tasks to the ES. However, heuristic algorithms
inherently lack generalizability and quick adaptability, making
them prone to drawing erroneous conclusions. The PC method
not only demonstrated the second-worst performance, after the
LP method, in metrics such as average user satisfaction, average
response time, and task completion rate, but also exhibited the
most significant fluctuations in average offloading number, as
shown in Fig. 8(h). Moreover, Fig. 8(d) reveals that it has the
worst inter-user fairness.

F. Comparison Under Different User Device Number and
Cache Size

In the following analysis, we compare various performance
metrics across diverse network configurations. These metrics
include average user satisfaction, average task response time,
task completion rate, and inter-user fairness. Specifically, we
investigate these metrics with different number of user devices
and ES cache capacities. Fig. 9(a)–(d) illustrate the variations in
user devices from 10 to 40. Fig. 10(a)–(d) showcase modifica-
tions in ES storage capacity from 6 to 12 with 20 user devices.

Fig. 9 illustrates that algorithms such as ACSCTO and AC-ea,
which accurately estimate the value of each service, show more
pronounced advantages. As the number of user devices increases
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Fig. 9. Comparison of ACSCTO model with baselines against different UDs.

Fig. 10. Comparison of ACSCTO model with baselines against different cache
sizes.

from 10 to 40, both the average user satisfaction and task
completion rate decrease, while task response time increases.
In other words, the effectiveness of each algorithm deteriorates.
This phenomenon arises because, with unchanged transmission
and computing resources at ES and more offloaded tasks, the
competition among resources on the ES intensifies. As a result,
the resources available to each task decrease, diluting the benefits
of offloading to the ES. It is evident that the differences between
ACSCTO, AC-ea, and AC-sr diminish. This is because, as the
number of users increases, the number of tasks corresponding
to each service also increases, and the benefits of caching
each service tend to become homogeneous. At this point, the
AC-ea algorithm degrades to the AC-sr algorithm, making it

TABLE IV
NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE

challenging to distinguish between various algorithms based on
offloading and resource allocation strategies.

When the number of user devices remains 20 and the ES cache
capacity decreases, the proposed ACSCTO strategy continues to
outperform others. As more services are allowed to be cached
on the ES, the hit rate will increase, allowing more tasks to be
executed in the ES. By choosing suitable tasks for offloading, the
response time for user requests is markedly decreased, resulting
in a notable enhancement in user satisfaction. Notably, the PC
approach is the only one that becomes worse as the cache
capacity of the edge server increases. As shown in Fig. 10(b) and
(c), the task completion rate of the PC method grows slowly and
gradually plateaus, while the task response time increases. This
indicates that heuristic methods lack adaptability and flexibility,
failing to effectively adjust strategies to accommodate changing
environments and exhibiting limitations in handling dynamic
changes and resource scaling.

G. Convergence of the BRA Algorithm

We conducted an analysis of the convergence behavior of the
BRA algorithm. Table IV presents the statistics on the maximum,
minimum, and average iteration counts of the inner and outer
loops of the BRA algorithm, when the number of UDs increases
from 10 to 40 and the task delay constraint bias varies from−0.2
to +0.2, with 20 UDs. From Table IV, it can be observed that
regardless of variations in the number of users, the differences
between the minimum and maximum iteration counts, as well
as the fluctuations in the average iteration counts for both inner
and outer loops, are minimal. This is primarily attributed to the
adoption of vectorized techniques, effectively optimizing the
execution efficiency of the algorithm.

As the task delay constraint gradually increases, reducing
inter-task competition and rendering resource allocation more
flexible, there is a slight increase in the iteration counts of
the inner loop, albeit negligible. Overall, the results presented
in Table IV demonstrate that the BRA algorithm consistently
converges under different conditions and maintains good perfor-
mance. This further validates the applicability and practicality
of the BRA algorithm in edge computing environments.
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VIII. CONCLUSION

This paper considered a joint optimization problem in a dy-
namic multi-user, multi-service MEC network, with the goal
of maximizing average user satisfaction. We put forward a
two-stage solution to the modeled MINLP problem. First, we
model the service and task scheduling problems as the Markov
Decision Process and derive policies through the A2C network.
Next, we use a convex optimizer based on the Lagrangian
duality method to allocate bandwidth and computing resources,
given caching and offloading policies. The proposed ACSCTO
approach demonstrates significant enhancements in average
user satisfaction, average task response time, task completion
rate, and inter-user fairness when compared to several baseline
approaches. For the future work, we plan to explore the joint
optimization problem in cloud-edge collaborative scenarios in-
volving multiple edge servers.
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