
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022 1539

Joint Computation Offloading and Resource
Allocation Under Task-Overflowed Situations

in Mobile-Edge Computing
Huijun Tang , Huaming Wu , Member, IEEE, Yubin Zhao , Senior Member, IEEE,

and Ruidong Li , Senior Member, IEEE

Abstract—With the rapid development of Artificial Intelligence
(AI) and Internet of Things (IoT), we have to perform increas-
ingly more resource-hungry and compute-intensive applications
on IoT devices, where the available computing resources are
insufficient. With the assistance of Mobile Edge Computing
(MEC), offloading partial complex tasks from mobile devices to
edge servers can achieve faster response time and lower energy
consumption. However, it still suffers from finding the optimal
offloading decision when the total amount of computations over-
flows the available computing resources in MEC systems. In this
paper, we establish a multi-user and multi-task MEC model and
design an offloading indicator, through which we analyze what the
current environment belongs to. In the cases where the compu-
tational resources of devices are sufficient or partially sufficient,
we utilize the relationship between the offloading indicator and
the cost incurred by the tasks that are executed in the current
workflow to find the optimal offloading decision. In the cases
where the computation on local and edge are both insufficient,
we propose a novel Offloading Algorithm based on K-means
clustering and Genetic algorithm for solving Multiple knapsack
problem (OAKGM), aiming not only to jointly optimize the time
and energy incurred by the tasks that are executed in the cur-
rent workflow, but also to penalize the overflowed computations
so that the task pressure in the next workflow can be greatly
reduced. In addition, a simplified Offloading Algorithm based
on Multiple Knapsack Problem (OAMKP) is proposed to further
cope with the environments with a large number of users or tasks.
Experimental results demonstrate the effectiveness and superi-
ority of the proposed algorithms when compared with several
benchmark offloading algorithms, which can better exploit the
computing capacities of IoT devices and the edge server, greatly
avoid resource occupation in edge nodes and make sustainable
MEC possible.

Index Terms—Mobile edge computing, Internet of Things, task
offloading, resource allocation, multiple knapsack problem.

Manuscript received June 4, 2021; revised September 28, 2021 and
November 27, 2021; accepted December 11, 2021. Date of publication
December 14, 2021; date of current version June 10, 2022. This work is
supported by the National Natural Science Foundation of China under Grant
No. 62071327 and 61801325. The associate editor coordinating the review of
this article and approving it for publication was T. Ahmed. (Corresponding
author: Huaming Wu.)

Huijun Tang and Huaming Wu are with the Center for Applied
Mathematics, Tianjin University, Tianjin 300072, China (e-mail: tanghui-
june@tju.edu.cn; whming@tju.edu.cn).

Yubin Zhao is with the School of Microelectronics Science and
Technology, Sun Yat-sen University, Zhuhai 519082, China (e-mail:
zhaoyb23@mail.sysu.edu.cn).

Ruidong Li is with the Institute of Science and Engineering, Kanazawa
University, Kanazawa 920-1192, Japan (e-mail: liruidong@ieee.org).

Digital Object Identifier 10.1109/TNSM.2021.3135389

I. INTRODUCTION

DRIVEN by Artificial Intelligence (AI) in Internet-of-
Things (IoT) systems, more and more mobile applica-

tions with large-scale Deep Neural Networks (DNNs), e.g.,
face recognition, Virtual Reality (VR) and Augmented Reality
(AR), are being deployed on resource-constrained mobile
devices. Thus, the essential demand for computing capacity
and low latency has exploded. Unfortunately, the resources
of mobile devices are generally constrained [1], [2], e.g.,
insufficient storage, slow computing speed and low battery
capacity, which fail to support the complex computation of
DNN training and DNN inference [3].

Currently, Mobile Edge Computing (MEC) has been widely
applied to video analytics, mobile big data, Internet of vehicles
and other fields [4]. With the assistance of MEC, one promis-
ing method is to offload computation-intensive tasks from
IoT devices to edge servers, enabling resource-constrained
devices to perform more complicated tasks with less time
delay and lower energy consumption [5]–[8]. Generally, an
edge server can serve several users, and each user can gener-
ate multiple tasks in a workflow [9], [10]. Al-Shuwaili and
Simeone [11] applied edge computing to AR tasks, which
involves a large amount of computation, e.g., the amount of
computation required per task for computing a 1024 × 768
image can reach 2,640 cycles. Unlike cloud servers with
abundant computing resources, edge servers generally suffer
from limited computational resources. Although the comput-
ing power of edge servers is much greater than that of mobile
devices, they are relatively low compared to cloud servers.

Intuitively, executing a huge number of tasks at the server
tends to cause high response time. As a result, there exists an
upper bound on concurrent task execution due to a large num-
ber of offloading requests and the limited computing power of
edge servers. On the one hand, if all the IoT devices offload
their tasks to an edge server for processing, the edge server
will become overloaded and bring in additional delays during
task execution. On the other hand, once the number of mobile
users or computational tasks of each device increases signifi-
cantly, the total amount of computation for compute-intensive
tasks is prone to overflow the overall computing capacity in
the MEC environment.

In order to deal with the above challenges, we need to
determine the priority of tasks so that the number of tasks

1932-4537 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7828-9113
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-7540-9092
https://orcid.org/0000-0002-9905-8952

1540 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

TABLE I
COMPARISON OF SELECTED RELATED STUDIES

that cannot be executed in the current workflow should be
as few as possible. It is imperative to develop an offloading-
decision strategy that not only considers the delay and energy
consumption when executing tasks locally or on the edge, or
transferring data between the device and the edge, but also
considers the computational amount of tasks that cannot be
executed in the current workflow when tasks are intensive.
When the tasks of mobile users arrive in a workflow, there
are three options for each task: the first one is to be executed
locally on the mobile device, the second one is to be offloaded
to the server on the edge, and the last one is to be delayed to
the next workflow. How to jointly make the optimal offloading
decision and resource allocation closely depends on two fac-
tors: one is the cost, which is usually defined by the time delay
and the energy consumption incurred from the computing pro-
cess or the transmitting process; the other is the currently
available computing resources in the MEC system. This can
be regarded as a multi-knapsack problem, which is an NP-
hard problem that requires a large amount of computation and
causes additional delays for offloading decision-making. This
means that it is difficult to find a polynomial-time complexity
algorithm to solve such a problem. Previous studies [12], [13]
have tried to solve the multiple knapsack problem through
heuristic algorithms, but only optimized the energy consump-
tion when computing tasks or transmitting data, ignoring the
total amount of computation of tasks that cannot be computed
in the current workflow, which places a heavy burden, espe-
cially when excessive tasks need to take up plenty of resources
in the next workflow.

In this paper, we mainly focus on situations, where compute-
intensive tasks will occasionally overflow the computation of
local devices or edge servers. In particular, we address a sit-
uation in the MEC when the amount of computations to be
carried out exceeds the resource capacity of the network on the
edge. We treat the task-overflowed issue in MEC Systems as
the multiple knapsack problem and propose two novel offload-
ing algorithms for solving this problem. As far as we know,
this is the first work that not only optimizes the cost incurred
in the current workflow but also penalizes the computational

burden of computation offloading and resource allocation left
to the next workflow. The aim of this paper is to jointly min-
imize the time and energy incurred by the tasks, as well as to
penalize the overflowed computation and exploit the resources
as many as possible.

The major contributions of this paper can be summarized
as follows.

• Model of Overloaded Task Offloading Problem in MEC
Systems.

– The task-overflowed situation that was rarely con-
sidered in previous studies is modeled as a multiple
knapsacks problem whose NP-hardness is proved in
the paper. We optimize offloading decisions in task-
overflowed situations from the perspective of the
overflowed computation, which is more refined than
the perspective of the number of tasks that usually
measures the queue.

– We design a novel offloading indicator, which can
directly indicate the offloading strategy when the
system has sufficient computing resources. When
the current computing resources are insufficient,
we formulate a joint computation offloading and
resource allocation strategy, which not only opti-
mizes the combined delay and energy consump-
tion generated from executing or transferring pro-
cess, but also optimizes the total amount of cal-
culations of the overloaded tasks in the current
workflow.

• Two Knapsack Problem-based Task Offloading
Algorithms: For MEC systems with fewer users,
we propose the OAKGM algorithm that combines
K-means clustering and genetic algorithm to solve the
multiple knapsack problem, while for MEC systems with
more users [19], we propose the OAMKP algorithm that
can handle numerous users or tasks.

• Performance Evaluation: We conduct extensive sim-
ulation experiments under various system parameters.
Simulation results demonstrate that when compared with
the Genetic Algorithm (GA) and the Particle Swarm

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: JOINT COMPUTATION OFFLOADING AND RESOURCE ALLOCATION UNDER TASK-OVERFLOWED SITUATIONS 1541

Optimization (PSO) algorithm, the proposed OAKGM
and OAMKP algorithms can make better use of the
computing capacities of IoT devices and edge nodes,
alleviate the task pressure to the next workflow, signifi-
cantly reduce the average cost, as well as avoid resource
occupation in edge nodes.

The rest of the paper is organized as follows: Section II
reviews the related work. Section III formulates the system
model of task offloading in MEC with workload overloaded.
The proposed OAKGM and OAMPK algorithms are described
in detail in Section IV. Section V evaluates its performance by
comparing it with state-of-the-art offloading methods. Finally,
Section VI concludes this paper and points out some possible
future work.

II. RELATED WORK

It is known that offloading tasks from resource-constrained
IoT devices to nearby edge servers will cause additional energy
consumption or time delays due to data transmission between
the local and the edge [20]. In recent years, a large amount
of research (ranging from heuristic algorithms [21]–[23],
genetic algorithms [24], [25], game theory [26], blockchain
theory [27], [28], to deep reinforcement learning-based algo-
rithms [29]–[32]) has been devoted to seeking the optimal
offloading strategy in MEC systems, with the aim of improv-
ing system efficiency when the computing and communication
resources are limited.

Several offloading-decision algorithms have been
proposed in [33]–[35], with the purpose of minimizing
energy consumption while ignoring the time delay. Prior
research [18], [36], [37] has focused on joint optimization
of offloading decisions and resource allocation for delay-
sensitive or compute-intensive tasks. However, few studies
have considered overloaded or overflowed tasks that cannot
be computed in the current workflow on account of the
limitation of computing resources of mobile devices and
edge servers. Most recent studies have discussed the optimal
offloading decision in the situation where the total computing
capacity of the MEC system is sufficient for computing the
current tasks [12], [14]–[17], [34], which cannot satisfy the
future or even current demand of the MEC system. However,
when taking the task-overflowed cases into account, it will
cause the already complex offloading decision and resource
allocation problem even more complicated, thereby posing a
huge challenge. On the contrary, in this paper, we define a
new weighted cost, which includes the time delay and energy
consumption during the computing and transmitting process,
as well as the amount of computation of overflowed tasks in
the current workflow.

In general, the joint offloading decision and resource allo-
cation problem can be treated as an integer programming
problem [12], [38]. Xue et al. [38] regarded the computa-
tion offloading problem as an NP-hard problem and solved it
through an iterative heuristic task-intensive assignment algo-
rithm. Song et al. [39] proposed a dynamic programming
algorithm to manage tasks on the edge of the network.
Guo et al. [40] treated the offloading computing problem as a

Mixed Integer Programming (MIP) problem and solved it by
the Gurobi optimizer. Liu et al. [41] formulated the offloading
decision problem in IoT environments as a MIP problem to
minimize energy consumption. Chen et al. [42] took the relay-
assisted problem into consideration and formulated the model
as a non-differentiable and non-convex optimization problem.
However, all the above-mentioned works ignore the amount
of computation of tasks that cannot be executed in the current
workflow, which may bring huge computational pressure to
the next workflow.

Some studies model the optimization process as a Lyapunov
optimization problem [43] [44]. Ouyang et al. [43] proposed
different situations depending on whether the mobility char-
acteristic is known. They propose a greedy algorithm for
short-term optimization and a Lyapunov-based algorithm for
long-term optimization. Since the characteristics of mobile
devices and edge servers sometimes vary in a short period
of time, it is essential to study short-term optimization.
In this paper, we consider the optimization in one work-
flow so that the change of the devices or the environ-
ment in different workflows will not affect the result of
optimization.

Different from previous studies, we design a novel task
offloading indicator for the local-edge collaborative comput-
ing model. By utilizing this indicator, we consider different
situations depending on the computational resources and the
offloading indicator, for which we propose different meth-
ods. When the computational resources on local and edge are
both sufficient, optimal offloading decisions are made depen-
dent on whether the offloading indicator is greater than 1.
When the computational resources on local and edge are par-
tially sufficient, we make offloading decisions by utilizing
the relationship between the cost and the offloading indica-
tor. When the computational resources on local and edge are
both insufficient, finding an optimal offloading decision is a
multiple knapsack problem that is NP-hard to solve. We con-
vert the NP-hard problem into an easy-to-solve transformation
problem, which consists of several simple integer program-
ming problems, so that the original problem can be solved in
polynomial time. We then propose two algorithms on the basis
of the offloading indicator: one is called OAKGM, which com-
bines K-means clustering and a genetic algorithm to search
for different thresholds of offloading indicators for a variety
of mobile devices; the other is OAMKP, which goes through
all possible threshold values of offloading indicators for all
mobile devices and finds the best threshold for the whole MEC
system.

III. SYSTEM MODEL

In order to minimize the average system cost (weighted
sum of delay and energy consumption) from IoT devices to
the edge and alleviate the computational pressure of the next
workflow, we consider an MEC system with a large amount
of computational overflow.

As depicted in Fig. 1, the IoT-edge computing envi-
ronment consists of m IoT devices and an edge server,
and is equipped with some computing nodes with different

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

1542 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

Fig. 1. An illustration of the MEC system with multiple mobile devices and
an edge server.

computing capacities. Mobile users can offload their tasks to
the edge server. Without loss of generality, we consider a set
of mobile users M = {1, 2, . . . ,m}. We assume that tasks
arrive in a time-slotted form, and the length of the slot is t.
In a workflow, each user has L arrival tasks, and the j task
of the ith user is denoted as taskij . The data size of these
tasks are expressed as a set D = {Dij |i = 1, 2, . . . ,m and
j = 1, 2, . . . ,L}. The major notations used in this paper are
defined in Table II.

A. Local Computing Model

When a task is processed locally on the IoT device, the time
delay and energy consumption can separately be represented
as follows.

• The time delay when performing taskij locally can be
calculated as:

T l
ij =

wij

fi
, (1)

where fi (cycle/s) is the computation speed of the ith

mobile device and wij is the amount of computation for
taskij .

• The energy consumption when performing taskij locally
can be calculated as:

E l
ij = PA

i · T l
ij =

wijP
A
i

fi
, (2)

where PA
i is the active power.

Thus, the overall cost of taskij when it is processed in local
can be calculated as:

Q l
ij = αT l

ij + E l
ij =

wij

fi

(
α+ PA

i

)
, (3)

where α > 0 is a weighting parameter used to measure
the importance of the time delay relative to the energy
consumption.

B. Edge Computing Model

The computing resources of local devices are usually lim-
ited, so we can offload complex tasks to edge servers. In the

TABLE II
NOTATIONS AND THEIR DEFINITIONS

offloading process, the cost is composed of two parts: one
part is incurred from the transmitting process, the other part
is incurred from the computing process.

• The time delay during data transmission for taskij can
be calculated as:

TT
ij =

Dij

Ri
, (4)

where Ri is the transmission rate of device i.
• The energy consumption during data transmission for

taskij can be expressed as:

ET
ij = PT

i · TT
ij =

Dij

Ri
PT
i , (5)

where PT
i is the transmission power of the ith device.

• The time delay when computing taskij can be
expressed as:

T e
ij =

wij

fe
, (6)

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: JOINT COMPUTATION OFFLOADING AND RESOURCE ALLOCATION UNDER TASK-OVERFLOWED SITUATIONS 1543

where fe(cycle/s) is the computing speed of the edge
server, wij = ρijDij is the amount of computation of
taskij , and ρij is the computational complexity of taskij .

• The energy consumption when computing taskij can be
calculated as:

E e
ij = P I

i · T l
ij =

wij

fe
P I
i , (7)

where P I
i is the idle power.

Thus, the overall cost of taskij when it is processed on the
edge can be calculated as:

Qe
ij = α

(
TT
ij + T e

ij

)
+
(
ET
ij + E e

ij

)

=
Dij

Ri

(
α+ PT

i

)
+

wij

fe

(
α+ P I

i

)
. (8)

C. Local-Edge Collaborate Computing Model

The optimal computing cost for executing taskij is the min-
imum of the cost executing in local and edge, which can be
expressed as:

Qij = min
{
Q l
ij ,Q

e
ij

}
, (9)

where taskij is preferred to be offloaded to the edge server
than computing in local when Q l

ij > Qe
ij , which satisfies the

following condition:

ρij
fi

(
α+ PA

i

)
>

1

Ri

(
α+ PT

i

)
+

ρij
fe

(
α+ P I

i

)
, (10)

where ρij is the computational complexity of taskij and ρij =
wij /Dij . To simplify the analysis, we then define an offloading
indicator according to Eqs. (3), (8) and (9), as follows:

τij =
1

fi

ρij ·
(
α+ PA

i

)
1
Ri

(
α+ PT

i

)
+

ρij
fe

(
α+ P I

i

) . (11)

Therefore, when τij > 1, it is preferred for taskij to be
offloaded to edge, while when τij < 1, it is preferred for
taskij to be executed on local devices. The following parts
consider joint computation offloading and resource allocation
rather than task offloading. When the computing resources on
the local device and on the edge sever are both sufficient, the
cost function can be represented as follows:

Cn =
m∑
i=1

L∑
j=1

[(
1− κij

)
Q l
ij + κijQ

e
ij

]

=

m∑
i=1

L∑
j=1

Qe
ij ·
[(
1− κij

)
τij + κij

]
, (12)

where κij = 0 means that taskij is processed locally, and
κij = 1 means that taskij is processed on the edge. Cn is the
sum of the cost of taskij . Minimizing Cn is equal to Eq. (9).
Thus, the optimal joint offloading decision for taskij when the
computing resources on the local device and on the edge sever
are both sufficient can be denoted by:

κij =

{
0, τij ≤ 1,
1, τij > 1,

(13)

where i = 1, 2, . . . ,m , and j = 1, 2, . . . ,L

Fig. 2. Different cases in terms of computation resources in MEC systems.

IV. THE OVERLOADED TASK OFFLOADING ALGORITHM

In this section, we propose two novel offloading decision
algorithms, which aim to minimize the average system cost
(weighted sum of delay and energy consumption) from IoT
devices to the edge, and reduce the computational pressure
caused by executing overloaded tasks in the next workflow.

A. Problem Formulation

On the one hand, when the computing resources of the local
devices and the edge server are sufficient, we decide whether
to offload according to the offloading indicator. On the other
hand, however, when the computing resources are insufficient,
i.e.,

∑L
j=1(1 − κij)wij > fi t or

∑m
i=1

∑L
j=1 κijwij > fe t ,

we need to determine which tasks should be performed locally,
which ones should be performed on the edge, and which ones
should be performed in the next workflow.

As depicted in Fig. 2, there are four cases in the aspect of
computation resources of the MEC system.

• The total computation resource of the local device is suf-
ficient for all tasks whose τ ≤ 1 in the device and at the
same time the computation resource of the edge server is
sufficient for all tasks whose τ > 1.

• The total computation resource of the local device is
insufficient for all tasks whose τ ≤ 1 in the device and
the computation resource of the edge server is sufficient
for all tasks whose τ > 1.

• The total computation resource of the local device is suf-
ficient for all tasks whose τ ≤ 1 in the device and at the
same time the computation resource of the edge server is
insufficient for all tasks whose τ > 1.

• The total computation resource of the local device is
insufficient for all tasks whose τ ≤ 1 in the device
and the computation resource of the edge server is
insufficient for all tasks whose τ > 1.

Regardless of whether taskij is executed in the current
workflow or the next workflow, the minimum cost of execut-
ing taskij is C ∗

n , which is treated as a cost that must be paid.
Here, the offloading decision is made according to Eq. (13).

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

1544 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

However, due to the insufficient computing ability of mobile
devices and edge servers, not all tasks can be offloaded with
minimum energy and time costs, which is exactly what we
need to optimize. The extra cost incurred when tasks are not
executed in accordance with the instructions of τ in the current
workflow, can be formulated as:

∣∣∣Qe −Q l
∣∣∣ =

∣∣∣∣1−
1

τ

∣∣∣∣
w
(
α+ PA

)
fl

I tr , (14)

where I tr is the indicator matrix of tasks executed elsewhere
not guided by τ .

Furthermore, the amount of computation of tasks that are
considered to be executed in the next workflow will be counted
into the cost function to keep the total amount of computation
of tasks that are not computed in the current workflow as small
as possible, which means the total amount of computation for
the tasks that go to the next workflow will be punished in our
cost function. Thus, our aim is to minimize the extra cost,
including a penalty term of overflowed computation, which
can be calculated by:

Costextra =

∣∣∣∣1−
1

τ

∣∣∣∣CwI tr + βwI next , (15)

where I next illustrates the tasks that are considered to be
executed in the next workflow, β is a penalty parameter and
C = α+PA

fl
.

(P1) min
I tr ,I next

:

m∑

i=1

L∑

j=1

Costextra

(
I tr , I next

)
, (16)

s.t. :

L∑

j=1

w
(
I lτ<1 + I lτ>1

)
≤ fi t , (17)

m∑

i=1

L∑

j=1

w
(
I eτ>1 + I eτ<1

) ≤ fe t , (18)

I lτ<1 + I eτ>1 + I tr + I next = 1m×L, (19)

I tr , I lτ<1, I
l
τ>1, I

e
τ<1, I

e
τ>1, I

next ⊆ {0, 1}mL

(20)

where I lτ<1 indicates the tasks whose τ < 1 and meanwhile
which are computed in local, I eτ>1 indicates the tasks whose
τ > 1 and meanwhile which are computed on the edge,
I tr = I lτ>1 + I eτ<1 indicates the tasks which are not com-
puted following the instructions of τ in the current workflow,
and I next indicates the tasks which go to the next work-
flow. Eq. (17) indicates the total computation of tasks executed
locally is less than the computing ability of the mobile device
during a time slot. Eq. (18) indicates that the total computation
of tasks offloaded to the edge server is less than the computing
ability of the edge server during a time slot.

The objective function is to minimize the total extra cost,
which includes two parts: one is the extra cost resulting from
the concessions due to the limitation of the computing abil-
ity, and the other one is the penalty term for the overflowed
computation.

Lemma 1: P1 is a multiple knapsacks problem and
NP-hard.

Proof: First, we consider an instance of P1 whose τ > 1
for all tasks. Then, we can get I eτ<1, I

l
τ<1 = 0, I l = I lτ>1,

I tr = I l , and I next = 1m×L − I e − I e . Then Costextra =
(|1− 1

τ |C −β)wI l−βwI e+βw . Solving the instance is equal
to solving the following problem:

(P2) min
I l ,I e

:

m∑
i=1

L∑
j=1

[(∣∣∣∣1−
1

τ

∣∣∣∣C − β

)
wI l − βwI e

]
, (21)

s.t. :

L∑
j=1

wI l ≤ fi t , (22)

m∑
i=1

L∑
j=1

wI e ≤ fe t , (23)

I l + I e ≤ 1m×L, (24)

I l , I e ⊆ {0, 1}mL. (25)

The multiple knapsack problem P3 described in [45] is known
as an NP-hard problem.

(P3) max
x

:

m∑
i=1

n∑
j=1

vixij , (26)

s.t. :

n∑
j=1

wj xij ≤ ci , (27)

m∑
i=1

xij ≤ 1n , (28)

xij ∈ {0, 1}n . (29)

P3 can be polynomial-time reducible to P2, which is an
instance of P1. The reduction is as follows.

• Let I l = [I 1, I 2, . . . , Im]. Reshape I e , w as vectors I eflat ,

wflat whose lengths are m×L. xi is corresponding to I i ,
where i = 1, . . . ,m and xm+1 = I eflat . Let vi = −(|1−
1
τ |C − β)w , where i = 1, . . . ,m and vm+1 = βwT

flat .
Thus, Eq. (26) can be reduced to

min
I l ,I e

flat

:

m∑

i=1

L∑

j=1

[(∣∣∣∣1−
1

τ

∣∣∣∣C − β

)
wI l − β

mL
wT
flat I

e
flat

]
,

which is equal to Eq. (22).
• Let ci = fi t , i = 1, . . . ,m , cm+1 = fe t , Then Eq. (27)

can be reduced to
∑L

j=1 wj I
i ≤ fi t , wT

flat I
e
flat ≤ fe t

which are equal to Eqs. (23) and (24).
•
∑m

i=1 xij ≤ 1n and xij ∈ {0, 1}n can be reduced
to I l + I e ≤ 1m×L and I l , I e ⊆ {0, 1}mL,
respectively.

There are m + 1 containers whose capacity is the computing
power of devices. I i and I e indicate tasks are packed into a
local knapsack and an edge knapsack, respectively. Therefore,
we can conclude that P1 is a multiple knapsack problem and
it is NP-hard.

The extra costs generated on the local and edge are defined
as Cost lextra and Costeextra , respectively.

Cost lextra =

∣∣∣∣1−
1

τ

∣∣∣∣CwI lτ>1 + βwI nextτ<1 , (30)

Costeextra =

∣∣∣∣1−
1

τ

∣∣∣∣CwI eτ<1 + βwI nextτ>1 . (31)

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: JOINT COMPUTATION OFFLOADING AND RESOURCE ALLOCATION UNDER TASK-OVERFLOWED SITUATIONS 1545

Fig. 3. The extra cost generated on the local device and on the edge sever.

From Eqs. (30) and (31), we find both Cost lextra and Costeextra
are positively associated with |1 − 1

τ |. As depicted in Fig. 3,
when the value of τ is closer to 1, the value of |1 − 1

τ |
is smaller, which means it is preferred for Cost lextra and
Costeextra to execute tasks whose τ is closer to 1. In reality,
the conclusion is understandable: τij = 1 means executing on
local is equal to executing on edge for taskij . When the com-
puting ability is insufficient, we need to choose which tasks
are executed in the current workflow to minimize the extra
cost and the rest of tasks will be executed in the next work-
flow. As mentioned above, the cost of the current workflow
consists of two parts: one part is the lowest cost we need to
pay whether tasks are executed on local or on edge; the other
part is the extra cost of tasks which are indicated by I tr . The
former cost is fixed, and the latter cost is what we need to
optimize. In order to choose tasks from I tr to minimize the
extra cost of the current workflow, we execute tasks in the
current workflow whose τ is closer to 1 by using the limited
remaining computing ability.

Lemma 2: A mobile device user i has L tasks, which are
sorted by |1− 1

τ | from smallest to largest. I tri is the indicator
vector of user i which illustrates tasks executed elsewhere,
without being guided by whether τ is greater than 1 or not.
When the amount of computation of tasks are equal and I tri
indicate the task whose τ is closer to 1 as 1, Costextra is
smaller.

Proof: First, let’s assume I tri and I tr
′

i as follows:

I tri =

⎡
⎣1, 1, . . . ,︸ ︷︷ ︸

1

1
k−1

, 0
k
, 0, . . . , 0︸ ︷︷ ︸

0

⎤
⎦, k ≥ 2,

I tr
′

i =

⎡
⎣1, 1, . . . ,︸ ︷︷ ︸

1

0
k−1

, 1
k
, 0, . . . , 0︸ ︷︷ ︸

0

⎤
⎦, k ≥ 2.

Then, Costextra with the indicator I tri can be calculated as:

Costextra
(
I tri
)
=

∣∣∣∣1−
1

τ

∣∣∣∣CwI tr + βwI next

=

k−1∑
j=1

∣∣∣∣1−
1

τj

∣∣∣∣Cw + βwI next

≤
k−2∑
j=1

∣∣∣∣1−
1

τj

∣∣∣∣Cw +

∣∣∣∣1−
1

τk

∣∣∣∣Cw + βwI next

= Costextra

(
I tr

′
i

)

P1 is a 0-1 NP-hard problem [46], whose computational
complexity will significantly arise due to the increase of binary
variables. We convert P1 into several simple knapsack prob-
lems based on the relationship between Costextra and τ , which
are prone to be solved. On the one hand, we translate the
threshold of τ from 1 to a new vector Θ which is more suit-
able to the current environment, and we decide whether to
offload the task or not by the threshold and τ . On the other
hand, the tasks which are assigned on the local or on the edge
will further be allocated computational resources, and the tasks
which are not be allocated computational resources will be
computed in the next workflow. The preliminary offloading
policies I l (Θ) and I e(Θ) of the current threshold Θ on the
local device and on the edge sever are computed as follows,
respectively.

I lij (Θ) =

{
1, τij ≤ Θ(i),
0, otherwise .

(32)

I eij (Θ) =

{
1, τij > Θ(i),
0, otherwise .

(33)

Furthermore, two simple knapsack problems are solved on
the local and on the edge to get the final offloading policy
I ∗ij (θ) of the current threshold Θ, which is decided by κl (Θ)
and κe(Θ) as follows:

I ∗ij (Θ) =

⎧
⎨
⎩

0, κl(Θ) = 1,
1, κe(Θ) = 1,

2, κl(Θ) = 0 & κe(Θ) = 0

(34)

where I ∗ij (Θ) = 0 means computing taskij in local under the
current Θ, I ∗ij (Θ) = 1 means computing taskij on the edge
under the current Θ, and I ∗ij (Θ) = 2 means computing taskij
in the next workflow under the current Θ. κl (Θ) and κe(Θ)
are the results of two simple knapsack problems. We describe
two simple knapsack problems in the following parts.

Therefore, the total cost of the system under the current θ
can be calculated as:

cost(Θ) =
m∑
i=1

L∑
j=1

Cost
(
I ∗ij (Θ)

)
, (35)

where

Cost(I ∗ij (Θ)) =

⎧
⎪⎨
⎪⎩

Q l
ij , I *ij (Θ) = 0,

Qe
ij , I *ij (Θ) = 1,

βwij , I *ij (Θ) = 2 .

(36)

B. Find the Optimal Θ∗

In MEC systems, the active power PA
i , the idle power P I

i ,
the transmission power PT

i and the computational speed fi
are generally different for varying mobile devices, which have
a great impact on the distribution of τ . For instance, as shown
in Fig. 4, the values of τ of tasks in the 4th device are signif-
icantly different from those in the 5th device. So we define a

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

1546 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

Fig. 4. The distribution of τi (i = 1, 2, . . . , 5).

Fig. 5. The encoding of Θ in the OAKGM algorithm when the number of
users is five.

threshold vector Θm×1, where different mobile devices may
have different threshold values. In the case of task overflow,
the number of tasks or the amount of computation may be very
large, so it is very urgent to relieve the computational pres-
sure in the next workflow. In order to tackle this challenge,
we propose two algorithms based on the multiple knapsack
problem to offload tasks: the OAKGM algorithm is designed
to search for an optimal threshold vector, while the OAMKP
algorithm is designed to search for an optimal threshold value.
Because the large difference between the values of τ of dif-
ferent tasks may cause a lot of unnecessary calculation and
the values of τ of each device can be roughly divided into
2 3 clusters in Fig. 4, we utilize K-means clustering to clus-
ter τi = {τi1, τi2, . . . , τiL} and get the K-table as shown in
Fig. 6, where the values of τi are divided into three clusters.

When the computational resources of each device are suffi-
cient, the threshold is one. However, when the computational
resources are insufficient, we have to make a trade-off between
the cost and the limitation of computational resources. We
propose the OAKGM algorithm, the purpose of which is to
search for the most suitable Θ to minimize the system cost
and alleviate the computational pressure in the next work-
flow. After computing K-table by utilizing K-means clustering,
we obtain the optimal threshold vector Θ∗ through a genetic
algorithm [47], [48]. The algorithmic process of the genetic
algorithm is described as follows.

• Encoding Chromosomes: As depicted in Fig. 5, we
encode every chromosome as a binary vector whose
length is m × 2, which corresponds to a threshold
vector Θ.

• Selection: The fitness function of the genetic algorithm
is equal to −Cost(I ∗ij (Θ)), because the aim of our algo-
rithm is to find an optimal Θ that minimizes the Cost of
the overflowed MEC system.

Fig. 6. The illustration of the K-table.

• Crossover and Mutation: To generate more high-fitness
chromosomes, we use single-point crossover and swap
mutation [48].

The proposed OAKGM algorithm is as illustrated in Fig. 6,
the numbers of K-table correspond to the clusters of K-means
clustering. I l (Θ) and I e(Θ) are the indicator matrices that
represent the tasks considered to be executed on the local and
on the edge, respectively, which can be calculated as follows:

I lij (Θ) =

{
1, K-tableij ≤ Θ(i),
0, otherwise .

(37)

I eij (Θ) =

{
1, K-tableij > Θ(i),
0, otherwise .

(38)

C. Optimization on the Local

In the case when the computing resources on the local are
insufficient to compute all tasks whose I lij (Θ) are equal to 1,

which means
∑l li (Θ)

j=1 w l
ij (Θ) > fi t , where l li (Θ) is the number

of tasks for the ith device that satisfies I lij (Θ) = 1 and w l
i (Θ)

is the amount of computation corresponding to these tasks.
In this part, we need to determine which tasks should be

executed on the local and which tasks should compute in the
next workflow. So it can be regarded as a knapsack problem:
the capacity of the knapsack is fi t ; the item weight of the
knapsack is wij , and the item value of the knapsack is V l

ij (Θ),

where V l
ij (Θ) is the difference between the cost in the case

when taskij is computed in the next workflow and the cost in
the case when taskij is computed on the local. The greater the
difference is, the more cost it takes for the task to enter the
next workflow, that is, the better it is computed on the local.

V l
ij (Θ) = βw l

ij (Θ)−Q l
ij (Θ)

= wij (Θ)

(
β − α+ Pi

fi

)
, (39)

where the unit value of items is v li = β − α+Pi
fi

. Therefore,
when Θ is given, the optimization problem can be described
as follows:

(P4) max
κl
i (Θ)

:

l li (Θ)∑
j

v lijw
l
ij (Θ)κlij (Θ), (40)

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: JOINT COMPUTATION OFFLOADING AND RESOURCE ALLOCATION UNDER TASK-OVERFLOWED SITUATIONS 1547

s.t. :

l li (Θ)∑
j

w l
ij (Θ)κlij (Θ) ≤ fi t , (41)

κli (Θ) ∈ {0, 1}l li (Θ), (42)

where κl∗i (Θ) is the best solution under the current Θ, which
makes the total cost of tasks whose I lij (Θ) = 0 are equal to 1
the lowest in the current Θ.

D. Optimization on the Edge

When the computing resources on the edge are insufficient
to compute all tasks whose I eij (Θ) are equal to 1, which

means
∑le(Θ)

k=1 we
k (Θ) > fe t , where le(Θ) is the number of

tasks satisfying I eij (Θ) = 1, and we(Θ) is the computation
corresponding to these tasks.

In this part, we need to determine which tasks should com-
pute on the edge and which ones should compute in the next
workflow. It can also be regarded as a knapsack problem: the
capacity of the knapsack is fe t , the item weight of the knap-
sack is wk (Θ), and the item values of the knapsack is V e

k (Θ),
where V e

k (Θ) is the difference between the cost if taskij is
computed in the next workflow and the cost if taskk is com-
puted on the edge. The greater the difference is, the more cost
it takes for the tasks to go to the next workflow, that is, the
better it is executed on the edge.

V e
k (Θ) = βwe

k (Θ)−Qe
k (Θ)

= we
k (Θ)

[
β − α+ Pi

fiτ
e
k (Θ)

]
, (43)

where k = 1, 2, . . . , le(Θ) and τek (Θ) is the offloading indi-
cator corresponding to we

k (Θ). The unit value of items of the
knapsack is vek (Θ) = β − α+Pk

fk τ
e
k (Θ)

. Thus, when Θ is given,
the problem is described as follows:

(P5) max
κe(Θ)

:

le(Θ)∑
k

vek (Θ)we
k (Θ)κek (Θ), (44)

s.t. :

le(Θ)∑
k

we
k (Θ)κek (Θ) ≤ fe t , (45)

κe(Θ) ∈ {0, 1}le(Θ), (46)

where κe∗(Θ) is the best solution that makes the total cost
of tasks whose I lij (Θ) are equal to 1. For convenience, we
transform κe∗(Θ) to a matrix, whose dimension is m × L.

E. Two Offloading Algorithms Based on Knapsack Problem

In the case when the current threshold is Θ, we gather
κe∗(Θ) and κl∗(Θ) together so that we can obtain I ∗(Θ)
according to Eq. (34).

Algorithm 1 shows the process of obtaining the optimal
solution through K-means clustering, genetic algorithm and
knapsack problem. First, the values of τi are classified into
K clusters. Then, we utilize a genetic algorithm to find the
optimal Θ rather than make a traversal on KM cases whose
time complexity grows exponentially with M, because the

Fig. 7. The illustration of algorithms.

Algorithm 1 Offloading Algorithm Based on K-Means
Clustering and Genetic Algorithm for Solving the Multiple
Knapsack Problem (OAKGM)

Input: α
Output: I ∗(Θ∗)

for workflows do
Initialize env=[ρ, fe , fi , Ri , D, PA, PT , P I]
Compute τ by Eq. (11)
Compute K-table by K-means clustering
Initialize chromosomes
for num = 1 : max_iter do

Compute Θ by chromosomes as Fig. 5
Compute I l (Θ) and I e(Θ) using Θ and K-table by
Eq. (37) and Eq. (38), respectively
Compute κl∗(Θ) by solving (P4)
Compute κe∗(Θ) by solving (P5)
Compute I ∗(Θ) by Eq. (34)
Compute −Cost(I ∗(Θ)) as fitness
Do a softmax selection by fitness
Do single-point crossovers
Randomly select bits and flip them and generate new
chromosomes

end for
end for
return Cost∗ and I ∗(Θ∗)

genetic algorithm has advantages over traversal when com-
puting scale grows exponentially. We find that the value of τ
when the majority of tasks that are offloaded to the edge is
greater than the value of τ when they are executed locally.

As the number of users or tasks becomes larger, we pro-
pose a simplified OAMKP algorithm to speed up computing,
as illustrated in Algorithm 2, where the simplified threshold
θ is a constant. Since the offloading indicator τ is discrete,
we iterate over all values in τ as the possible values of θ to
get an approximate optimal solution of the overloaded MEC

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

1548 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

Algorithm 2 Offloading Algorithm Based on Multiple
Knapsack Problem (OAMKP)

Input: α
Output: I ∗(θ∗)

for workflows do
Initialize env=[ρ, fe , fi , Ri , D, PA, PT , P I]
Initialize cost , s = 1
Compute τ by Eq. (11)
Reshape and sort τ as τ

′

for s = 1 : m × L do
θ = τ

′
(s)

Compute κl∗(θ) by solving (P4)
Compute κe∗(θ) by solving (P5)
Compute I ∗(θ)
Compute the Cost(I ∗(θ)) of I ∗(θ)
if Cost(I ∗(θ)) < Cost∗ then

Cost∗ = Cost(I ∗(θ))
s∗ = s

end if
end for
θ∗ = θ(s∗)
Compute I ∗(θ∗)

end for
return Cost∗ and I ∗(θ∗)

system. Referring to [49], the time complexity of the OAMKP
algorithm is O(m × L× [

∑m
i l li (θ)

2 + le(θ)2]).

V. PERFORMANCE EVALUATION

In this section, we conduct simulations to verify the effec-
tiveness of our proposed algorithms under various parameter
settings. Specifically, we compare the proposed method with
several benchmark offloading schemes in the MEC environ-
ment. We utilize the MILP-solver of MATLAB R2017a to
compute κl∗ and κe∗. The implementation language of all
algorithms is conducted in MATLAB.

A. Simulation Settings

In a workflow, tasks arrival and their data sizes are expressed
as D = {Dij |i = 1, 2, . . . ,m and j = 1, 2, . . . ,L}. The num-
ber of local devices is set as 10, the numbers of tasks in the
fewer-user environment are set as 5, 6, 7, 8. In the more-user
environment, the numbers of tasks are set as 10, 15 and 20.
The number of clusters of τi is 3. In order to make sure that
most of βwij ∈ [0, 10], we set β ∈ [1/wmax, 20/wmax], where
wmax = Dmax · ρmax. Similar to [50], the parameter settings
for our experiment are described in Table III.

In real-world scenarios, tasks arrive randomly and the num-
ber of tasks of each device is not the same in a time slot.
Thus, the data sizes of the quarter tasks are randomly set to
0 in experiments so that the number of tasks varies between
devices. To improve the reliability, we conduct experiments
in fifty different environments and each of them is generated
randomly according to the parameter settings, and we run fifty
simulations under each environment. The computing ability of

TABLE III
EVALUATION PARAMETERS

each devices fi , the active power PA
i , the idle power P I

i , and
the transmission power PT

i varies in different environments.
So the simulations consider not only the changes in the num-
bers of tasks, but also the changes of devices. Furthermore,
the resource occupancy rate is defined as follows:

resource occupancy rate =

∑m
i=1

∑L
j=1 wij · I ′ij∑m

i=1 fi t + fe t
, (47)

where I ′ij =
{
0, I *ij = 2,

1, otherwise
is the indicator matrix of tasks

computed in the current workflow.

B. Benchmarks

We compare the proposed algorithms with five baseline
offloading schemes, which are listed as follows.

• Genetic Algorithm (GA) [47]: In this method, we regard
each offloading decision as a m × L dimensional chromo-
some. The number of chromosomes is 128, and the length
of each chromosome is m × L. The maximum number
of generations is 200. Through a fitness function related
to the cost, we select the superior chromosome and elim-
inate the inferior chromosomes through the processes of
crossover, mutation, and selection. Finally, we can obtain
the offloading decision with the highest fitness value.

• Particle Swarm Optimization (PSO) [51]: In this method,
we regard each offloading decision as a map. The number
of particles is 128. The velocity extremum that limits the
maximum change of a particle in an iteration is 0.2. The
two learning factors are both set to 2. The inertia weight
is 0.8. When a particle arrives at a certain location on the
map, the map will change its offloading options at this
location and get a fitness value. Finally, we can obtain
the offloading decision with the highest fitness value.

• Random Offloading Policy (ROP): In this policy, we make
offloading decisions randomly.

• Only-Local Policy (OLP): There are two options for tasks
under this policy: one is to compute tasks locally, and the
other is to compute tasks in the next workflow.

• Only-Edge Policy (OEP): There are two options for tasks
under this policy: one is to compute tasks on the edge,
and the other is to compute tasks in the next workflow.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: JOINT COMPUTATION OFFLOADING AND RESOURCE ALLOCATION UNDER TASK-OVERFLOWED SITUATIONS 1549

Fig. 8. Average costs of different algorithms under environments with varying
numbers of tasks.

Fig. 9. Average costs of different algorithms under environments with varying
numbers of tasks.

C. Performance Comparison

Fig. 8 shows the average cost under different offloading
methods. When compared with GA, PSO, ROP, OLP and OEP
algorithms, the OAKGM algorithm is significantly superior in
terms of average cost. For instance, compared with GA, the
OAMKP method achieves 4.19%, 9.09%, 8.89% and 7.31%
improvements when the numbers of tasks are 5, 6, 7 and 8,
respectively. Compared with PSO, it achieves 8.18%, 7.13%,
5.50% and 4.87% improvements when the numbers of tasks
are 5, 6, 7 and 8, respectively.

Fig. 9 shows that when compared with GA, PSO, ROP, OLP
and OEP algorithms, the OAMKP algorithm is significantly
superior in terms of average cost. For instance, compared with
GA, the OAMKP method achieves 8.66%, 8.07% and 6.35%
improvements when the numbers of tasks are 10, 15 and 20,
respectively. Compared with PSO, it achieves 10.12%, 8.38%
and 4.71% improvements when the numbers of tasks are 10, 15
and 20, respectively. The total amount of computation of the
tasks when m = 10 and L = 20 is much larger than that when
m = 10 and L = 10, which means that more computations
can be overflowed, leading to a decrease in the improvement
percentage as the number of tasks L increases.

Fig. 10 shows that when compared with GA, PSO, ROP,
OLP, and OEP algorithms, the OAMKP algorithm is sig-
nificantly superior in terms of average cost. For instance,
compared with GA, the OAMKP method achieves 8.07%,

Fig. 10. Average costs of different algorithms under environments with
varying numbers of users.

Fig. 11. The resource occupancy rates of different algorithms under
environments with varying numbers of users and tasks.

13.45% and 9.33% improvements when the numbers of users
are 10, 15, and 20, respectively. Compared with PSO, it
achieves 8.38%, 12.59%, and 7.64% improvements when the
numbers of users are 10, 15, and 20, respectively.

Due to the limitations of ROP, OLP and OEP schemes in
terms of the resource occupancy rate, we will ignore them
in the remaining experiments. Thus, we mainly compare the
proposed OAMKP algorithm with GA and PSO algorithms.

Fig. 11 shows the average resource occupancy rates of the
OAMKP, GA and PSO algorithms. It can be seen that our
algorithm has a larger resource occupancy rate than the GA
and PSO algorithms, which means that when our offloading-
decision algorithm is deployed in the MEC system, the amount
of computation to enter the next workflow will be greatly
reduced. When the number of tasks increases, the average
resource occupancy rates of our algorithm and the PSO algo-
rithm increase, while the resource occupancy rate of the GA
algorithm decreases. Obviously, when mobile devices and
tasks become intensive, our algorithm greatly outperforms the
GA and PSO algorithms.

Fig. 12 shows the average time cost under various environ-
ments with different numbers of users and tasks. Combined
with Fig. 11, we know that our algorithm can execute more
tasks in a similar or shorter time when compared with the GA
and PSO algorithms.

Figs. 13 and 14 show the influence of different β on the
results of different algorithms. Under such β, most of the
overflowed cost βwij is in [0, 10], where wij is the amount

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

1550 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

Fig. 12. Average time costs of different algorithms under environments with
varying numbers of users and tasks.

Fig. 13. Average cost of different algorithms when varying β.

Fig. 14. Average resource occupancy rates of different algorithms when
varying β.

of computation of the task, which is going to the next work-
flow. We can see that even though β changes, the result of
the GA algorithm is similar to that of the PSO algorithm. The
proposed algorithm always achieves better than the GA and
PSO algorithms under different β, and the resource occupancy
rate of our algorithm can reach 95.84%, which is much higher
than that of the GA and PSO algorithms.

Fig. 15. Average costs of different algorithms when varying fe .

Fig. 16. Average resource occupancy rate of different algorithms when
varying fe .

Fig. 15 shows the impact of different fe on the average cost.
When fe increases, the average cost of OLP will not change
because the tasks are only executed locally. The average costs
of other algorithms decrease as the available total computing
resources of each workflow is increasing. For environments
with different fe , the offloading decision of our algorithm is
the best choice.

Fig. 16 shows the influence of different fe on the resource
occupancy rate. When fe increases, the average resource occu-
pancy rate of our algorithm decreases, while the rates of the
GA and PSO algorithms increase slightly because of the ran-
domness of these two algorithms, which makes them perform
well in the environment where tasks are slightly more sparse.
However, the best resource occupancy rate is still far from the
OAMKP algorithm under different fe .

Considering the queue effect, we compare it with two
methods: one is OAMKP, the other is OAMKPqueue , which
replaces the penalty term for overflowed computations with
the penalty term for the queue. We utilize a product of the
penalty coefficient γ and the number of unexecuted tasks in the
current workflow as the queueing penalty term. After simple

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: JOINT COMPUTATION OFFLOADING AND RESOURCE ALLOCATION UNDER TASK-OVERFLOWED SITUATIONS 1551

Fig. 17. Total overflowed computations and tasks under OAMKP and
OAMKPqueue .

Fig. 18. Average cost of different algorithms under environments with a
random number of users and varying numbers of tasks.

Fig. 19. Average resources occupancy rate of different algorithms under
environments with a random number of users and varying numbers of tasks.

scaling, we set the penalty coefficient to 5, which corresponds
to β = 4 × 10−8. As shown in Fig. 17, the solid lines and
the dotted lines correspond to OAMKP and OAMKPqueue

respectively, while the blue lines and yellow lines correspond
to the total overflowed computations and total overflowed tasks
respectively. As Fig. 17 shows, OAMKP ends tasks earlier than
OAMKPqueue , which means that optimizing overflowed com-
putations is more suited to solve the task-overflowed situation
than optimizing the queue because the latter is a coarse-grain
optimization.

Furthermore, we set 20 edge servers and 300 users in the
MEC environment. Each edge server is randomly in charge of
10∼20 users. As shown in Fig. 18 and Fig. 19, the OAMKP
algorithm performs much better than other algorithms under
different numbers of tasks. For example, the OAMKP algo-
rithm achieves 3.56%, 14.71%, 28.98%, 44.59%, 62.02%
improvements in terms of average costs when compared with

GA, PSO, ROP, OLP, and OEP algorithms when L = 10, while
it achieves 11.52% and 7.57% improvements in terms of aver-
age resources occupancy rates when compared with GA and
PSO algorithms when L = 20.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider the task-overflowed situation
when the total amount of computations of the tasks to be car-
ried out exceeds the total computing capacity of the MEC
system. We design a novel task offloading indicator in local-
edge collaborative computing environments, the purpose of
which is not only to minimize the system cost, but also to alle-
viate the computational pressure of the next workflow. On the
basis of the indicator, we propose two offloading algorithms
based on the multiple knapsack problem, i.e., OAKGM and
OAMKP. It is found that the former is more suitable for MEC
systems with fewer users and tasks, while the latter is more
suitable for MEC systems with numerous users or multiple
tasks. Experimental results demonstrate that the proposed algo-
rithms can achieve better performance than existing GA and
PSO algorithms. It can make better use of the computing
capacities of IoT devices and edge servers, greatly avoid
resource occupation on the edge nodes, and effectively reduce
the computational pressure of the next workflow.

For future work, by utilizing energy harvesting technolo-
gies [52], we will comprehensively consider the characteristics
of abundant computing resources in cloud computing and low
transmission delay in green and sustainable MEC systems. In
addition, we will attempt to tackle the task-overflowed issues
in serverless edge computing frameworks [53], [54] with a
focus on joint computation offloading and resource allocation.

REFERENCES

[1] K. Nakamura, P. Manzoni, M. Zennaro, J.-C. Cano, C. T. Calafate, and
J. M. Cecilia, “FUDGE: A frugal edge node for advanced IoT solutions
in contexts with limited resources,” in Proc. 1st Workshop Experiences
Design Implement. Frugal Smart Objects, Sep. 2020, pp. 30–35.

[2] D. C. Nguyen, P. N. Pathirana, M. Ding, and A. Seneviratne, “Privacy-
preserved task offloading in mobile blockchain with deep reinforce-
ment learning,” IEEE Trans. Netw. Service Manag., vol. 17, no. 4,
pp. 2536–2549, Dec. 2020.

[3] M. Xue, H. Wu, R. Li, M. Xu, and P. Jiao, “EosDNN: An efficient
offloading scheme for DNN inference acceleration in local-edge-cloud
collaborative environments,” IEEE Trans. Green Commun. Netw., early
access, Sep. 10, 2021, doi: 10.1109/TGCN.2021.3111731.

[4] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A sur-
vey on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[6] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offload-
ing for mobile edge computing in dense networks,” in Proc. IEEE
INFOCOM Conf. Comput. Commun., Apr. 2018, pp. 207–215.

[7] H. Wu, Y. Sun, and K. Wolter, “Energy-efficient decision making for
mobile cloud offloading,” IEEE Trans. Cloud Comput., vol. 8, no. 2,
pp. 570–584, Apr.–Jun. 2020.

[8] S. Malik, H. Akram, S. S. Gill, H. Pervaiz, and H. Malik, “EFFORT:
Energy efficient framework for offload communication in mobile cloud
computing,” Softw. Pract. Exp., vol. 51, no. 9, pp. 1896–1909, 2021.

[9] L. Huang, X. Feng, L. Zhang, L. Qian, and Y. Wu, “Multi-server
multi-user multi-task computation offloading for mobile edge computing
networks,” Sensors, vol. 19, no. 6, p. 1446, Mar. 2019.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TGCN.2021.3111731

1552 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

[10] I. A. Elgendy, W.-Z. Zhang, Y. Zeng, H. He, Y.-C. Tian, and Y. Yang,
“Efficient and secure multi-user multi-task computation offloading for
mobile-edge computing in mobile IoT networks,” IEEE Trans. Netw.
Service Manag., vol. 17, no. 4, pp. 2410–2422, Dec. 2020.

[11] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation
for mobile edge computing-based augmented reality applications,” IEEE
Wireless Commun. Lett., vol. 6, no. 3, pp. 398–401, Jun. 2017.

[12] J. Wang et al., “Energy-efficient admission of delay-sensitive tasks for
multi-mobile edge computing servers,” in Proc. IEEE 25th Int. Conf.
Parallel Distrib. Syst. (ICPADS), Dec. 2019, pp. 747–753.

[13] Y. Geng, Y. Yang, and G. Cao, “Energy-efficient computation offloading
for multicore-based mobile devices,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., Apr. 2018, pp. 46–54.

[14] Y. Meng and J. Dai, “Energy-efficient joint computation offloading and
resource allocation in multi-user mec systems,” J. Phys. Conf. Series,
vol. 1693, no. 1, 2020, Art. no. 012042.

[15] Y. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrained mobile comput-
ing,” IEEE Trans. Mobile Comput., vol. 16, no. 11, pp. 3056–3069,
Nov. 2017.

[16] K. Wang et al., “Joint offloading and charge cost minimization in mobile
edge computing,” IEEE Open J. Commun. Soc., vol. 1, pp. 205–216,
2020.

[17] J. Fang, J. Shi, S. Lu, M. Zhang, and Z. Ye, “An efficient com-
putation offloading strategy with mobile edge computing for IoT,”
Micromachines, vol. 12, no. 2, p. 204, 2021.

[18] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-
efficient admission of delay-sensitive tasks for mobile edge computing,”
IEEE Trans. Commun., vol. 66, no. 6, pp. 2603–2616, Jun. 2018.

[19] H. Kim, W.-K. Hong, J. Yoo, and S.-E. Yoo, “Experimental research
testbeds for large-scale WSNs: A survey from the architectural per-
spective,” Int. J. Distrib. Sens. Netw., vol. 11, no. 3, Mar. 2015,
Art. no. 630210.

[20] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 3rd Quart., 2017.

[21] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading and resource
allocation for computation and communication in mobile cloud with
computing access point,” in Proc. IEEE INFOCOM Conf. Comput.
Commun., May 2017, pp. 1–9.

[22] M. Avgeris, D. Dechouniotis, N. Athanasopoulos, and S. Papavassiliou,
“Adaptive resource allocation for computation offloading,” ACM Trans.
Internet Technol., vol. 19, no. 2, pp. 1–20, Apr. 2019.

[23] Y. Deng, Z. Chen, X. Yao, S. Hassan, and A. M. A. Ibrahim, “Parallel
offloading in green and sustainable mobile edge computing for delay-
constrained IoT system,” IEEE Trans. Veh. Technol., vol. 68, no. 12,
pp. 12202–12214, Dec. 2019.

[24] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
optimized partial computation offloading in mobile-edge computing with
genetic simulated-annealing-based particle swarm optimization,” IEEE
Internet Things J., vol. 8, no. 5, pp. 3774–3785, Mar. 2021.

[25] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent iot applications in edge and fog
computing environments,” IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Apr. 2021.

[26] S. Josilo and G. Dan, “Computation offloading scheduling for periodic
tasks in mobile edge computing,” IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 667–680, Apr. 2020.

[27] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu,
“EEDTO: An energy-efficient dynamic task offloading algorithm
for blockchain-enabled IoT-edge-cloud orchestrated computing,” IEEE
Internet Things J., vol. 8, no. 4, pp. 2163–2176, Feb. 2021.

[28] A. Lakhan, M. Ahmad, M. Bilal, A. Jolfaei, and R. M. Mehmood,
“Mobility aware blockchain enabled offloading and scheduling in vehic-
ular fog cloud computing,” IEEE Trans. Intell. Transp. Syst., vol. 22,
no. 7, pp. 4212–4223, Jul. 2021.

[29] M. Tang and V. W. S. Wong, “Deep reinforcement learning for task
offloading in mobile edge computing systems,” IEEE Trans. Mobile
Comput., early access, Nov. 10, 2020, doi: 10.1109/TMC.2020.3036871.

[30] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A deep meta reinforcement
learning-based task offloading framework for edge-cloud computing,”
IEEE Trans. Netw. Service Manag., vol. 18, no. 3, pp. 3448–3459,
Sep. 2021.

[31] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11,
pp. 2581–2593, Nov. 2020.

[32] S. Malektaji, A. Ebrahimzadeh, H. Elbiaze, R. H. Glitho, and
S. Kianpisheh, “Deep reinforcement learning-based content migration
for edge content delivery networks with vehicular nodes,” IEEE Trans.
Netw. Service Manag., vol. 18, no. 3, pp. 3415–3431, Sep. 2021.

[33] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D fogging: An energy-efficient
and incentive-aware task offloading framework via network-assisted
D2D collaboration,” IEEE J. Sel. Areas Commun., vol. 34, no. 12,
pp. 3887–3901, Dec. 2016.

[34] K. Wang, K. Yang, and C. S. Magurawalage, “Joint energy minimization
and resource allocation in c-RAN with mobile cloud,” IEEE Trans.
Cloud Comput., vol. 6, no. 3, pp. 760–770, Jul.–Sep. 2018.

[35] S. Li, Y. Tao, X. Qin, L. Liu, Z. Zhang, and P. Zhang, “Energy-
aware mobile edge computation offloading for IoT over heterogenous
networks,” IEEE Access, vol. 7, pp. 13092–13105, 2019.

[36] Q. Wang, S. Guo, J. Liu, and Y. Yang, “Energy-efficient compu-
tation offloading and resource allocation for delay-sensitive mobile
edge computing,” Sustain. Comput. Inform. Syst., vol. 21, pp. 154–164,
Mar. 2019.

[37] H. Wu, Z. Zhang, C. Guan, K. Wolter, and M. Xu, “Collaborate edge and
cloud computing with distributed deep learning for smart city Internet
of Things,” IEEE Internet Things J., vol. 7, no. 9, pp. 8099–8110,
Sep. 2020.

[38] Y. Xue, X. Wu, and J. Yue, “An offloading algorithm of dense-tasks for
mobile edge computing,” in Proc. Int. Conf. Wireless Commun. Sens.
Netw., May 2020, pp. 35–40.

[39] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue, “An approach to
QoS-based task distribution in edge computing networks for IoT appli-
cations,” in Proc. IEEE Int. Conf. Edge Comput. (EDGE), Jun. 2017,
pp. 32–39.

[40] K. Guo, M. Yang, Y. Zhang, and Y. Ji, “An efficient dynamic offloading
approach based on optimization technique for mobile edge comput-
ing,” in Proc. 6th IEEE Int. Conf. Mobile Cloud Comput. Services Eng.
(MobileCloud), Mar. 2018, pp. 26–36.

[41] F. Liu, Z. Huang, and L. Wang, “Energy-efficient collabora-
tive task computation offloading in cloud-assisted edge com-
puting for IoT sensors,” Sensors, vol. 19, no. 5, p. 1105,
Mar 2019.

[42] X. Chen, Y. Cai, Q. Shi, M. Zhao, B. Champagne, and L. Hanzo,
“Efficient resource allocation for relay-assisted computation offloading
in mobile-edge computing,” IEEE Internet Things J., vol. 7, no. 3,
pp. 2452–2468, Mar. 2020.

[43] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge:
Mobility-aware dynamic service placement for mobile edge comput-
ing,” IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2333–2345,
Oct. 2018.

[44] Y. Ding, K. Li, C. Liu, Z. Tang, and K. Li, “Short- and long-term cost
and performance optimization for mobile user equipments,” J. Parallel
Distrib. Comput., vol. 150, pp. 69–84, Apr. 2021.

[45] M. Assi and R. A. Haraty, “A survey of the knapsack problem,” in Proc.
Int. Arab Conf. Inf. Technol. (ACIT), 2019, pp. 1–6.

[46] X. Wang, J. Wang, X. Wang, and X. Chen, “Energy and delay tradeoff
for application offloading in mobile cloud computing,” IEEE Syst. J.,
vol. 11, no. 2, pp. 858–867, Jun. 2017.

[47] I. Rojas, J. Gonzalez, H. Pomares, J. J. Merelo, P. A. Castillo, and
G. Romero, “Statistical analysis of the main parameters involved in the
design of a genetic algorithm,” IEEE Trans. Syst., Man, Cybern. C, Appl.
Rev., vol. 32, no. 1, pp. 31–37, Feb. 2002.

[48] S. Samanta, A. Choudhury, N. Dey, A. Ashour, and V. Balas,
“Chapter 9—Quantum-inspired evolutionary algorithm for scaling fac-
tor optimization during manifold medical information embedding,”
in Quantum Inspired Computational Intelligence, S. Bhattacharyya,
U. Maulik, and P. Dutta, Eds. Boston, MA, USA: Morgan Kaufmann,
2017, pp. 285–326.

[49] C. H. Papadimitriou, “On the complexity of integer programming,”
J. ACM, vol. 28, no. 4, pp. 765–768, 1981.

[50] X. Xu et al., “A computation offloading method over big data for IoT-
enabled cloud-edge computing,” Future Gener. Comput. Syst., vol. 95,
pp. 522–533, Jun. 2019.

[51] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm
optimization,” in Evolutionary Programming VII, V. W. Porto,
N. Saravanan, D. Waagen, and A. E. Eiben, Eds. Heidelberg, Germany:
Springer, 1998, pp. 591–600.

[52] F. Zhao, Y. Chen, Y. Zhang, Z. Liu, and X. Chen, “Dynamic offload-
ing and resource scheduling for mobile edge computing with energy
harvesting devices,” IEEE Trans. Netw. Service Manag., vol. 18, no. 2,
pp. 2154–2165, Jun. 2021.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2020.3036871

TANG et al.: JOINT COMPUTATION OFFLOADING AND RESOURCE ALLOCATION UNDER TASK-OVERFLOWED SITUATIONS 1553

[53] M. Golec, R. Ozturac, Z. Pooranian, S. S. Gill, and R. Buyya, “iFaaS-
Bus: A security and privacy based lightweight framework for serverless
computing using IoT and machine learning,” IEEE Trans. Ind. Informat.,
early access, Jul. 7, 2021, doi: 10.1109/TII.2021.3095466.

[54] M. S. Aslanpour et al., “Serverless edge computing: Vision and chal-
lenges,” in Proc. Aust. Comput. Sci. Week Multiconf., Feb. 2021,
pp. 1–10.

Huijun Tang received the B.Sc. degree from Jinan
University, China, in 2016, and the M.S. degree from
Tianjin University, China, in 2018, where she is cur-
rently pursuing the Ph.D. degree with the Center
for Applied Mathematics. Her research interests
include Internet of Things, mobile-edge computing,
and deep learning.

Huaming Wu (Member, IEEE) received the B.E.
and M.S. degrees in electrical engineering from
the Harbin Institute of Technology, China, in
2009 and 2011, respectively, and the Ph.D. degree
(Highest Hons.) in computer science from Freie
Universität Berlin, Germany, in 2015. He is cur-
rently an Associate Professor with the Center for
Applied Mathematics, Tianjin University, China. His
research interests include wireless networks, mobile-
edge computing, Internet of Things, and complex
networks.

Yubin Zhao (Senior Member, IEEE) received the
B.S. and M.S. degrees from the Beijing University
of Posts and Telecommunications, Beijing, China,
in 2007 and 2010 respectively, and the Ph.D. degree
in computer science from Freie Universität Berlin,
Berlin, Germany, in 2014. He joined the Center
for Cloud Computing as an Associate Professor,
Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China, in
2014. He is now an Associate Professor in School
of Microelectronics Science and Technology, Sun

Yat-sen University, Zhuhai, China. His current research interests include wire-
less power transfer, indoor localization, and target tracking. He also received
the Outstanding Research Award in CICCAT 2019. He serves as the guest
editor and reviewer for several journals.

Ruidong Li (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees in computer science
from the University of Tsukuba in 2005 and
2008, respectively. He is an Associate Professor
with Kanazawa University, Japan. Before joining
Kanazawa University, he was a Senior Researcher
with the National Institute of Information and
Communications Technology, Japan. His research
interests include future networks, big data, intelligent
Internet edge, Internet of Things, network security,
information-centric network, artificial intelligence,

quantum Internet, cyber–physical system, and wireless networks. He serves
as the Secretary of IEEE ComSoc Internet Technical Committee. He is the
Founder and the Chair of IEEE SIG on Big Data Intelligent Networking
and IEEE SIG on Intelligent Internet Edge. He is the Associate Editor of
IEEE INTERNET OF THINGS JOURNAL, and also served as the Guest Editor
for a set of prestigious magazines, transactions, and journals, such as IEEE
Communications Magazine, IEEE NETWORK, and IEEE TRANSACTIONS ON

NETWORK SCIENCE AND ENGINEERING. He also served as the Chair for sev-
eral conferences and workshops, such as the General Co-Chair for IEEE MSN
2021, AIVR2019, and IEEE INFOCOM 2019/2020/2021 ICCN Workshop,
and the TPC Co-Chair for IWQoS 2021, IEEE MSN 2020, BRAINS 2020,
IEEE ICDCS 2019/2020 NMIC Workshop, and ICCSSE 2019. He is a
member of IEICE.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on June 10,2022 at 01:26:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TII.2021.3095466

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

