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Abstract—Mobile cloud offloading that migrates heavy computation from mobile devices to powerful cloud servers through

communication networks can alleviate the hardware limitations of mobile devices thus providing higher performance and saving

energy. Different applications usually give different relative importance to response time and energy consumption. If a delay-tolerant

job is deferred up to a given deadline, or until a fast and energy-efficient network becomes available, the transmission time will be

extended, which can save energy because a more energy-efficient communication channel and a less energy-restricted computation

platform may become available. However, if the reduced service time fails to cover the extra waiting time, this policy may not be

competitive. In this paper, we investigate two types of delayed offloading policies, the partial offloading model where jobs can leave

from the slow phase of the offloading process and be executed locally on the mobile device, and the full offloading model, where jobs

can abandon theWiFi Queue and be offloaded via the Cellular Queue. In both models, we minimize the Energy-Response time

Weighted Product (ERWP) metric. Not surprisingly, we find that jobs abandon the queue often when the availability of the WiFi network

is low. In general, for delay-sensitive applications the partial offloading model is preferred under a suitable reneging rate, while for

delay-tolerant applications the full offloading model shows very good results and outperforms the other offloading model when selecting

a large deadline. From the perspective of energy consumption, the full offloading model will always be best, even if the deadline must

be extremely long. Only if job response time is of high importance an optimal deadline to abort offloading in the partial offloading model

or the WiFi transmission in the full offloading model can be found. For reduction of the energy consumption it will always be better to

wait longer rather than compute locally or use the cellular network.

Index Terms—Mobile cloud computing, mobile offloading, heterogeneous networks, energy-performance tradeoff, queueing model

Ç

1 INTRODUCTION

BESIDES light-weight Internet applications, there is an
increasing demand from mobile users for computation-

heavy and energy-hungry applications that are being
deployed to mobile devices. Running complex applications
on such devices is however challenging due to the strict
constraints on their resources, e.g., the limited computa-
tional capacity, battery lifetime and network connectivity.
Offloading computation-intensive tasks from mobile devi-
ces to a capable cloud server via wireless networks is an
effective way to alleviate a tussle between resource-
constrained mobile devices and resource-hungry mobile
applications, and thus boosting the device’s performance.
Potential benefits obtained from offloading include reduc-
ing the job response time as well as decreasing the amount
of energy needed to process a job.

Mobile offloading is most beneficial for applications that
require heavy computation on a rather small amount of
data. More precisely, in this paper we consider applications
that upload considerably more data than they download.
Any image recognition application would be an example

for such an application, e.g., optical text recognition or
object recognition in images.

Different types of applications usually give different rela-
tive importance to both factors of response time and energy
consumption.

� Delay-Tolerant Applications: many mobile applica-
tions (e.g., iCloud, social networking, mobile health-
care and urban tomography) deal with video,
audio, sensor data, or access large databases on the
Internet, which are less sensitive to network delays.
Participatory sensing applications are a good exam-
ple of data-intensive yet delay-tolerant applications.
The collective sampling of sensor data acquired by
a number of sensor nodes creates a body of knowl-
edge on parameters such as personal resource con-
sumption, dietary habits and urban documentation
[1]. Data is uploaded from a smartphone to a back-
end cloud server either through the cellular network
or any available WiFi network. Some of the sensor
information is not time-critical and its submission to
the server may be delayed until the device enters an
energy-efficient network [2]. Users can browse or
search the obtained archives through a website at the
server side. As a daily-life scenario when traveling
outside the normal network coverage area (e.g.,
abroad, where the cellular contract is not valid) a user
may wish to trigger a job, in order not to forget, but
require the result only upon return to the workplace.
In general terms, for delay-tolerant applications,
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response time is less critical and optimizing energy
usage is more relevant.

� Delay-Sensitive Applications: when running delay-
sensitive applications (e.g., face recognition, video
conferencing, vehicular communications, authentica-
tion) on mobile devices, mobile users desire a fast
response which is comparable to their normal cogni-
tive capabilities. Thus, for good user experience the
response time of cognitive applications should be low.
Task offloading can be exploited to use cognitive
applications ubiquitously by executing them remotely
on computing nodes. Fast response is a primary con-
cern for these applications. The offloading scheme in
which cloud services are available after short network
latency (e.g., WiFi networks) can serve such applica-
tions in a better way and lead to a low response time.

Mobile users are easily subject to dynamically changing
network conditions due to their mobility, which makes it
hard to make good offloading decisions in mobile environ-
ments [3]. Mobile network environments have a great influ-
ence on the performance of offloading systems. Therefore,
taking a high-quality offloading decision requires a good
understanding of the network condition.

Mobile devices usually have multiple radio interfaces for
data transfer, such as 3G/4G and WiFi with different avail-
ability, delay and energy cost. Thus, there are several ways to
offload tasks to the cloud, e.g., via a costly cellular connection
or via intermittently available WiFi [4]. By delaying offload-
ing until WiFi becomes available, it is possible to reduce the
transmission time at the expense of some extra waiting time.
The reduced transmission time at a later point in time directly
translates to saving battery power of the mobile device [5].
However, delayed offloading is still a matter of debate, since
it is not known towhat extent users would bewilling to delay
a transmission [6]. In this paper, we try to give an overall rec-
ommendation of how to balance the time and energy invest-
ment for different types of scenarios, i.e., delay-tolerant and
delay-sensitive applications. We develop a theoretical frame-
work to capture the energy-performance tradeoff by using
queueing models with impatient jobs and service interrup-
tions. The models can be used to predict the average perfor-
mance and energy consumption ofmobile offloading under a
given network environment deployment condition.

The main contributions of this paper are as follows:

� we propose two analytical queueing models for
delayed mobile cloud offloading systems: the partial
offloading model and the full offloading model. A
non-delayed offloading model [7] is also introduced
and used for comparison.

� we develop an analytical framework for analyzing
queueing models with reneging and service inter-
ruptions. From our framework, we obtain closed-
form formulas for key performance metrics in the
delayed offloading system such as Energy-Response
time Weighted Product (ERWP), which combines
the advantages of other previously studied metrics.

� we aim at answering the following questions:
(i) Given a deadline, what are the expected response
time and expected energy consumption as a function
of network parameters and job arrival rate? (ii) How
should the deadline be optimally chosen in order
to achieve different energy-delay tradeoffs for spe-
cific applications? (iii) Among different offloading

models, which one is best at achieving a perfor-
mance gain according to the ERWP metric?

The remainder of this paper is organized as follows.
Section 2 introduces the related work. Section 3 describes
system models for the delayed offloading models as well as
the considered metrics. Sections 4 and 5 present the mathe-
matical models and their analysis for the partial and the full
offloading model. The partial offloading model based on
the ERWP metric is analyzed in Section 4. The full offload-
ing model is proposed and analyzed in Section 5. Section 6
evaluates metrics and models using numerical examples
based on real traces of mobile networks. The paper con-
cludes in Section 7.

2 RELATED WORK

This section discusses related work on offloading systems to
reduce job completion time, energy usage and a combina-
tion of both, each in the respective section. The issues of
time and energy saving on mobile devices are becoming
increasingly relevant. Many research efforts have been
devoted to offloading computation to remote servers in
order to shorten execution time or save energy.

2.1 Reducing Job Completion Time
Mobile cloud offloading is sometimes implemented as a
two-step procedure where the cloud is reached via a close-
by cloudlet which is in turn connected to powerful cloud
servers. Satyanarayanan et al. [8] proposed a VM-based
cloudlet in mobile computing, to which a smartphone con-
nects over WLAN. The assumption is that connection to the
Cloud imposes higher latency and lower bandwidth than
the Cloudlet. In essence, cloudlets make use of mobile devi-
ces simply as a thin-client to access local resources, rather
than using the mobile device’s resources directly and off-
loading only when required.

A stochastic model for dynamic offloading has been
developed in [4] using various performance metrics and also
intermittently available access links. The mobile nature of
mobile devices and unstable connections of wireless links
affect the predictability of the performance of a pervasive
service running under the control of offloading systems. Ou
et al. [9] analyzed the performance of offloading systems in
mobile wireless environments when considering system fail-
ure and recovery. However, how to take offloading decisions
was not considered. In [10] a framework using estimated
bandwidth to take offloading decisions was investigated.
The authors formulated decision problems for computa-
tional offloading systems according to the bandwidth pre-
diction for the local and remote systems. The assumption is
that network reliability is not an issue, while in a realistic sce-
nario, the networkmay even not be available at all.

2.2 Saving Energy
Mobile offloading systems have been built over the past years
for the purpose of reducing the energy consumption of
mobile devices. MAUI [11] was a system that enables
energy-aware offloading of mobile code to the infrastructure.
Its main aimwas to optimize energy consumption of amobile
device by estimating and trading off the energy consumed by
local processing versus transmission of code and data for
remote execution. The system decided at runtime which
methods should be executed remotely as to save most energy
under themobile device’s current connectivity constraints.
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Kumar et al. [12] argued that offloading could potentially
save energy for mobile users, but not all applications were
energy-efficient when migrated to the cloud. It depended on
whether the computational cost saved due to offloading out-
performs the extra communication cost. A large amount of
communication combined with a small amount of computa-
tion should preferably be performed locally on the mobile
device, while little communication for a large amount of
computation should preferably be executed remotely.

Some authors consider a response time constraint for the
application when partitioning application tasks for execution
on mobile devices and cloud servers. This deadline is an
important issue for many interactive applications. To save
energywhile satisfying a given application deadline, dynamic
offloading algorithms were presented in [13], [14]. They
showed low complexity to solve the offloading decision-mak-
ing problem (i.e., to determine which software components to
execute remotely undermobile network environments).

2.3 Saving Time and Energy Combined
Both concerns, job response time and energy consumption
have been addressed by several authors. CloneCloud [15]
used a combination of static analysis and dynamic profiling
to partition applications automatically at a fine granularity
while optimizing execution time and energy usage for a
target computation and communication environment.
However, static application partitioning [16], [17] were
not suitable in situations with heavily changing network
condition. Intermittent connectivity may exist due to het-
erogeneous wireless environments, device mobility and
cloud resource unavailability. Unstable connections in
mobile networks have a great impact on the offloading
decisions. High communication latency and energy con-
sumption can make local execution more advantageous
in certain circumstances.

Seamless offloading operation by switching between sev-
eral transmission technologies has been proposed in [18].
They have examined the tradeoff between energy consump-
tion for WiFi search and transmission rate when the WiFi
network was only intermittently available. Energy-efficient
delayed network selection has been suggested in [1], [19] to
optimize the tradeoff between energy usage and delay in
data transmission by intentionally deferring data transmis-
sion until the device meets an energy-efficient network.
Moreover, the use of “delayed offloading” has been sug-
gested in case no WiFi connection is available. Then (some)
traffic can be delayed up to a chosen deadline, or until WiFi
becomes available [20]. An online scheduling policy for
delayed mobile offloading was proposed in [21], where the
amount of offloaded data by using WiFi has been maxi-
mised to the extent possible. The scheme would only use
cellular networks after expiry of a deadline.

This work is motivated by the above interesting efforts to
investigate the intermittent network connectivity problem
in a mobile cloud environment, aiming at balancing differ-
ent objectives like minimum response time and minimum
energy consumption. We explicitly consider the mobile
nature of both user and application behavior and study
how delayed offloading can tackle these heterogeneity prob-
lems by using a combined metric based on our previous
work [22], [23], [24].

3 SYSTEM MODELS

In this section, we define two different delayed offloading
models based on a network availability model and propose
a new metric to capture the energy-performance tradeoff.

3.1 The Network Model
Fig. 1 shows the assumptions we make. We assume that the
cellular interface has higher availability than WiFi and can
provide nearly ubiquitous coverage for mobile devices in a
wide area, but it has lower data transmission rate and con-
sumes more transmission energy than the WiFi interface [19].
In other words, we assume thatWiFi is much faster andmore
energy-efficient than the cellular interface for transmitting the
same quantity of data. To facilitate the analysis of the mobile
offloading systems, we assume that a cellular network is
available tomobile users all the timewhile the availability of a
WiFi network depends on the location. Mobile users move in
and out of a WiFi coverage area. These assumptions seem
realistic enough in many situations to constitute the basis of
thework presented in this paper.

We model the time variation of the WiFi connection state

by the ON-OFF alternating renewal process ðT ðiÞ
ON, T

ðiÞ
OFFÞ,

i � 1, as shown in Fig. 2. The ON periods represent the pres-
ence of the WiFi connectivity, while the OFF periods denote
the interruption of the WiFi connectivity. During the latter
periods data is either not transmitted (the interface is idle) or
it is transmitted only through the cellular network. The dura-

tion of each ON period T
ðiÞ
ON, is assumed to be an exponen-

tially distributed random variable and independent of the

duration of other ON or OFF periods [6]. Further, the WiFi

availability ratio (AR) can be defined asAR ¼ E½TON�
E½TON�þE½TOFF�.

3.2 The Delayed Offloading Models
According to the network availability model depicted in
Fig. 2, we define two types of delayed offloading models,
namely, the partial offloading model and the full offloading
model as follows. In delayed offloading, a deadline is asso-
ciated with each data transfer and the data transfer is
resumed whenever the device reaches the coverage of WiFi
until the transfer is completed [5] or the deadline expires,
whichever comes first. If the data transfer does not finish
until the deadline expires, the task will either be executed
locally (partial offloading model) or a cellular network will
complete the data transfer (full offloading model).

Fig. 1. Comparison of WiFi and cellular networks.

Fig. 2. The WiFi network availability model [25].
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� Partial Offloading Model: we employ a single queue
with two phases (fast: WiFi network and slow: cellu-
lar network) to offload jobs to the cloud server.
When there is a WiFi connection available, all the off-
loadable jobs are sent over the WiFi network; other-
wise, they are sent over the cellular interface as the
cellular network is always available. We set a reneg-
ing deadline in the cellular network, if the deadline
expires before the job switched over to some WiFi
AP, then it is executed locally on the mobile device
rather than remotely in the cloud. By doing this, we
have partial jobs offloaded to the cloud and the
remaining ones processed locally.

� Full Offloading Model: when there is a WiFi connec-
tion available, all the offloadable jobs are sent over
the WiFi network; otherwise, they can be delayed up
to a given deadline, or until WiFi becomes available
[20]. If the deadline expires before the job can be
transmitted over some WiFi AP, then it is offloaded
through the cellular network. In this way, we have
all the offloadable jobs offloaded to the cloud via the
cellular or WiFi network.

We consider a queueing system for delayed offloading.
The mobile device, the cloud and the wireless networks are
represented as queueing nodes to capture the resource con-
tention and delay on the system. The mobile device executes
an application with offloadable jobs that can be processed
either locally on the processor of the mobile device, or
remotely in a cloud infrastructure through offloading. The
mobile device, the cellular and WiFi connections are mod-
eled as M=M=1-FCFS queues, and the remote cloud is mod-
eled as an M=M=1 queue, i.e., as a delay center [26]. We
denote 1=mm and 1=mr the expected execution time of jobs
on the mobile device and the cloud, respectively. The
expected rates to transfer data to the cloud over the cellular
network and WiFi are mc and mw; respectively.

The delayed offloading models involve queueing with
reneging and service interruptions. In queueing, reneging
means that a job will leave the queue and join another queue
after the deadline expires. Service interruption literallymeans
unwilling discontinuity of service in the queue, and this mod-
els connection and disconnection periods of a mobile device
to WiFi networks in the system [27]. The essential difference
between our delayed computation offloading model and the
delayed data offloading in [5] is that not only data is transmit-
ted to the cloud but the task itself is executed remotely on the
cloud server. Usually, the offloaded data needs to be further
analyzed or simple processed before it can showup.

3.3 Metrics
In this section, we define the metrics which will be used to
evaluate and optimize the tradeoff between the job comple-
tion time and the energy usage.

3.3.1 ERWS

The Energy-Response time Weighted Sum (ERWS) metric is
a cost function defined as the weighted sum of the respec-
tive expected values

ERWS ¼ vE½E� þ ð1� vÞE½T �; (1)

where E is used for expectation of a random variable, E½T �
and E½E� are expected response time and expected energy
consumption, respectively, and v (ranging between 0 and 1)

is a weighting parameter that represents the relative signifi-
cance of energy consumption and response time for the
mobile device. To focus on performance, v should be less
than 0.5; to focus on energy consumption, v should be greater
than 0.5. When v is exactly 0.5, the focus is on both increasing
performance and reducing energy consumption. The expecta-
tionwill be determined by its estimate, themean value.

The ERWS metric has the advantage of being analytically
well tractable since the expectation is additive over time
and thus can be optimized via a Markov decision process
[28]. From the view of minimization, this metric allows com-
paring arbitrary offloading policies to the optimal offload-
ing policy. However, it has the disadvantage of being a
linear combination of two metrics on different scales.

3.3.2 ERP

The Energy-Response time Product (ERP) is widely
accepted as a suitable metric to capture the energy-
performance tradeoff and it is defined as

ERP ¼ E½E� � E½T �: (2)

Minimizing the ERP metric can be seen as maximizing the
‘performance-per-joule’, with performance being defined as
jobs per time unit [28].

While the ERWS metric implies that a reduction in mean
response time by one unit has the same value as the reduc-
tion of the mean energy usage by one unit. In contrast, the
ERP metric being a product, does not combine two linear
functions that live on totally different scales [28]. In other
words, the ERP metric does not suffer from comparison of
different scales. However, since ERP is the product of two
mean values, it is a difficult metric to treat analytically.

3.3.3 ERWP

To overcome the aforementioned disadvantages, we pro-
pose a new metric called Energy-Response time Weighted
Product, which combines the strengths of ERWS and ERP in
that it handles metrics on different scales well and is analyt-
ically tractable. The ERWP metric has been introduced in
[29], [30]. It is defined as

ERWP ¼ E½E�v � E½T �1�v: (3)

We can rewrite (3) as: ERWP ¼ ev�lnðE½E�Þþð1�wÞ�lnðE½T �Þ;
which inherits the characteristics of the ERWS metric
that assigns different importance weights to energy con-
sumption and response time, and has the advantage of
being analytically tractable since the logarithmic expecta-
tion is additive over time. Meanwhile, the mean energy con-

sumption and mean response time have equal importance

when v ¼ 0:5, also in (3): ERWP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½E� � E½T �p

, which
indicates that the ERWP metric has the advantages of the
ERP metric that is insensitive to difference of scales.

4 THE PARTIAL OFFLOADING MODEL

In this section, we analyze the partial offloading model with
service reneging, which means that jobs give up upon
expiry of the deadline. We first formulate the analytical
model based on our network availability model, then we
use queueing analysis to derive the ERWP metric.
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4.1 The Model
Fig. 3 depicts a delayed offloading model based on the net-
work availability model. We consider a modulated M=M=1
queue in a two-phase (fast and slow) Markovian random
environment, with impatient jobs, who may abort offload-
ing to be processed locally. The jobs are offloaded either via
a cellular connection or a WiFi network to the cloud. The
single-server queueing system that oscillates between two
feasible phases is denoted by fON and fOFF, meaning that
the WiFi connection can be operational or not. In the model
the persistence of the system at any phase is governed by a
random mechanism [31]: if the system operates in phase
fON, it switches to phase fOFF after random time of mean
duration 1=�; if the system operates in phase fOFF, it
switches to the other phase after random time of mean dura-
tion 1=h. We assume that offloading jobs arrive at the system
according to a Poisson process with rate �, and the modulat-
ing process f 2 ffON; fOFFg determines the service rates

mðfÞ ¼ mc; if f ¼ fOFF

mw; if f ¼ fON:

�
(4)

We assume that the mean job size is E½X�, the transmis-
sion speed of the fast phase (WiFi network) is sw with ser-
vice rate mw ¼ sw=E½X�, and its operating power is pw when
serving jobs and zero whenever idle. Similarly, the corre-
sponding speed for the slow phase (cellular network) is sc
with service rate mc ¼ sc=E½X� ðmc � mwÞ, and operating
power pc. When in the slow phase, jobs may become impa-
tient. A reneging deadline Td, is associated with each job in
this phase. That is, upon arrival each job activates an indi-
vidual timer which is exponentially distributed with a
reneging rate r. If the system does not change its environ-
ment from the slow phase to the fast phase before the dead-
line expires, the job will be removed from the Offload Queue
and is assumed to be executed locally on the mobile device
rather than being offloaded to the cloud [32].

Fig. 3 demonstrates that the delayed offloading model
consists of an Offload Queue (with two alternating phases of
cellular and WiFi), a Local Queue denoting the local process-
ing on the mobile device and a Remote Queue representing
the remote processing on the cloud.

The Offload Queue alternates its service by means of
mutual resets according to the availability of WiFi, which is
governed by an interrupted Poisson Process (IPP) with
exponentially distributed ON-OFF periods. We model the
intermittent availability of WiFi hotspots as a FCFS queue
with occasional server break-down [4], either in the ON-

state where the WiFi network is processing the existing jobs,
or in the OFF-state during which jobs are served by the
cellular network (cellular connectivity is assumed to be
always available). However, when the job stays in the cel-
lular network for too long, it abandons the Offload Queue
and is then processed locally on the mobile device. If the
job in the Offload Queue is completely transmitted before
the assigned deadline has expired, we say that the job is
successfully offloaded. If offloading fails, the job leaves
the Offload Queue and join the Local Queue on the mobile
device for immediate local processing. We call such an
event a reneging event [27].

Since there is no waiting time before entering service, the
M=M=1 queue of the cloud is occasionally referred to as a
delay (sometimes pure delay) station, the probability distri-
bution of the delay being that of the service time.

Especially, if we set the service rates mm and mr to 1, the
mobile computation offloading model in Fig. 3 reduces to
mobile data offloading, i.e., there is no further execution for
the arrival job. Therefore, the queueing model in Fig. 3
encompasses both mobile computation offloading and
mobile data offloading.

4.2 Queueing Analysis
Given the previously stated assumptions, the partial off-
loading model can be modeled with a 2D Markov chain, as
shown in Fig. 4.

The states with cellular network are denoted {c; i}, and
the states with WiFi connectivity are denoted {w; i}. The
parameter i corresponds to the number of jobs in the system
(queueing and in service). During the WiFi phase, the sys-
tem depletes at rate mw and during the cellular phase, the
system serves at rate mc þ i � r since any of the i queued jobs
can abandon the Offload Queue [20]. Writing the balance
equations for the cellular and WiFi phases gives

ð�þ hÞpc;0 ¼ ðmc þ rÞpc;1 þ �pw;0 (5a)

ð�þ hþ mc þ irÞpc;i ¼ �pc;i�1 þ
�
mc þ ðiþ 1Þr�pc;iþ1

þ�pw;i ði > 0Þ (5b)

ð�þ �Þpw;0 ¼ mwpw;1 þ hpc;0 (5c)

ð�þ � þ mwÞpw;i ¼ �pw;i�1 þ mwpw;iþ1 þ hpc;i ði > 0Þ (5d)

The steady-state probability of finding the offloading sys-
tem in some region with WiFi unavailable (with only cellu-

lar access) is pc ¼ E½TOFF�
E½TON�þE½TOFF� ¼

�
hþ�. Similarly, the steady-

state probability for the periods with WiFi available is

pw ¼ E½TON�
E½TON�þE½TOFF� ¼

h
hþ�, which equals to the availability

ratio AR.
The probability generating functions for both cellular

and WiFi states are defined as

Fig. 3. The partial offloading model.

Fig. 4. The Markov chain for the partial offloading model.
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GcðzÞ ¼
X1
i¼0

pc;iz
i and GwðzÞ ¼

X1
i¼0

pw;iz
i; jzj � 1: (6)

By multiplying each equation for i in ((5c) and (5d)) by
zn, respectively, summing over i and rearranging terms we
obtain [32]

GwðzÞbðzÞ ¼ hzGcðzÞ � mwð1� zÞpw;0;

where bðzÞ ¼ ð�z� mwÞð1� zÞ þ �z. The roots z1, z2 of the
quadratic polynomial bðzÞ ¼ ��ðz� z1Þðz� z2Þ are

z1;2 ¼
�þ mw þ � 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ mw þ �Þ2 � 4�mw

q
2�

:

4.2.1 The General Case

We consider the partial offloading model as depicted in
Fig. 3 when assuming the reneging rate r 6¼ 0. According to
[32], we obtain

pc;0 ¼ rS�k2ð1Þ
mcð� þ hÞðSV � TUÞ ; (7)

pw;0 ¼ � rTk2ð1Þ
mwð� þ hÞðSV � TUÞ ; (8)

where we define S ¼ R z1
0

k1ðxÞ
bðxÞ dx, T ¼ R z1

0
k1ðxÞ
x dx, U ¼R 1

z1

k2ðxÞ
bðxÞ dx and V ¼ R 1

z1

k2ðxÞ
x dx. Accordingly, k1ðzÞ and k2ðzÞ

are represented as follows:

k1ðzÞ ¼ e�
�z
r z

mc
r ðz1 � zÞhr

z1ðz2�1Þ
z2�z1 ðz2 � zÞ�h

r
z2ðz1�1Þ
z2�z1 ; z � z1;

k2ðzÞ ¼ e�
�z
r z

mc
r ðz� z1Þ

h
r
z1ðz2�1Þ
z2�z1 ðz2 � zÞ�h

r
z2ðz1�1Þ
z2�z1 ; z � z1:

By the definitions of k1ðzÞ, k2ðzÞ and bðzÞ, it follows that
T; U; V > 0 and S < 0. Therefore, pc;0 and pw;0 are positive.
One can show formally that the system is ergodic. Intui-
tively, we see that the system is always stable since, with
any set of parameters � � 0, mc � 0, mw > 0, � > 0, h > 0
and r > 0. The abandonment process, whose overall rate
increases with the number of jobs, prevents the explosion of
the queue length [32]. Alternatively, the system is stable if
and only if pc;0 and pw;0 are positive, which always holds for
the above set of parameters.

Let m be defined as: m ¼ pc � mc þ pw � mw. According to
[32], we obtain

E½Nc� ¼ �� mþ mcpc;0 þ mwpw;0

r
; (9)

E½Nw� ¼ hð�� mÞ þ rð�� mwÞpw þ hmcpc;0 þ mwðhþ rÞpw;0

�r
: (10)

As shown in Fig. 4, the expected number of jobs served
per unit of time in the slow phase and fast phase are
mcðpc � pc;0Þ and mwðpw � pw;0Þ, respectively [33]. Therefore,
the rate of abandonment due to impatience in the slow
phase, �aband, is given by

�aband ¼ �� mcðpc � pc;0Þ � mwðpw � pw;0Þ
¼ �� mþ mcpc;0 þ mwpw;0

¼ r � E½Nc�;
(11)

where the abandonment rate is proportional to the reneging
rate and the mean number of jobs in the cellular phase.

The rate at which jobs are executed locally on the mobile
device must be equal to the abandonment rate, i.e., �m ¼
�aband. The probability that an arbitrary job arriving at the Off-
loadQueuewill leave and join the Local Queue, i.e., it will be exe-
cuted locally andwill never be offloaded again, is defined as

Prfabandong ¼ �aband

�
¼ �� mþ mcpc;0 þ mwpw;0

�
; (12)

where Pr denotes the probability operation.
We recollect that the utilization of the service station is

represented by: r ¼ 1� ðpc;0 þ pw;0Þ.

4.2.2 An Extreme Case

The partial offloading model in Fig. 3 will reduce to the non-
delayed offloading model as depicted in Fig. 5 when r ! 0.
Since in this case the reneging rate is zero, there will be no
Local Queue in this model. When the network is available, all
jobs are offloaded immediately no matter what the network
quality is. Since also the channel with poor quality is used,
this offloading model may waste energy [5] and it is ana-
lyzed in comparison with the delayed offloading models.

After solving the equations of (5) when setting r ¼ 0, we
have [34]

gðzÞGcðzÞ ¼ pw;0�mwzþ pc;0mc

�
�zþ �zð1� zÞ � mwð1� zÞ�;

where gðzÞ ¼ �2z3 � �ðhþ � þ �þ mc þ mwÞz2 þ ðhmw þ �mcþ
mcmw þ �ðmc þ mwÞÞz� mcmw, and it is proven that gðzÞ has
only one root z0 in the interval ð0; 1Þ.

After some algebraic manipulations, we obtain

pc;0 ¼ �ðm� �Þz0
mcð1� z0Þðmw � �z0Þ ; (13)

pw;0 ¼ hðm� �Þz0
mwð1� z0Þðmc � �z0Þ : (14)

Once the values of pc;0 and pw;0 have been established,
the probability generating functions can be calculated as

GcðzÞ ¼ �ðm� �Þzþ pc;0mcð1� zÞð�z� mwÞ
gðzÞ ; (15)

GwðzÞ ¼ hðm� �Þzþ pw;0mwð1� zÞð�z� mwÞ
gðzÞ : (16)

By using E½Ni� ¼
P1

n¼0 npi;n ¼ dGiðzÞ=dzjz¼1, we get the
average number of jobs in the system [34]

E½N� ¼ E½Nc� þ E½Nw�

¼ �

m� �
þ mcðmw � �Þpc;0 þ mwðmc � �Þpw;0

ð� þ hÞðm� �Þ
� ðmc � �Þðmw � �Þ

ð� þ hÞðm� �Þ :

(17)

Fig. 5. The non-delayed offloading model.
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4.3 Metric-Based Analysis
The total cost, in terms of energy or response time for proc-
essing all jobs is composed of the remote cost (sending some
offloadable jobs to the cloud, idly waiting for the cloud to
complete them and sending the computation result back to
the mobile device), and the local cost (processing the remain-
ing jobs locally on the mobile device). Since the delay caused
by the transmission in the uplink usually dominates the
transmission cost we neglect the cost in the downlink here.

4.3.1 The Mean Response Time

By Little’s Law, E½N � ¼ �E½T �, the mean response time can
be calculated as

E½T � ¼ E
�
E½Ti�

�
¼

X
i2fc;w;m;rg

�i

�
E½Ti�

¼ 1

�

X
i2fc;w;m;rg

E½Ni�;
(18)

where i 2 fc; w;m; rg represents the cellular phase, the WiFi
phase, the mobile device and the remote cloud, respectively.
E½Nc� and E½Nw� are the average number of jobs in the cellu-
lar network and WiFi network as obtained in (9) and (10),
respectively.

Since the arrival rate to the Local Queue equals the aban-
donment rate of the Offload Queue for local processing we
have �m ¼ r � E½Nc�. For an ordinary M=M=1-FCFS queue,
the average number of jobs on the mobile device is given by

E½Nm� ¼ rm
1� rm

; (19)

where rm ¼ �m=mm is the utilization.
Since there is no waiting time before entering into remote

service in the cloud, for an M=M=1 queue, the average
number of jobs in the Remote Queue can be calculated as

E½Nr� ¼ �r

mr

; (20)

where �r ¼ �� �m is the arrival rate to the Remote Queue.

4.3.2 The Mean Energy Consumption

We assume that each server operates at a constant power pi,
(i 2 fc; w;mg) whenever it is busy, i.e., the mobile device
consumes energy only when there are jobs in the system.
Since E½P � ¼ �E½E� is the mean power consumption, we can
calculate the mean energy consumption for the partial off-
loading model can be calculated as follows:

E½E� ¼ E
�
E½Ei�

�
¼

X
i2fc;w;mg

�i

�
E½Ei�

¼ 1

�

X
i2fc;w;mg

E½Pi�:
(21)

The application jobs that are remotely executed om the cloud
server do not consume CPU energy on the local device.

For i 2 fc; w;mg, the corresponding average power con-
sumption can be calculated as

E½Pi� ¼ pi � PrfNi > 0g ¼ pi � ri: (22)

Since the utilization of the queue is the probability that the
server is busy, we have PrfNi > 0g ¼ ri, i.e., the energy
cost is only incurred during the fraction of the time the
server is busy.

The energy consumed due to local execution depends on
the processing speed of the mobile device. Since the service
on the mobile device is always available, we have

E½Pm� ¼ pm � PrfNm > 0g ¼ pm � rm: (23)

The mean energy consumption due to offloading via cellu-
lar or WiFi network depends on the transmission power
and speed. We have

E½Pc� ¼ pc � PrfNc > 0g ¼ pc � rc; (24)

E½Pw� ¼ pw � PrfNw > 0g ¼ pw � rw; (25)

where rc and rw are the utilizations of the cellular and WiFi
networks, which are equal to the probability that the corre-
sponding network is busy. According to Fig. 4, they can be
calculated separately as follows:

rc ¼ pc � pc;0; (26)

rw ¼ pw � pw;0: (27)

4.3.3 The ERWP Metric

The energy-response time-weighted-product combines
both, an energy metric and a performance metric in their
weighted product. Our objective is to minimise the mean
energy consumption and the mean response time. Further,
by substituting (18) and (21) into (3), we can formulate the
explicit expressions of the ERWP metric for the delayed off-
loading model

r� ¼ arg min
r

ERWP; (28)

we seek the reneging rate r� such that ERWP is minimised.
Remember, that reneging means that an impatient job gives
up an offloading attempt and switches to local computation.

5 THE FULL OFFLOADING MODEL

In this section, we discuss the full offloading model in which
all jobs are offloaded. If possible jobs are offloaded via the
WiFi connection, otherwise the cellular network is used.

5.1 The Model
As depicted in Fig. 6, the full offloadingmodel consists of two
coupled queues used for offloading from a mobile device,
calledWiFi Queue and Cellular Queue. Both queues are served
by a FIFO (first-in-first-out) discipline. All jobs arriving to the
system are by default sent to theWiFi interface for offloading.
When a job is offloaded to the cloud via the WiFi network,
there is queueing due to the not always sufficient transmis-
sion speed of the WiFi link. We model the intermittent avail-
ability of WiFi hotspots as a FCFS queue with occasional
server break-down. The server is either in the ON-state proc-
essing the existing jobs, or in the OFF-state during which no
job receives service. We assume that jobs will abandon the
queue during periodswithoutWiFi connectivity.

We assign a reneging deadline to each job. The deadline
is drawn from an exponential distribution. Jobs are served
in the FCFS order depending on their remaining time until
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expiry of the deadline (either while queued or while at the
head of the queue, but waiting for the WiFi interface). When
the server of the WiFi queue is in the OFF-state, jobs may
become impatient. That is, each job, upon arrival, activates
an individual timer, exponentially distributed with a reneg-
ing rate r. If the network does not change its environment
from the OFF-state to the ON-state before the deadline
expires, the job abandons the WiFi Queue to be offloaded via
a cellular network [20] instead. If the job in the WiFi Queue
is completely transmitted through the WiFi network before
the assigned deadline has expired, we say that the job has
been successfully offloaded. If offloading fails, the job leaves
the WiFi Queue and joins the Cellular Queue in the mobile
device for immediate transmission through the cellular net-
work. We call such an event a reneging event.

When the job is offloaded to the cloud via a cellular net-
work, there is queueing due to the not always sufficient
transmission speed of the cellular link. Costs in terms of
transmission delays (queueing and actual transmission
time) and transmission energy consumption incur. Some
degree of service is always available since the cellular con-
nection always exists.

The Remote Queue is a pure delay station at which jobs
spend an exponentially distributed amount of time with
mean equal to 1=mr time units.

5.2 Queueing Analysis
The WiFi Queue refers to offloading jobs from the mobile
device to the cloud via a WLAN network, which is modeled
as an M=M=1-FCFS queue with intermittently available ser-
vice. When a failed server recovers, it continues to serve the
jobwhose service has been interrupted, i.e., the work already
completed is not lost (cf. data transfers with resume) [4]. We
make the common and not too unrealistic assumption that
the service fails from time to time and resumes its operation
after a random interval. TheMarkov chain for theWiFi Queue
is depicted in Fig. 7, which is equivalent to assuming that
mc ¼ 0, pON ¼ pw and pOFF ¼ pc in Fig. 4.

The states with WiFi connectivity are denoted {ON; i},
and the states without WiFi connectivity are denoted
{OFF; i}. During the ON-state, the system serves at rate mw

and during the OFF-state, it serves at rate i � r since any of
the i queued jobs can abandon the WiFi Queue [20]. Writing
the balance equations for this chain gives

ð�þ hÞpOFF;0 ¼ �pON;0 þ rpOFF;1

ð�þ hþ irÞpOFF;i ¼ �p1;i�1 þ ðiþ 1ÞrpOFF;iþ1 þ �pON;i

ð�þ �ÞpON;0 ¼ hpOFF;0 þ mwpOFF;1

ð�þ � þ mwÞpON;i ¼ �pON;i�1 þ mwpON;iþ1 þ hpOFF;i

After substituting mc ¼ 0 into k1ðzÞ and k2ðzÞ, yields

k1ðzÞ ¼ e�
�z
r ðz1 � zÞhr

z1ðz2�1Þ
z2�z1 ðz2 � zÞ�h

r
z2ðz1�1Þ
z2�z1 ; z � z1;

k2ðzÞ ¼ e�
�z
r ðz� z1Þ

h
r
z1ðz2�1Þ
z2�z1 ðz2 � zÞ�h

r
z2ðz1�1Þ
z2�z1 ; z � z1:

According to [25], we obtain

pOFF;0 ¼ � S�k2ð1Þ
ð� þ hÞUk1ð0Þ ; (29)

pON;0 ¼ rk2ð1Þ
mwð� þ hÞU : (30)

We further have m ¼ pc � mc þ pw � mw ¼ pONmw. After
substituting the above expressions in (9) and (10), we derive
the mean number of jobs inWiFi Queue as

E½NOFF� ¼ �� mwðpON � pON;0Þ
r

; (31)

E½NON� ¼ h�� mwðhþ rÞðpON � pON;0Þ þ �rpON

�r
: (32)

Therefore, the average number of jobs in the WiFi Queue can
be calculated as

E½Nw� ¼ E½NOFF� þ E½NON�: (33)

In Fig. 7 the expected number of jobs served per unit of
time in the WiFi Queue is mwðpON � pON;0Þ. Therefore, the
rate of abandonment due to impatience in the OFF periods,
�aband, is given by

�aband ¼ �� mwðpON � pON;0Þ ¼ r � E½NOFF�; (34)

where the abandonment rate is proportional to the reneging
rate and the mean number of jobs in the queue during the
OFF-state.

The rate of jobs sent to the cellular network�c must be equal
to the abandonment rate, i.e., �c ¼ �aband. The probability that
an arbitrary job arriving to theWiFi Queuewill abandon it, i.e.,
it will be offloaded over aCellular Queue, is defined as

Prfrenegeg ¼ �aband

�
¼ �� mwðpON � pON;0Þ

�
: (35)

5.3 Metric-Based Analysis
In this section we will derive expressions in the full offload-
ing model for our metrics of interest, the mean response
time, the mean energy consumption and the tradeoff
metric based on the former two, the energy-response time-
weighted product.

5.3.1 Mean Response Time

By Little’s Law, E½N� ¼ �E½T �, the mean response time can
be calculated as

Fig. 6. The full offloading model.

Fig. 7. The 2D Markov chain for the WiFi queue.
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E½T � ¼ E
�
E½Ti�

� ¼ X
i2fc;w;rg

�i

�
E½Ti�

¼ 1

�

X
i2fc;w;rg

E½Ni�;
(36)

where E½Nw� is the average number of jobs in theWiFi Queue
as obtained in (33).

The Cellular Queue refers to offloading jobs from the
mobile device to the cloud via a cellular network, which is
modeled as anM=M=1-FCFS queue. Since the arrival rate to
the Cellular Queue equals to the abandonment rate of the
WiFi Queue, i.e., �c ¼ r � E½NOFF�. The average number of
jobs in this queue is given by

E½Nc� ¼ rc
1� rc

; (37)

where rc ¼ �c=mc is the probability that the Cellular Queue
is busy.

Since all the jobs are offloaded to the remote server in the
cloud, for an M=M=1 queue the average number of jobs on
the cloud server can be calculated as

E½Nr� ¼ �

mr

: (38)

5.3.2 Mean Energy Consumption

The mean energy consumption can be calculated as

E½E� ¼ E
�
E½Eiji�

� ¼ X
i2fw;cg

1

�
E½Pi�

¼ 1

�

X
i2fw;cg

pi � PrfNi > 0g

¼ 1

�

X
i2fw;cg

pi � ri;

(39)

where rw is the fraction of time that WiFi is available to pro-
cess jobs, and it can be calculated as

rw ¼ pON � pON;0; (40)

as the recovery rate h ! 1, the availability of WiFi
pON ¼ AR ¼ h

�þh
tends to be 1.

5.3.3 ERWP Metric

In our analysis we wish to optimize the ERWP metric. By
substituting (36) and (39) into (3), we can formulate the opti-
mization of the ERWP metric for the offloading assignment
as: r� ¼ arg min

r
ERWP .

6 PERFORMANCE EVALUATION

In this section, we compare the analytical results by using the
proposed delayed offloading models according to a realistic
offloading scenario. In order to obtain realistic results we esti-
mate model parameters from experiments. The offloading
process includes a communicationmodel and a remote execu-
tionmodel.Wewill conduct some experiments in order to use
realistic communication parameters in ourmodels.

6.1 Mobile Network Traces
The data transmission rate in real wireless networks is
mostly not constant over time. It is affected by the changing
signal quality and the presence of other users. We collect
real network traces in mobile environments by using net-
work and energy profilers. Those traces are then fed into
the offloading model.

6.1.1 Network Profiler

A network profiler collects information about wireless con-
nection status and available bandwidth. It measures the net-
work characteristics at initialization, and continuously
monitors environmental changes. Network throughput can
be obtained by measuring the time duration when sending
a certain amount of data as in [15]. Due to the mobile nature,
the status of a wireless connection could change frequently
(e.g., the user moves to other location). Fresh information
about a wireless connection is critical for the optimizer to
make correct offloading decisions.

The profiler tracks several parameters for the WiFi and
3G interfaces, including the number of packets transmitted
and received per second, and the receiving and transmitting
data rate [35]. These measurements enable a better estimate
of the currently achieved network performance.

We use Speedtest1 to measure the mobile network band-
width. Actual devices (see Table 1) are applied in a mobile
cloud environment with various mobile communication
networks. Here, we measure wireless bandwidth statistics
under the representative scenarios as shown in Table 2. Spe-
cifically, during one week in May 2015 we stayed inside
some buildings or randomly walked around our campus,
carrying two smartphones (Xiaomi Redmi 2 and Samsung

TABLE 1
Mobile Device Specifications

Device CPU Memory Communication Method Technology

WiFi IEEE 802.11g
Xiaomi Redmi 2 Quad-core 2.1 GHz Cortex-A57 1 GB RAM 3G HSPAP/HSUPA

4G LTE

WiFi IEEE 802.11g
Samsung Galaxy S6 Quad-core 1.2 GHz Snapdragon 410 3 GB RAM 3G HSPAP/HSUPA

4G LTE

TABLE 2
Network Trace Data Sampling

Scene Place Mobility

Office, Library, Classroom, Kitchen,
Indoor (Static) Washing Room, Meeting Room, Low

Student Cafeteria, Laboratory
Outdoor
(Dynamic)

Walk around the campus Medium 1. A free connection analysis tool, which shows real-time download
and upload graphs, stores results both locally and on the Internet for
sharing, http://www.speedtest.net/
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Galaxy S6) equipped with WiFi and cellular interfaces. Dur-
ing this period the data has been sampled.

The measured mobile network traces are depicted in
Figs. 8 and 9. We find that the bandwidth of both WiFi and
cellular networks (3G and LTE) vary considerably over time
and are highly unpredictable. Indoor WiFi, which has a
good coverage, is stable and fast. But even in the same sce-
nario, different mobile devices may record different levels
of transmission speed. For example, the Samsung S6 has
much higher bandwidth than the Xiaomi Redmi 2 in the
indoor environment. This is because the two devices contain
different hardware and software. The mobility of users has
a significant impact on the network connection bandwidth
quality. Outdoor WiFi wireless networks experience vary-
ing signal strength and suffer from frequent intermittent
connectivities which make them unavailable from time to
time. On the contrary, cellular networks are much more sta-
ble and also provide near-ubiquitous connectivity. Further,
cellular connections can suffer from high latencies or
round-trip time (RTT) and slow data transfers when

compared with WiFi. We notice in general that the band-
width of the downlink is higher at most times in most set-
tings, sometimes by a considerable margin.

6.1.2 Energy Profiler

There are two ways to estimate the energy consumption,
namely, software and hardware monitors. Some works [11],
[36] used a powermeter attached to the smartphone’s battery
to build an energy profile. Power Monitor (e.g., Monsoon
monitor) is a device that measures energy consumption
when data is transmitted from themobile device to the cloud
server by supplying a certain level of power to the mobile
device. We use PowerTutor2 to measure the power con-
sumption of the applications. Although PowerTutor does
not give as accurate results as a hardware power monitor,

Fig. 8. The downlink and uplink bandwidth of WiFi in indoor and outdoor (walk) environments.

Fig. 9. The downlink and uplink bandwidth of cellular networks in mobile (walk) environments.

2. PowerTutor is an application for Android phones that provides
accurate, real-time power consumption estimates for power-intensive
hardware components, http://ziyang.eecs.umich.edu/projects/
powertutor/
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the results are still reasonable and provide some insight.
PowerTutor provides detailed energy consumption informa-
tion for each hardware component.

In Fig. 10 both energy consumption and transmission
time increase in proportion to the transferred file sizes.
When the same volume of data was transmitted, WiFi has
relatively lower energy consumption than 3G. Moreover,
the device’s energy consumption via each communication
network is proportional to its data transmission time.

6.2 Numerical Analysis
In this section, we will first derive the needed parameters
from our experimental measurement results, and then we
will analyze the models using those parameters.

Different wireless network interfaces vary in many ways,
which we have to capture in simplified form in just a few
parameters. According to the mobile data traces collected
above, we consider here a simple scenario where the trans-
mission rate of the cellular network is lower than that of
WiFi, i.e., sc < sw and the power consumption when trans-
mitting jobs via the cellular link is higher than when using
the WiFi link, i.e., pc > pw. Using measurements from real
traces in [5], the average data rates of the cellular and WiFi
networks are set to sc ¼ 200 Kbps and sw ¼ 2 Mbps, respec-
tively. The average duration of WiFi availability period is
52 min (� ¼ 1=52 min�1), while the average period duration
with only cellular network coverage is 25.4 min
(h ¼ 1=25:4 min�1). The availability ratio is thus 67 percent.

The mean job size is assumed to be 10 MB. According to the
power models developed in [37], we set the power coeffi-
cients to pc ¼ 2:5 W, pw ¼ 0:7W and pm ¼ 2W, respectively.
In addition, suppose that the total job arrival rate is � ¼ 0:5
packet/min, the mobile service rate is mm ¼ 0:2 and the
cloud service rate is mr ¼ 1.

We first analyze the probability of reneging for the two
delayed offloading models. An availability ratio of
11 percent has been reported in [38]. Fig. 11 shows that as the
availability ratio (AR) of the WiFi network increases, the
fraction of jobs that abandon theOffload Queue (for the partial
offloading model, refer to Fig. 11a) or theWiFi Queue (for the
full offloading model, refer to Fig. 11b) declines rapidly.
However, the full offloading model has much higher reneg-
ing (offload abandonment) probability than the partial off-
loading model under the same deadline Td. This can be
explained by the fact that the partial offloading model can
use the cellular network to transmit data and thus the num-
ber of jobs waiting in the Offload Queue is reduced. On the
other hand, as the reneging deadline increases from 1 to 2 h,
jobs have a higher chance to be offloaded via the WiFi net-
work, and therefore the reneging probability decreases for
lower arrival rates. However, at high arrival rates, the reneg-
ing probability stays the same irrespective of the deadline.

The mean response time includes the queueing as well as
the service time. From Fig. 12a, it can be seen that the partial
offloading model has the lowest average response time since
it makes full use of the slow phase of the cellular network
while WiFi is unavailable. For the lower deadlines (Td < 40
min), the mean response time decreases as the deadline
increases since jobs with higher deadlines have a better
chance to transmit over the fast WiFi network, leading to
shorter response time. However, the mean response time
increases for higher deadlines, since jobs with lower dead-
lines leave the queue earlier, leading to smaller queueing
delays. FromFig. 12b,we can observe thatwhen the reneging
deadline is small, the non-delayed offloading model
achieves the lowest mean energy consumption among the
three models, but as the deadline increases, the full offload-
ing model is much better. This is due to the fact that theWiFi
network is much faster and more energy-efficient than the
cellular network. The reduced service time can lead to lower
energy consumption on themobile device.

Please note that the inverse reneging rate corresponds to
the mean deadline. Therefore the minimum in Fig. 12a for a

Fig. 10. The energy cost and transmission time with Xiaomi Redmi 2.

Fig. 11. The reneging probabilities for the delayed offloading models.
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deadline of 
 40 corresponds to the minimum ERWP in
Fig. 13a at a reneging rate of 0.025.

Different applications usually assign different impor-
tance to the relative energy usage and performance. We use
the ERWP metric to compare the three offloading models
according to their energy-performance tradeoff. It can be
observed from Fig. 13a that when v is small, the partial off-
loading model can achieve the smallest ERWP value by
optimally choosing the reneging rate r. This indicates that
when considering response time more important (for delay-
sensitive applications), it is better to use the partial offload-
ing model. Otherwise, when considering energy consump-
tion more important than response time (for delay-tolerance
applications), the full offloading model should be preferred.
The latter translates the reduced transmission time from the
fast WiFi network into lower usage of battery power for the
mobile device. As shown in Fig. 13b, when the weighting
parameter v is small, as the arrival rate of the offloadable
jobs � increases, all the three offloading models perform
worse. However, the non-delayed offloading model is more
sensitive to the job arrival rates. The partial offloading
model can always achieve the lowest ERWP value. This
means that when considering response time more
important, it is better to use the partial offloading model.
Otherwise, when considering energy consumption more
important than response time, the full offloading model

should be preferred at low job arrival rate �. While at higher
arrival rate, the non-delayed offloading model performs
better according to the ERWP metric.

We then fix the reneging deadline to 2 h and compare the
mean response time and energy consumption under differ-
ent values of the job arrival rate �. As shown in Fig. 14a, the
mean response time increases with the increase of � due to
the queueing effects. The partial offloading model performs
much better than the other two models since it fully uses
the unavailability periods of WiFi by offloading jobs over a
cellular network. This in turn leads to high energy con-
sumption as shown in Fig. 14b. The full offloading model is
much more energy-efficient than the non-delayed offload-
ing model at low arrival rate �, while at high �, the non-
delayed offloading model can save much more energy. This
can be drawn from Fig. 11b) since as � increases, more jobs
are abandoned from theWiFi Queue. Those jobs are then off-
loaded via the costly cellular network, which result in
higher energy consumption.

6.3 Offloading Experiments

To confirm the insights we gained from analyzing the mod-
els we have run experiments using different deadlines and
different connectivity scenarios. For the experiments we
chose a real-world setup which consisted of a predefined
route during which we followed a predefined sequence of

Fig. 12. Mean response time and energy consumption of the offloading models under different deadlines.

Fig. 13. Comparison of ERWP for the offloading models under different reneging rates and arrival rates.
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file uploads with specified file sizes. We conducted these
experiments on a Google Nexus 5 device and had multiple
runs where each run used a different deadline. The objec-
tive was to measure the upload performance and energy
usage for different file sizes under changing circumstances
regarding WiFi coverage using varying deadlines.

The walking route can be seen in Fig. 15, the route is
marked with different colors showing WiFi availability,
where green sections indicate that WiFi was available and
red sections show that no WiFi was available. The positions
at which the next file upload was issued are shown using
numbers. The corresponding scheduled files are as follows:
50 MB, 1 MB, 10 MB, 1 MB, 10 MB, 50 MB. The length of the
route was 5 km and with an average walking speed of
5.5 km/h, it had a duration of 55 min. We used several test
runs with different delays: no delay, 30 sec, and 30 min.

Fig. 16 shows the capacity discharge over time for different
executions. This is the major performance evaluation metric,
as the main goal of delayed offloading is to reduce the energy
consumption. The x-axis shows the time in seconds relative
to the start of the test. The normalized capacity discharge is
shown on the y-axis in percent. On top of the diagram, the
uploaded files are shownwith their corresponding file size as
well as the WiFi availability (blue=available; red=unavail-
able). This is a rather undisturbed test run that shows a
decreasing energy consumption for increasing deadlines
very well. Taking the case of the 30 sec deadline as an exam-
ple, there is an obvious drop in battery capacity after 30 sec

for the first upload of the 10 MB file, which clearly shows the
high energy consumption of the 3G interface.

7 CONCLUSIONS

In this paper, we have developed analytical queueing
models for delayed mobile cloud offloading to leverage the
complementary strength of WiFi and cellular networks by
choosing heterogeneous wireless interfaces for offloading.
We have carried out optimality analysis of the energy-
performance tradeoff for mobile cloud offloading systems
based on the ERWP metric. This metric captures both,
energy and performance characteristics. Our analysis even
included intermittently available access links.

We find that when the availability ratio (AR) of the WiFi
network is relatively low, the percentage of jobs that abandon
the queue is very high. We can optimally choose the reneging
deadline to achieve different energy-performance tradeoffs
by optimizing the ERWP metric. For delay-sensitive applica-
tions, the partial offloading model is preferred when setting
an intermediate deadline, while for delay-tolerant applica-
tions, the full offloading model shows very good results and
outperforms the other offloading models when using a large
deadline. In general one can say that the partial offloading
policy is faster, while the full policy uses less energy.

When optimising the energy consumption the full off-
loading model will always be best, even if the deadline must
be extremely long. Only if job response time is of high impor-
tance reasonable results for the tradeoff, captured in the
ERWP metric, can be obtained. Then an optimal deadline to

Fig. 15. The walking route around FUB campus (red line: WiFi unavail-
able, green line: WiFi available). Fig. 16. Capacity discharge over time for different executions.

Fig. 14. Mean response time and energy consumption of the offloading models under different arrival rates.
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abort offloading in the partial offloading model or the WiFi
transmission in the full offloading model can be found. For
reduction of the energy consumption it will always be better
to wait longer rather than compute locally or use the cellular
network. The proposed queueing models can be used to
describe complex and realistic offloading systems.
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