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Abstract—With the increasingly humanized and intelli-
gent operation of Industrial Internet of Things (IIoT) sys-
tems in Industry 5.0, delay-sensitive and compute-intensive
(DSCI) devices have proliferated, and their demand for low
latency and low power consumption has become more and
more eager. In order to extend the battery life and improve
the quality of user experience, we can offload DSCI-type
workloads to mobile edge computing (MEC) servers for
processing. However, offloading massive amounts of tasks
will incur higher energy consumption, which is a severe
test for the limited battery capacity of devices. In addition,
the delay caused by frequent communication between IIoT
devices and MEC cannot be ignored. In this article, we first
formulate the stochastic computation offloading problem
to minimize long-term energy consumption. Then, we con-
struct a virtual queue using perturbed Lyapunov optimiza-
tion techniques to transform the problem of guaranteeing
task deadlines into a stable control problem for the virtual
queue. Based on this, a novel delay-aware energy-efficient
(DAEE) online offloading algorithm is proposed, which can
adaptively offload more tasks when the network quality is
good. Meanwhile, it delays transmission in the case of poor
connectivity but ensures that the deadline is not violated.
Moreover, we theoretically demonstrated that DAEE can
enable the system to achieve an energy-delay tradeoff, and
analyzed the feasibility of constructing virtual queues to
assist the actual queue offloading tasks. Finally, simulation
results show that DAEE performs well in minimizing energy
consumption and maintaining low latency, especially for
DSCI-type tasks.

Index Terms—Delay-sensitive and compute-intensive
(DSCI)-type tasks, energy efficient, Industrial Internet of
Things (IIoT), mobile edge computing (MEC), workload of-
floading.
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I. INTRODUCTION

THE Industrial Internet of Things (IIoT) is an important
network for modern industrial enterprises to move toward

automation and digitization in Industry 5.0, which has brought
value-added services to many fields such as smart manufactur-
ing, smart grid, and intelligent digital supply chains [1]. Nowa-
days, we have realized seamless communication among people,
processes, and objects. The growth in global connection is
primarily driven by IIoT devices. The proliferation of connected
devices poses a challenge to IIoT networks that rely on frequent
communication. How to enhance the capability of IIoT networks
to achieve higher business requirements (e.g., high security and
low energy consumption) has become a hot topic. The emerging
fifth-generation (5G) wireless communication brings together
various enabling technologies and has become an important
driving force for the comprehensive deployment of the IoT [2].
With the increasingly humanized and intelligent operation of
IIoT systems, delay-sensitive and compute-intensive (DSCI)
innovative services [3], e.g., intelligent manufacturing, fault
diagnosis, intelligent logistics, smart supply chain, industrial
cognitive internet of vehicles (CIoV) [4], and Big Data analytics,
emerge as the times require. Every task link in IIoT is highly de-
pendent on various IIoT devices, especially to handle DSCI-type
tasks, which require more and more computing resources.

Unfortunately, many IIoT devices may only have limited
computing capacity or no computing capacity due to current
mobile hardware [5]. This will seriously affect the performance
of the device and the quality of user experience, especially
when DSCI-type tasks are executed on the devices. Due to
the limitations of inherent resources (e.g., network bandwidth
and computational ability), many complex applications cannot
be widely run on terminal devices. This problem has become
a bottleneck in improving the quality of service (QoS) [6].
Meanwhile, running DSCI-type tasks on the device is more
energy consuming, thereby accelerating the shortening of the
device’s battery life. Limited battery life increases the mainte-
nance cost of IIoT devices, and the cost of replacing batteries
is often higher than the cost of IIoT devices themselves. For
instance, in an industrial environment with only 10 000 sensors,
the battery needs to be replaced nearly 3 333 times each year [7].
Mobile edge computing (MEC), where data processing can be
implemented at edge nodes, can better support the real-time
intelligent execution of IIoT services [8]. MEC has become an
important computing paradigm in IIoT due to its high efficiency,
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high security, and low delay. Therefore, we can transfer the
workload to the edge for processing, helping the devices share
the heavy work [9] and prolong battery life.

In addition, these DSCI-type applications put forward harsh
requirements on the network environment. DSCI-type tasks
have more stringent latency requirements. On the one hand, the
status of the wireless channel directly affects the transmission
energy consumption of IIoT devices, i.e., transferring data in
a bad connection will consume more energy [10]. However,
greedily choosing a period with better network status to offload
workloads can reduce transmission energy consumption, but
such a diversion may cause the queue length of the workload in
the buffer to be very large, even exceeding the worst-case delay.
On the other hand, since the system cannot quickly respond
to some burst computing requirements, DSCI-type tasks may
experience long queuing delays in a heavy-loaded MEC environ-
ment, thus violating their delay requirements [11]. Meanwhile,
in the process of real-time wireless network communication, the
network quality and channel state are time-varying and random,
which can be severely affected by the device location, network
congestion, and so on [12], [13]. And the task arrival process
of the device is also difficult to obtain. Therefore, in dynamic
systems, it is crucial to design an effective task offloading
strategy to optimize energy consumption.

To this end, we exploit the Lyapunov optimization to address
the challenges of joint resource allocation and task offloading.
Lyapunov optimization refers to the use of Lyapunov functions
to optimally control dynamic systems [14]. In real-time IoT
systems, the state of the wireless channel, the location of the
user, and the task generation process are highly dynamic and
stochastic. Lyapunov optimization is a powerful tool for task
assignment and offloading because it does not require knowledge
of the probability distribution of the stochastic event process and
has a lower computational complexity [15]. Based on the task
offloading strategy optimized by Lyapunov, the usual method is
to construct the quadratic function of the task queue backlog
as the Lyapunov function and minimize the upper bound of
“Lyapunov drift + penalty function” so that the entire system is
in a stable state, while optimizing the system performance [16].
Mukherjee et al. [17] designed a hierarchical offload scheduling
strategy for tasks with different delay periods. This strategy
utilizes the “Lyapunov drift + penalty function” to schedule
tasks in the queue to ensure that a greater number of tasks are
maximally completed within the task deadline. Guo et al. [18]
proposed a Lyapunov-optimized delayed task allocation scheme,
which minimizes the system performance by optimizing the task
allocation between IoT-edge-cloud. consumption. eTime [19]
is an energy-efficient transmission strategy in a multidevice-
single-server IoT-Cloud system, suitable for prefetch-friendly
and delay-tolerant applications. The algorithm prefetches com-
monly used data by adaptively selecting the time period when
the network connection is good, and delays the transmission of
delay-tolerant data when the network quality is poor, achieving
an energy-saving effect of 20%–35%. Chen et al. [20] subtly
transformed the transmission energy consumption minimization
problem into a knapsack problem in a multidevice-single-server
IoT-Edge system, and proposed an energy efficient dynamic

offloading algorithm (EEDOA) based on Lyapunov optimiza-
tion. The algorithm adaptively offloads all tasks to the MEC
server by optimizing “Lyapunov drift + transmission energy
consumption” to achieve the energy-saving goal.

Recently, there are also many studies that combine Lyapunov
optimization and artificial intelligence to solve the task offload-
ing problem. Dai et al. [21] used a digital twin network to model
network topology and random task arrival in IIoT systems and
proposed an asynchronous actor-critic algorithm to minimize
the long-term energy efficiency. Zhuang et al. [22] proposed an
adaptive network routing method based on deep reinforcement
learning (DRL) to solve the problem of bursty data flow. The
DRL module can efficiently learn better estimates of long-term
Lyapunov drift and penalty functions.

However, most of the existing task allocation and offload-
ing strategies only consider one aspect of compute-intensive
or delay-sensitive (tolerant), and few studies consider both
compute-intensive and delay-sensitive aspects at the same time.
The energy-saving task offloading work based on Lyapunov
optimization often cannot effectively perceive the queue backlog
status, and it is also insufficient in utilizing real-time network
status, so it is not suitable for DSCI-type task offloading. Con-
sidering the mobility of the device and the limited computing
resources of the MEC are more realistic scenarios.

To cope with the aforementioned challenges, we take the
mobility of devices into consideration and design a workload
distribution algorithm for DSCI-type applications by using Lya-
punov optimization. The purpose of this article is to mini-
mize the long-term energy consumption of the system while
reducing the average traffic delay as much as possible. And
we propose a novel delay-aware energy-efficient (DAEE) task
offloading scheme. The main contributions are summarized as
follows.

1) The virtual queue is designed to sense the backlog of the
actual task queue and assist the actual queue to utilize
the better network to offload tasks to a greater extent.
We theoretically proved the feasibility of the cooperation
between virtual queues and actual queues.

2) We transform the problem of ensuring task deadlines into
a problem of queue stability control. DAEE can adaptively
make online offloading decisions and allow the system to
progressively tend to optimal energy consumption levels
while maintaining a low queue backlog for DSCI-type
workloads.

3) To simulate the MEC environment more vividly, we con-
sider the mobility of devices in the model, that is, each
device can move freely in a certain area.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview

The proposed model in an IIoT-Edge system with a base
station (BS) is depicted in Fig. 1, which consists of one edge
server and N devices, where N = {1, 2, . . . , N} represents
a collection of device indicators. The IIoT scenario here is
composed of devices that are highly dependent on the state of
the wireless network. Meanwhile, the MEC server is connected
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Fig. 1. IIoT-MEC scenario that is highly dependent on the state of the
wireless network (users can move freely, and the curve represents the
user’s movement trajectory).

to these devices via the cellular wireless network, serving N
devices.

We assume that the workloads are of DSCI-type and can
be arbitrarily divided, which should be transmitted through
the wireless network and processed on the MEC server. We
establish a time slot system with the slot length τ0, where
t ∈ T = {0, 1, . . . , T − 1} are discrete. In order to be more
consistent with the number of random events occurring per unit
time (or space) in the real scene, we use the Poisson distri-
bution with mean E{Ai(t)} = λi to simulate the generation
of IIoT workloads, and the corresponding random variable is
A(t) = (A1(t), . . . , AN (t)), where Ai(t) is the total amount of
workload that the ith IIoT device arrives at the buffer in the time
slot t. Normally,Ai(t) follows independent identical distribution
(i.i.d.) over time slots. The MEC server and terminal devices
are in a certain area where they can be tagged. The devices
can move freely within this area, and their movements do not
affect each other. We mark the position of device i in time slot
t as (xi(t), yi(t)), and its positions are independent identical
distribution in different time slots. That is, xi(t) ∼ U [0,X ],
yi(t) ∼ U [0,Y], i ∈ N , where X and Y are related to the
selection of region. In addition, we assume that the location of
the MEC server (x0(t), y0(t)) is fixed. Therefore, the distance
between the ith device and the MEC server on the tth time
slot is

di(t) = ‖ (xi(t), yi(t))− (x0(t), y0(t)) ‖2. (1)

And it is easy to see that di is time varying.

B. Channel Model and Workload Offloading Model

In a real-time wireless network system, the quality of wireless
networks and the channel state are random and unpredictable. If
we offload a large number of workloads to MEC servers through
wireless channels to relieve the pressure on devices themselves,
it is very meaningful how to effectively and rationally divert
the workload. Meanwhile, we should note that bandwidth re-
sources are often limited. Let K(t) represent the number of
available uplink subchannels, and simulate the randomness and
time variability of the network by changing the number of
available subchannels K(t) in different time slots. Besides, we
also assume that wireless channels are i.i.d. and flat block fading,
i.e., the channels remain unchanged within a time slot and vary
between different time slots [23]. We use time-division multiple

access (TDMA) technology to offload tasks in subchannels, that
is, the bandwidth of a multiuser time-sharing carrier. In each
time slot t, TDMA not only allows multiple devices to access
a subchannel at different times, but also allows a single device
to access different subchannels, too. To facilitate modeling, we
assume that an IIoT device can only access one subchannel at a
time [20].

Generally, the computing capacity of the IIoT device itself
is insufficient to support the normal operation of DSCI-type
tasks. At the same time, local computing may cause more
energy consumption than offloading. In our model, the generated
workload will be all offloaded to the MEC server for processing.
Our idea is to select a time period with better network conditions
to offload tasks to help the device. Since it takes more energy to
transfer tasks when the connection is poor, greedily choosing a
time when the network is in good condition to offload can result
in a very large queue length of workload in the device buffer.
Therefore, we need to find a suitable diversion method under the
limitation of network bandwidth resources.

Let the offloading duration of the ith device on the tth time
slot be li(t). Here, li(t) refers to the amount of time selected for
the offloading workload in a time slot, which satisfies as

0 ≤ li(t) ≤ τ0 (2)

that is to say, in a time slot t, the offloading duration li(t) cannot
exceed the unit time slot length τ0. Moreover, we make two
assumptions about the model.

1) Assuming that the size of the calculated output result is
very small, so we can ignore the delay of feedback [24].

2) Assuming that the MEC server has sufficient computing
resources, so the execution delay of the server can be
ignored in the model [25].

We further denote l(t) = {l1(t), l2(t), . . . , lN (t)} as an of-
floading action during the slot t. Depending on the way that
terminal devices access the wireless channels, the total offload-
ing duration must not exceed the available bandwidth, shown as
follows:

N∑
i=1

li(t) ≤ K(t) · τ0. (3)

According to the Shannon–Hartley formula, the offloading
rate of the ith device on the tth time slot can be written as

ri(t) = W log2

(
1 +

Pihi(t)

σ

)
(4)

wherePi is the transmission power of the ith device, and hi(t) is
the corresponding channel gain. The subchannels have the same
bandwidth, denoted as W . σ is the noise power at the MEC
server. According to the communication theory [26], the chan-
nel gain hi(t) = γi(t)g0(

d0
di(t)

)θ, where γi(t) is the small-scale
fading channel power gain andd0 is the relative distance between
devices and MEC server. di(t), as defined in (1), represents the
mobility of different devices. In addition, g0 is the path-loss
constant, and θ is the pass-loss exponent.

Note that Ai(t), K(t), and ri(t) are all changing with time.
Although these variables are almost not predictable, certain
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Fig. 2. Architecture of the proposed queueing-based offloading model.
Notice that the workloads in the light-colored areas indicate what will be
offloaded. Because the queue status of Q2(t) at this time is empty, there
is no task arrival process in the corresponding virtual queue.

methods can be applied to measure specific values in the current
time slot.

C. Queuing Model

1) Buffering Actual Queuing Model: The queue-based of-
floading model proposed in our article is shown in Fig. 2. We
divide a workload buffer for each device, and each buffer stores
two queues.

The workloads generated by IIoT devices enter the corre-
sponding buffer in a first-in-first-out queuing manner, forming
the actual queueQ(t) = (Q1(t), . . . , QN (t)), whereQi(t) is the
existing backlog of tasks for the ith device in the tth time slot.
By default, all the queues are empty at the initial moment, i.e.,
Qi(0) = 0. Define Bi(t) as the amount of offloaded workload
in bits, which can be obtained naturally by

Bi(t) = ri(t) · li(t). (5)

The queue backlog is updated by the following formula:

Qi(t+ 1) = max {Qi(t)−Bi(t), 0}+Ai(t). (6)

2) Delay-Aware Virtual Queuing Model: Corresponding to
each actual queue Q, we develop a virtual queue H as shown
in Fig. 2, which is called ε-persistent transmission queue and is
dynamically updated according to

Hi(t+ 1) = max
{
Hi(t)−Bi(t) + εi1{Qi(t)>0}, 0

}
(7)

where 0 < εi < E{Ai(t)} = λi is a prespecified constant.
1{Qi(t)>0} represents a characteristic function, which only takes
the value of 1 when Qi(t) > 0. Hi(t) is constructed using
Lyapunov optimization technology. It cooperates with the actual
queue Qi(t) to achieve the purpose of assisting the workload
offloading.

From the perspective of the workloads updated methods of
the virtual queues in (7), when the actual queue backlogs are
not empty, we can draw the following conclusions. First, the
offloading amount of the two queues Bi(t) is equal. Second,
the virtual queue has a stable task arrival rate εi, which is
different from Ai(t) and will not change over the time slot. By
constructing the virtual queue in this way, such virtual queues
are said to be delay aware. The delay-aware virtual queuing
model can also ensure a bounded worst-case delay for each

application [27]. We can further control the worst-case delay
by controlling the length of the two queues to meet the task
delay. Details are described in Section III-D.

Due to the fact that the offloading duration li(t) in each time
slot must not exceed τ0, and li(t) should be tightened to the
offloading threshold Ti(t)

li(t) ≤ Ti(t) = min

{
τ0,

Qi(t)

ri(t)
,
Hi(t)

ri(t)

}
. (8)

In other words, the offloading duration in each time slot must
not exceed the offloading threshold Ti(t).

D. Energy Consumption Model

Generally, IIoT devices do not have enough computing capac-
ity on their own to support the normal operation of DSCI-type
tasks. In many cases, the local computation may consume more
energy than offloading. As mentioned earlier, in our model, the
generated workload will be fully offloaded to the MEC server for
processing. So, we do not need to calculate the local execution
energy consumption.

Assuming that the MEC server (multicore CPU with ex-
tremely high speed) has sufficient computing resources, the
execution delay of the server is ignored [25]. So, the total energy
consumption of the system mainly comes from offloading the
workload, that is, the energy consumption of transmission. We
represent the system energy consumption caused by offloading
workloads on the tth time slot as E(t), which is jointly de-
termined by the current offloading action l(t) and the transmit
power of different devices, defined as follows:

E(t) =

N∑
i=1

Pi · li(t). (9)

We will show that our framework can adjust the relative
importance between the average traffic delay and the average
energy consumption.

E. Problem Formulation

It is worth noting that blindly choosing to transmit workloads
only during better periods of time on the wireless network can
reduce energy consumption to a certain extent, but it may cause
the queue backlog to become large and exceed the deadline of
tasks, resulting in huge delays and poor user experience.

However, the existence of deadlines forces the system to of-
fload workloads to reduce latency, but it also leads to an increase
in energy consumption. Therefore, the process of offloading
follows a tradeoff between energy and delay. To further under-
stand this tradeoff, while ensuring that workloads are completed
within the deadline, all actual and virtual queues should remain
stable for a long time, as shown follows:

Q̄ = lim sup
T→∞

1
T

T−1∑
t=0

N∑
i=1

E [Qi(t)] < ε (10)

H̄ = lim sup
T→∞

1
T

T−1∑
t=0

N∑
i=1

E [Hi(t)] < ε (11)
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where Q̄ and H̄ represent the actual and virtual queue lengths
in the sense of time average, respectively. The longer the length,
the longer the offloading time required, and the resulting delay
will increase.

The establishment of (10) and (11) implies that all the queue
backlogs in the buffer can be offloaded to the MEC server
within the required time. Our goal is to minimize the long-term
energy consumption within the deadline of workload, while also
reducing the delay caused by offloading as much as possible,
thereby, improving the quality of experience for users. Based on
the aforementioned requirements, we organize it into a stochastic
optimization problem P1 as

(P1) min : Ē = lim sup
T→∞

1
T

T−1∑
t=0

E[E(t)]

s.t. : (2), (3), (8), (10), and (11) (12)

where Ē represents the time-averaged energy consumption in the
long term. Equation (2) ensures that the offloading duration li(t)
cannot exceed the unit time slot length τ0. Equation (8) ensures
that the offloading duration in each time slot must not exceed
the offloading threshold Ti(t). Equation (3) is the bandwidth
constraint ensuring that the total offloading duration must not
exceed the available bandwidth. Equations (10) and (11) are
delay constraints for the time-averaged actual and virtual queue
lengths, respectively.

III. PERTURBED LYAPUNOV-BASED DAEE ALGORITHM

A. Problem Analysis With Perturbed Lyapunov
Optimization

By using the perturbed Lyapunov optimization, the problem
of ensuring the deadline of workloads is transformed into the
problem of the virtual queue stability control. In particular, we
define the vector Θ(t) = [Q(t), H(t)] that is composed of all
the queues of the system in time slot t to represent the current
backlog state. Similar to the Lyapunov function defined in [28],
we have

L(Θ(t)) =
1
2

N∑
i=1

{
Qi(t)

2 +Hi(t)
2
}

(13)

where L(Θ(t)) is a scalar, which represents the total conges-
tion of the two queues and is used to reflect the delay of the
workloads. The size of the scalar clearly reflects the state of
the queues. We can easily find that if there is a large backlog
in any queue, L(Θ(t)) may become very large. So, only when
the backlogs of all queues are small, can L(Θ(t)) get a smaller
value.

Next, we define Δ(Θ(t)) as the one-step conditional Lya-
punov drift, expressed as

Δ(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t)) | Θ(t)}. (14)

To minimize the long-term average energy consumption while
satisfying the delay requirement of each device, DAEE should
make optimal offloading action l(t) in each slot to minimize the

drift-plus-energy expression

Δ(Θ(t)) + V E{E(t) | Θ(t)} (15)

where V is a parameter that adjusts the relative importance
between energy and delay. In this way, DAEE can flexibly formu-
late an offloading action between delay and energy consumption
based on real-time scenarios.

Intending to solve such random optimization problems more
efficiently, first of all, we have to scale (15) and it is necessary
to introduce the following lemma.

Lemma 1: Let the real numbers a1, a2, and a3 be nonnegative,
a = max[a3 − a2, 0] + a1, thena2 ≤ a2

1 + a2
2 + a2

3 − 2a3(a2 −
a1).

The detailed proof is deferred to Appendix A. Recall the
definition of the Lyapunov function, applying Lemma 1, we have

[Qi(t+ 1)]2 ≤ [Qi(t)]
2 + [Bi(t)]

2 + [Ai(t)]
2

− 2Qi(t) (Bi(t)−Ai(t)) (16)

[Hi(t+ 1)]2 ≤ [Hi(t)]
2 + [Bi(t)]

2 + ε2
i

− 2Hi(t)
(
Bi(t)− εi1{Qi(t)>0}

)
. (17)

After substituting (16) and (17) into (13), we can obtain

L(Θ(t+ 1)) ≤ 1
2

N∑
i=1

{
2[Bi(t)]

2 + [Ai(t)]
2 + ε2

i + [Qi(t)]
2

+ [Hi(t)]
2 − 2Qi(t)(Bi(t)−Ai(t))

− 2Hi(t)
(
Bi(t)− εi1{Qi(t)>0}

)}
. (18)

According to (14), one-step conditional Lyapunov driftΔ(Θ(t))
for a general offloading action satisfies

Δ(Θ(t)) ≤ D −
N∑
i=1

Qi(t)E {Bi(t)−Ai(t) | Θ(t)}

−
N∑
i=1

Hi(t)E
{
Bi(t)− εi1{Qi(t)>0} | Θ(t)

}

(19)

where D = 1
2

∑N
i=1{2[Bmax

i ]2 + [Amax
i ]2 + ε2

i}, and Amax
i ≥

Ai(t) represents the maximum amount of workloads that an
IIoT device can generate in a time slot. Bmax

i ≥ Bi(t) indicates
the number of workloads offloaded in a time slot, where ∀i ∈ N .

Now, the scaled item of Lyapunov drift in (19) only contains
relevant variables of the current time slot, which meets the
conditions for online decision making. Therefore, the upper
bound of the drift-plus-energy expression in (15) can be given
by Lemma 2.

Lemma 2: Given that the vector Θ(t) = [Q(t), H(t)] is the
workload backlog status of queues, under any feasible offloading
action l(t), the drift-plus-energy item expressed in (15) can be
controlled by an upper bound

Δ(Θ(t)) + V E{E(t) | Θ(t)}

≤ D −
N∑
i=1

Qi(t)E {Bi(t)−Ai(t) | Θ(t)}
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−
N∑
i=1

Hi(t)E
{
Bi(t)− εi1{Qi(t)>0} | Θ(t)

}

+ V E{E(t) | Θ(t)} (20)

where D = 1
2

∑N
i=1{2[Bmax

i ]2 + [Amax
i ]2 + ε2

i}.
The detailed proof is deferred to Appendix B.

B. Design of the DAEE Algorithm

Our goal was originally to minimize drift-plus-energy in (15).
Because (15) contains the implicit maximum function in (6) and
(7). Without undermining the optimality, we minimize its upper
bound in (20), which is equivalent to indirectly minimizing itself.

Then, we devise an optimal offloading decision algorithm
called DAEE. In addition to energy saving, it can satisfy the
backlog of each queue at a lower level. Next, we have the
optimization problem P2 as

(P2) min : D −
N∑
i=1

Qi(t)E {Bi(t)−Ai(t)Θ(t)}

−
N∑
i=1

Hi(t)E
{
Bi(t)− εi1{Qi(t)>0}θ(t)

}

+ V E{E(t)Θ(t)}
s.t. : (2), (3), and (8). (21)

Here, the constraint in (10) and (11) have been incorporated into
the objective (21) through the Lyapunov optimization technique.
Specifically, by omitting the constant terms of P2, we can obtain

min : V E(t)−
N∑
i=1

Qi(t)Bi(t)−
N∑
i=1

Hi(t)Bi(t). (22)

By rearranging (22), we have the following online optimization
problem:

(P3) min :

N∑
i=1

[V Pi − (Qi(t) +Hi(t)) ri(t)] · li(t). (23)

The problem P3 is now converted into the linear relaxation of
a knapsack problem P4 as

(P4) max :

N∑
i=1

Ui(t) · li(t)

s.t. : (2), (3), and (8) (24)

where Ui(t) = (Qi(t) +Hi(t))ri(t)− V Pi. To put it vividly,
how to put some “object i” whose “value” is Ui(t) and “weight”
is li(t) into the “backpack” according to the rules so that the total
“value” of the backpack highest. And the maximum load bearing
of the backpack is K(t)τ0. The DAEE algorithm we designed
greedily chooses to put “high-value objects” into the “backpack”
until the objects overflow. Combining the aforementioned con-
tent, DAEE will execute offloading action in the following two
scenarios.

1) If the wireless network quality is good enough, DEAA
will offload as many workloads as possible to save energy.

2) If there are unstable queues in the buffer, the workloads
will be forced to offload in order not to violate the dead-
line.

We sort the “value” of the “objects” in descending order. The
offloading action stops when the “backpack” overflows, which
is the first termination condition given by

δ1 = arg min
t

i∑
j=1

Tj(t) > K(t) · τ0, (25)

where the “value” of Ui(t) should be nonnegative, so the second
termination condition δ2 can be identified, as follows:

δ2 = arg min
t

Ui(t) < 0. (26)

Therefore, the final termination condition δ can be tightened
to δ = min{δ1, δ2}. And the corresponding optimal offloading
duration on each time slot can be given by

l∗i =

⎧⎨
⎩

Ti(t), if i < δ

K(t)τ0 −
∑δ−1

i=1 Ti(t), if i = δ
0, if i > δ.

(27)

Specifically, the DAEE algorithmic process is described in
Algorithm 1 in detail.

C. Performance Bounds

In this subsection, we focus on the average energy consump-
tion and traffic delay. According to Little’s Law [29], the average
traffic delay experienced by the MEC server is proportional to the
average number of unexecuted workloads, which is the average
sum queue length of the backlog. Thus, the average traffic delay
can be calculated as follows:

Z̄ =

∑
i∈N lim supT→∞

1
T

∑T−1
t=0 E [Qi(t)]∑

i∈N λi
. (28)
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Lemma 3: If the original problem P has a solution, then there
must be an optimal π-only policy, which is independent of the
queue backlog, and makes the offloading action l(t) follow the
fixed probability distribution. For any task arrival rate λ that
is strictly within the network capacity region Λ. There exists a
randomized control stationary policy π that yields the following
steady-state values:

E {Eπ(t)} = Eopt(λ) (29)

E {Ai(t)} ≤ E {ri(t)lπi (t)} (30)

where Eopt(λ) represents the optimal energy consumption with
the task arrival rate λ.

The proof process of Lemma 3 here is similar to the method
used in [28], we omit the details for brevity. Then, by applying
Lemma 3, we further derive Theorem 1, which states that both
average energy consumption and traffic delay can be controlled
by corresponding bounds.

Theorem 1: Assuming that there exists a positive α that the
data arrival rate λ + α is strictly within the network capacity
region Λ. Then, under Algorithm 1, for the given V , the per-
formance bounds of the time average energy consumption and
traffic delay can be denoted as

Ē ≤ D

V
+ Eopt (31)

Z̄ ≤ D + V · Eopt

α
∑

i∈N λi
. (32)

The detailed proof is deferred to Appendix C.

D. Ensuring Bounded Worst-Case Delay

We can also theoretically get the worst-case delay of each
device, and the specific details are given by the following
theorem.

Theorem 2: Any algorithm that can maintain bounded Qi(t)
and Hi(t) can also ensure a bounded worst-case delay, that
is, Qi(t) ≤ Qmax

i and Hi(t) ≤ Hmax
i , t ∈ 0, 1, . . . , T − 1, the

worst-case delay of non-dropped data in queue i is bounded by
the constant Tmax

i defined as follows [27]:

Tmax
i =

⌈
Qmax

i +Hmax
i

εi

⌉
(33)

where �x� denotes the smallest integer that is greater than or
equal to x.

The detailed proof is deferred to Appendix D. Therefore, when
we strictly keep Qi(t) and Hi(t) within the appropriate upper
bounds Qmax

i and Hmax
i , respectively, we can further control

the deadline Tmax
i .

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DAEE from
multiple aspects, and compare it with other workload offloading
schemes from multiple perspectives.

Fig. 3. Average energy consumption and traffic delay.

A. Parameter Settings

The parameter settings for the simulation experiments mainly
come from [26] and [30]. We set the number of devicesN = 300
and the transmit power of each device Pi ∼ U [10, 200] mW.
A certain area of X = Y = 250 m that can be marked. Mean-
while, we assume the number of available subchannels K(t) ∼
U [10, 30]. We choose the Poisson Process to simulate the DSCI-
type workloads arrival with E{Ai(t)} = λi = λ for all i ∈ N ,
where λ is chosen from {3000, 4000, 5000, 6000, 7000, 8000}.
Besides, the small-scale fading channel power gains follow
an exponential distribution, with the unit mean, i.e., γi(t) ∼
Exp(1).W = 1 MHz and σ = 10−13 W. The pass-loss exponent
θ = 4 and the path-loss constant g0 = −40 dB. To get more gen-
eral experimental results and avoid the uncertainty of wireless
network and workload generation, we simulate the system state
of 3600 constant time slots with slot length τ0 = 1 s.

B. Simulation Results

1) Energy-Delay Tradeoff: As depicted in Fig. 3, given the
arrival rate λ = 5000 bit/s, as V arises from 1 to 12 × 1010,
the average energy consumption drops from 2.09 to 0.29 J, and
the average traffic delay grows from near 1.55 to 3.87 s. Note
that energy consumption decreases rapidly at the beginning,
and then, tends to descend slowly, while the traffic delay grows
linearly withV . The DAEE algorithm gradually converges to the
lowest energy consumption level as the V continues to increase.
This also quantitatively shows that there is a tradeoff relation-
ship [O(1/V ), O(V )] between average energy consumption and
traffic delay in (31) and (32).

2) Effect of the Number of IIoT Devices: Fig. 4 illustrates the
impact of the number of IIoT devices on energy consumption
and queue length, where the number of devices ranges from 200
to 400. It can be observed that there is a positive correlation
between the equipment quantity and energy consumption. The
relationship between the number of devices and the total queue
length is also the same. This is because the increase in the number
of IIoT devices causes more workloads to be generated. On the
one hand, offloading more workloads will lead to an increase
in energy consumption. On the other hand, due to the limited
bandwidth of the available channels, only part of the increased
workloads can be undertaken, and the remaining part will stay
in the buffer and the queue length will increase.
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Fig. 4. Impact of the number of IIoT devices on energy consumption
and queue length.

Fig. 5. Average queue backlog of Qi(t) and Hi(t) with V and ε,
respectively. (a) Queue backlog with V . (b) Queue backlog with ε.

3) Actual Queue Q(t) and Virtual Queue H(t): Constructed
ε-persistent transmission queue (virtual queue) grows only when
there are workloads in the buffer of the actual queue that have
not been offloaded for a long time. As shown in Fig. 5(a), with
the rise ofV , the time-averaged queue backlog of bothQi(t) and
Hi(t) increase. This is because the larger V is, the more impor-
tant energy consumption is emphasized, and the lower energy
consumption is achieved at the expense of a longer queue length.
Due to 0 ≤ εi ≤ E{Ai(t)} = λ, the average queue length of
Q(t) is longer than H(t).

In each Hi(t), εi plays a vital role in tuning the backlog of
Hi(t) during the virtual arrival process, thereby, affecting the
online offloading duration. We found that the value of εi signif-
icantly affects the stability of the queues, as shown in Fig. 5(b).
The larger value of εi is, the faster the average backlog of Hi(t)
rises. This leads to a substantial increase in the “value” Ui(t) of
the device i. A higher Ui(t) will strive for a longer offloading
duration, which in turn leads to more energy consumption. Thus,
the backlog of Qi(t) falls because of the energy-delay tradeoff.

4) Effect of the Workload Arrival Rate λ and Parameter V :
Fig. 6 presents the fluctuation of the actual queue backlog at
different λ and V . In Fig. 6(a), as λ becomes larger, the queue
length also increases. This is because as λ increases, so do the
workloads. Similarly, Fig. 6(b) illustrates the trend that the queue
length increases with the increase of V . This is because, with the
increase of V , DAEE will pay more attention to energy saving
and weaken the control of workload delay.

Obviously, under different λ and V , DAEE can make the
queue length converge quickly in a short time and remain stable.
We can also observe that the actual queue backlog fluctuates

Fig. 6. Effect of the workload arrival rate λ and control parameter V
in real-time actual queue backlog. (a) Queue backlog with λ. (b) Queue
backlog with V .

frequently, which is the result of DAEE’s repeated energy-delay
tradeoff on the time slots. When the DAEE algorithm detects that
the queue backlog is too large and the deadline may be violated,
it will adaptively offload tasks to reduce the queue backlog.
When the system’s queue backlog is small, the DAEE algorithm
will highlight the energy-saving advantage and greedily select a
better period to offload tasks, resulting in a gradual increase in
the queue backlog.

C. Comparison of Different Offloading Schemes

In this section, we will compare the existing algorithm, base-
line algorithms, and modified baseline algorithms to more fully
reflect the performance of DAEE.

1) Energy-efficient dynamic offloading algorithm (EEDOA):
This method is a workload distribution strategy based on
Lyapunov optimization [20].

2) Longest queue length first (LQLF): In this method, the
offloading duration is allocated according to its queue
length. Particularly, the queue length is longer, and the
corresponding IIoT device has a higher priority to be
served.

3) Longest queue length first with mobility (LQLF-mobility):
The mobility of IIoT devices is considered based on the
LQLF greedy algorithm.

4) Equal opportunity allocation (EOA): In this method, each
device is served by equal opportunity, that is, the available
subchannels are equally allocated to each device to the
greatest extent.

5) Equal opportunity allocation with mobility (EOA-
mobility): The mobility of IIoT devices is considered
based on the EOA baseline algorithm.

1) Queue Backlog and Energy Consumption: Fig. 7 shows
the queue backlog and energy consumption of different offload-
ing schemes in each time slot. It can be seen that under the
condition of the same arrival rate, the energy consumption of
DAEE is very small, and its performance is much better than
LQLF and EOA. When λ = 3000 bit/s, although the queue
length maintained by DAEE is higher than the EOA algorithm
that greedily offloads the workload of every device, it is ap-
proximately the same as the average queue length of LQLF.
Simultaneously, it can save about 87% of energy consumption.
When λ = 6000 bit/s, compared with EOA, our proposed DAEE
scheme with perturbed Lyapunov optimization can help to save

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on December 16,2022 at 11:38:54 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: LYAPUNOV-GUIDED DELAY-AWARE ENERGY EFFICIENT OFFLOADING IN IIOT-MEC SYSTEMS 2125

Fig. 7. Different offloading schemes of the queue backlog and energy
consumption. (a) λ = 3000 bit/s. (b) λ = 3000 bit/s. (c) λ = 6000 bit/s.
(d) λ = 6000 bit/s.

TABLE I
SYSTEM THROUGHPUT (GBIT)

around 75% of energy consumption, while sacrificing only a
small amount of latency.

In addition, it can be seen from Fig. 7(a) and (c) that by
traversing all time slots, DAEE and EEDOA can effectively
stabilize the queue backlog at a certain level. Since EOA always
chooses to greedily offload the workload of all devices, it can
also maintain a low level of queue length, while LQLF has a
poor ability to control queue stability. With the increase of λ, the
queue backlog of LQLF becomes unusually large and unstable.
And a large queue length indicates a longer delay. As expected,
applying Lyapunov optimization can effectively maintain the
stability of the queue backload in the buffer.

2) Throughput: It can be seen from Table I that the through-
put of the system and the workload arrival rate λ are in a
positive correlation. EOA enables the system to have higher and
more stable throughput, and the throughput of other algorithms
is roughly the same. This is because EOA does not consider
whether the channel conditions are good or bad, and offload tasks
within the capacity to the greatest extent. Meanwhile, when λ is
large, DAEE makes the system throughput slightly higher than
EEDOA and LQLF by cleverly using the role of virtual queues.

3) Average Queue Length and Average Energy Consump-
tion: In order to observe the performance of various algorithms
under different arrival rates, we select the average energy con-
sumption and the average queue length (when the arrival rate is
fixed, the trend of the average traffic delay and average queue

Fig. 8. Average energy consumption and average queue length of
different offloading schemes along with λ (bit/s). (a) Average energy
consumption. (b) Average queue length.

length is consistent) to reflect their ability to save energy and
control delay, as shown in Fig. 8. It can be observed that with the
increase of λ, the average energy consumption of all algorithms
except EOA and EOA-mobility increases. This is because the
increase in λ causes more workloads to be generated. Offloading
more workloads causes an increase in energy consumption.
However, EOA and EOA-mobility insist on offloading all work-
loads greedily, no matter whether the network connection is
good or bad, this is an ideal way to reduce latency, but it has
the highest energy consumption. In addition, it can be seen from
the figure that due to the increased mobility of the devices, the
offloading rate changes, making LQLF-mobility consume more
energy than LQLF. As bandwidth resources are limited, this gap
will gradually narrow. In contrast, our proposed DAEE has the
best energy-saving effect.

Fig. 8(b) shows that as λ increases, the average queue length
of all algorithms increases. When λ is small, LQLF and LQLF-
mobility maintain a low queue length, but they have a very large
queue backlog when the arrival rate is large, so they cannot
be applied to DSCI-type tasks well. Meanwhile, we found that
the average queue length of DAEE and EEDOA grew slowly,
which also proved the advantage of Lyapunov optimization in
system stability. Here, LQLF-mobility and EOA-mobility have
a larger turning point, because some devices may move to a
state with better network conditions, which can transmit more
workloads, and this gap is more obvious when the λ is larger. By
contrast, the effect of DAEE in controlling delay is close to EOA
and EOA-mobility, especially when λ is large. In conclusion,
the simulation results confirmed the effectiveness of DAEE
in saving energy and maintaining lower latency for IIoT-edge
systems, and it is more suitable for DSCI-type tasks.

V. CONCLUSION

In this article, we took the mobility of IIoT devices into
consideration and proposed an energy-saving workload offload-
ing algorithm, DAEE, with delay awareness. The DAEE used
perturbed Lyapunov optimization to construct virtual queues to
assist actual queues in optimizing workload distribution. And
it can adaptively offload tasks according to the current queue
backlog and channel conditions without any future informa-
tion as a priority. Relevant simulation experiments showed that
our framework can adjust the relative importance between the
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average traffic delay and the long-term energy consumption by
controlling the parameter V , which facilitated the quantification
of the performance of [O(1/V ), O(V )]. By comparing it with
other offloading schemes, we found that DAEE can effectively
reduce long-term energy consumption and maintain a lower
delay strongly. Accordingly, it can be well applied to DSCI-type
tasks.

In the future, we will consider IIoT-MEC systems with mul-
tiple edge servers with limited computing resources, and design
link selection for it at the same time. In other words, to reduce
the transmission delay and avoid deadline violations, offloading
will only be postponed when both WLAN and cellular networks
are in bad connectivity. In addition, extending the IIoT-MEC
system to the IIoT-edge-cloud system is also part of our future
work.

APPENDIX A
PROOF OF LEMMA 1

Proof: Due to a2 ≤ (a3 − a2)
2 + a2

1, we have a2 ≤ a2
3 +

a2
2 + a2

1 − 2a2a3.
Since a1 and a3 are nonnegative, we know that a1a3 ≥ 0. So,

we can get a2 ≤ a2
3 + a2

2 + a2
1 − 2a2a3 + 2a1a3. �

APPENDIX B
PROOF OF LEMMA 2

Proof: By scaling the one-step conditional Lyapunov drift
Δ(Θ(t)), we get (19).

Then, by adding the energy consumption weighting term
V E{E(t) | Θ(t)} to both sides of (19), the result of Lemma 2
can be obtained. �

APPENDIX C
PROOF OF THEOREM 1

Proof: According to Lemma 3, for the arrival rate λ + α,
corresponding to an offloading policy π′, which satisfies

E
{
Eπ′

(t)
}
= Eopt(λ + α) (34)

E {Ai(t) + α} ≤ E
{
ri(t)l

π′

i (t)
}
. (35)

Substituting (34) and (35) into (20), we obtain

Δ(Θ(t)) + V E{E(t) | Θ(t)} ≤ D + V E {Eπ′(t)}

−
N∑
i=1

Qi(t)E
{
ri(t)l

π′

i (t)−Ai(t) | Θ(t)
}

−
N∑
i=1

Hi(t)E
{
ri(t)l

π′

i (t)− εi1{Qi(t)>0} | Θ(t)
}
. (36)

Since εi ≤ E{Ai(t)} ≤ E{ri(t)lπ′i (t)} holds all the time, we
have

E
{
ri(t)l

π′

i (t)−Ai(t) | Θ(t)
}
≥ 0 (37)

E
{
ri(t)l

π′

i (t)− εi1{Qi(t)>0} | Θ(t)
}
≥ 0. (38)

Then, we can obtain

Δ(Θ(t)) + V E{E(t) | Θ(t)} ≤ D + V E {Eπ′(t)} . (39)

Summing (39) over all time slots, it holds

E{L(Θ(T ))− L(Θ(0))}+ V
T−1∑
t=0

E[E(t)]

≤ TD + TV E {Eπ′(t)} . (40)

Because the initial queue states are empty, we have
E{L(Θ(T ))} = 0 and {L(Θ(0))} ≥ 0. Thus,

1
T

T−1∑
t=0

E[E(t)] ≤ D

V
+ E {Eπ′(t)} (41)

let T → ∞ and α → 0, due to Lebesgues dominated conver-
gence theorem, we can obtain the (31).

Recall (35), it holds

E
{
Bπ′

i (t)
}
− E {Ai(t)} ≥ α. (42)

Thus, combined with (39), (36) can be scaled to

Δ(Θ(t)) + V E{E(t) | Θ(t)} ≤ D + V E {Eπ′(t)}

−
N∑
i=1

Qi(t)E
{
ri(t)l

π′

i (t)−Ai(t) | Θ(t)
}

≤ D + V E {Eπ′(t)} − α

N∑
i=1

Qi(t). (43)

Reorganizing the aforementioned formula, we can obtain

1
T

T−1∑
t=0

N∑
i=1

Qi(t) ≤
D + V E {Eπ′(t)}

α
. (44)

Let T → ∞ again, we can obtain

Q̄ ≤ D + V · Eopt

α
. (45)

Finally, by dividing
∑

i∈N λi at the same time, it further yields
(32). �

APPENDIX D
PROOF OF THEOREM 2

Proof: If the task is not completed within Tmax
i slots, then

Qi(τ) > 0 ∀τ ∈ {t+ 1, t+ 2, . . . , t+ Tmax
i }. It follows from

(6) and (7) that for all τ ∈ {t+ 1, t+ 2, . . . , t+ Tmax
i }, and we

have

Hi(τ + 1) = max {Hi(τ)−Bi(τ) + εi, 0}
≥ Hi(τ)−Bi(τ) + εi. (46)

Summing the aforementioned over τ ∈ {t+ 1, t+ 2, . . . , t+
Tmax
i }, we can obtain

Hi (τ + Tmax
i + 1)−Hi(τ + 1) ≥ εiT

max
i −

∑
τ=t+1

Bi(τ).

(47)
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Reorganizing the aforementioned formula, we can obtain

t+Tmax
i∑

τ=t+1

Bi(τ) ≥ εiT
max
i −Hmax

i (48)

according to the first-in-first-out data processing method, when
the last of the Ai(τ) data departs in the time slot t+ Tmax

i , it

holds
∑t+Tmax

i
τ=t+1 Bi(τ) ≥ Qi(τ + 1). According to our assump-

tion, it must have

t+Tmax
i∑

τ=t+1

Bi(τ) < Qi(τ + 1) ≤ Qmax
i . (49)

Combining (48) and (49) yields

εi · Tmax
i −Hmax

i < Qmax
i . (50)

Finally, we have

Tmax
i <

Qmax
i +Hmax

i

εi
. (51)

The result contradicts the definition ofTmax
i given in (33), where

H̄ ≤ Q̄ and Hi(τ) is bounded as well as Qi(τ). �
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