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Abstract— Fraud in e-commerce fields (e.g., Amazon, Taobao,
and so on) and social networks (e.g., Twitter and Weibo) has
recently brought a very bad user experience. Rating fraud
detection is an urgent issue for improving user experiences.
However, existing methods have lots of limitations in some
respects, because it is always very hard to acquire sufficient
labeled data for fraud detection and detect new fraud patterns.
Fortunately, the relationship for users rating (e.g., purchasing
and following) products can be represented as a bipartite graph.
So the problem of rating fraud detection can be transformed
into the problem of abnormal subgraph detection in the bipartite
graph. The major challenge of fraud detection is to distinguish
fake rates from real user rates. In this article, we focus on
mining rating fraud-connected subgraphs in a bipartite graph.
The motivation for this work is fraud detection tasks, which can
usually be formulated as mining a bipartite graph formed by
source nodes (followers and users) and target nodes (followees
and products) for malicious patterns. Now, smart fraudsters
evade existing detection methods by buying a large pool of
users and hijacking honest users, making them look “normal”-
this behavior is called “camouflage.” Accordingly, we propose
a fraud detection approach for mining rating fraud subgraph
(MRFS), which addresses the problem from the intrinsic metric
(e.g., fraudulence, badness and unreliability). The proposed
MRFS mines the intrinsic characteristics of nodes and edges
from node behavior information, which is an effective and
scalable (linear on the input size) algorithm. A large number of
comparative experimental results on real-world rating networks
show that our proposed MRFS is efficient and universal.

Index Terms— Bipartite graph, e-commerce, fraud detection,
graph mining, time series.

NOMENCLATURE

U = {ui} Users.
V = {v j } Items.
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E Edges.
N Nodes of bipartite network: U ∪ V .
A Subset of users.
B Subset of items.
S Subset of nodes: S = A ∪ B.
ϕv Involvement ratio.
û, v̂ User and item discrete probability

distribution.
Cu, Cv Global discrete probability distribution.
KL(·�·) KL-divergence.
g(S) Density metric.
f (S) Total suspiciousness metric.
score(u, v) Rating score.
Out(u) Set of edges given by user u.
In(v) Set of edges received by items v.
|Out(u)|, |In(v)| Out-degree of users, in-degree of items.
F(u) User’s intrinsic metric.
G(v) Item’s intrinsic metric.
R(u, v) Edge’s intrinsic metric.

I. INTRODUCTION

IT IS well known that fraud causes great damage to the
business of the web online applications, such as social

networks. Most online services depend on hybrid recommen-
dation models to recommend relevant information to users,
which are similar to some recommendation mechanisms of
web application program interfaces (APIs) [1], [2]. So it
is crucial for their performance that user feedback of true
interests is legitimate and indicative. Research shows that more
than 1/3 of consumers regularly check ratings and comments
before choosing to shop online. The growing importance of
such virtual approval for driving sales seems to have led to a
rather unethical business practice. Instead of waiting for users
to approve of your products and services, why not just buy
a lot of “likes” and demonstrate your popularity right away?
To do this, businesses employ the services of a “click farm”
to boost their popularity. For instance, on a social network
or media sharing website, users always want to increase the
popularity of their accounts by illegally buying many more
“likes” [3], [4]; on e-commerce websites, a merchant can make
their products more popular through Amazon’s fake reviews.
Unfortunately, many online sites provide services that charge
typically just a small amount of money per 1000 fake links. For
example, taobaojing.cn, buy1000followers.co, boostlikes.com,
and buyamazonreviews.com provide the services of Taobao
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Fig. 1. Schematic of fraud detection problem in E-commerce field. (a) Syn-
chronized behavior: fraudsters generate multiple links to fraudulent products
in a short time. (b) Camouflage: fraud users create edges to normal products.
(c) Hijacked: some fraudsters use hijacked accounts from normal users.

brushers, fake Twitter followers, Facebook page-likes, and
Amazon product reviews, respectively.

In general, fraudsters always act in a very short time to
increase the total impact of target items [5], [6]. Since online
e-commerce purchasing behavior (online social behavior) actu-
ally reflects the relationships between users and products
(followers and followees), it can be constructed into a bipartite
graph, which is usually used in Web APIs Recommenda-
tion [7], [8]. As shown in Fig. 1, the top row represents the
product nodes, the bottom row represents the user nodes, and
the arrows represent relationships between users and products.
Therefore, the problem of fraud detection can be regarded as
detecting the suspicious communities in the attributed bipartite
graph, of which the source nodes represent users (followers,
customers), the target nodes represent items (followees, prod-
ucts), and the directed edges correspond to the interaction from
a user to the item including rating and following. The attributes
on each edge include a timestamp, rating score, review, and so
on, of which the definitions are illustrated in Fig. 1. In detail,
the target is to detect the area enclosed by the red solid
line. The fraudster is more inclined to give the fraudulent
products more five-star praise. Synchronized behavior means
that fraudsters generate multiple links to fraudulent products in
a short time, camouflage means that fraud users create edges to
normal products, and hijacked means that some fraudsters use
hijacked accounts from normal users. In a word, fraudsters
accurately find the target population in different scenarios,
and accurately grasp the victim’s psychology, so as to carry
out fraud. It makes fraud detection more difficult, and at the
same time, the technicalization of fraud has brought fraud cost
reduction and fraud threat expansion.

Fraud detection is a challenging problem in e-commerce
transaction networks [14], [15]. Many works try to detect
fraudulent users and fraudulent items. Previous methods are
mainly based on two aspects: 1) some methods detect com-
munities of a bipartite graph and 2) other methods look
for an unusual connection structure. These methods directly
mine bipartite graphs to obtain dense subgraphs or rare
structural models. Such as belief propagation (BP) [16], [17],
hyperlink-induced topic search (HITS) [5], [18], singular value
decomposition (SVD) [3], [12], Fraudar [9] and changes to

community structure [19], etc. However, these approaches
have lots of limitations in some respects. It is always very hard
to acquire sufficient labeled data for fraud detection because
of the scale of the research problem and the cost of the
investigation. In addition, they require a lot of manpower and
material resources to carry out complex feature engineering.
Thirdly, new fraud patterns always can’t be detected.

Aiming at the above problems, an unsupervised method
named mining rating fraud subgraph (MRFS) is proposed to
detect abnormal users and items in this article. In addition, the
corresponding optimization algorithm of MRFS is developed
to compute the intrinsic metrics for all users, edges, and
items by fusing network and behavior properties including
time and ratings. Extensive experimental results on eight rating
datasets show that MRFS is superior to the baseline methods
in detecting fraudulent users and items.

To sum up, the main contributions of this article can be
summarized as follows.

1) Algorithm: We use complex networks to explore the
internal mechanism of fraud and combine network topol-
ogy attributes and node attributes to solve the relevant
problems faced by fraud detection. At the same time,
we propose three intrinsic metrics, which emphasize the
interaction between the source node (users) and target
node (items) in the network in an unsupervised way.
And fully considers the fraudulent user’s scoring and
concentrated attack (temporal bursts) behavior, making
our algorithm more resistant to camouflage.

2) Effectiveness: A large number of comparative experi-
mental results on semi-real and real datasets show that
Our proposed MRFS is superior to the baselines. Our
algorithm can maintain high precision (90%), before
reaching 0.024 in fraudulent density. However, most of
the existing methods have relatively low accuracy as
far as we know, especially when the fraudulent density
decreases.

3) Scalability: MRFS is scalable, with near-linear time
complexity in the number of edges. It is easy to scale
up applications to large-scale networks.

II. RELATED WORK

Most fraudulent schemes are designed in order to
obtain economic benefits. To maximize their financial gains,
fraudsters must share various information (e.g., user IDs,
IP addresses, and phone numbers). As a result, fraudsters
naturally exhibit synchronized behavior on some features,
maybe user IDs, or IP addresses. For example, fraudsters often
use many fraudulent users for the same fraud [20], [21]. In fact,
online fraudsters usually organize fraudulent activities in a
short time period [10]. The existing works fall into two main
categories: high-density subgraph-based methods and anomaly
subgraph structures-based methods.

A. High-Density Subgraph-Based Methods

Due to the limited labels, most previous research stud-
ies fraud detection in an unsupervised way to discover
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TABLE I

COMPARISON BETWEEN MRFS AND EXISTING METHODS

the high-density communities formed by fraud groups [22].
Dense communities mining is effective for detecting fraudulent
groups of users and items connected by a large number of
links. Fraudar [9] is proposed to measure the suspiciousness
of edges to discount popular items. HoloScope [11], as a
network topology-based method, dynamically reweights items
with the suspicious beliefs of users. Some researchers have
also captured abnormal dense user blocks with SVD [3],
[23]. CoreScope [24] is proposed to detect abnormally dense
communities in which all nodes have a degree of at least k
with shingling and K -core algorithms. However, fraudsters can
easily evade detection by cutting down the synchronicity of
their behaviors.

B. Anomaly Subgraph Structures-Based Methods

Accordingly, this type of method for fraud detection is
often based on anomaly subgraph structures of fraud groups
[25]. A large number of studies have shown that subgraph
structures have a great influence on social networks [26], [27].
Ren et al. [28] propose an Ensemble-based Fraud DETection
(ENSEMFDET) method to scale up promotional campaigns
fraud detection in bipartite graphs [29] by decomposing the
original problem into subproblems on small-sized subgraphs.
EdgeCentric [30] studied a method based on the distribution
of rating scores to detect the anomaly. BP [16], [17] and
HITS [5], [18] intend to catch some specific link attributes,
such as sentiments, to find something anomaly. SynchroTrap
[20] works on the user similarity graph. However, it cannot
detect fraudsters trying to hide. The fraudster can relatively
easily manipulate the edge of the fraudulent user to hide this
structural pattern.

C. Other Fraud Detection Methods

In addition to the above two methods, there are some
other methods. Such as, many previous approaches focus on
detecting fraud by checking contents [31], [32]. However,
these methods are usually not robust. Even if fraudsters don’t
understand the detection program, they may try to pretend
to be regular users as much as possible. Deep learning is

usually used for anomaly detection [33], [34]. But the type
is black-box methods and there is almost no explanation for
the detected output. When there are enough labeled data,
the classifiers for fraud detection can be modeled based on
multikernel learning [35], support vector machines [36], and
k-nearest neighbor [37] approaches.

Table I shows the comparative analysis of various
approaches for fraud detection. Our MRFS approach: 1) has
no extra labels; 2) mines the essence of the network; and
3) ranks anomalies.

III. METHOD

This section gives the overall introduction including the
notations and definitions used throughout the article, an intu-
itive description of fraud, and describe our models.

A. Notations and Problem Definition

1) Notations: We consider a set of users U = {ui}, i ∈
1, 2, . . . , m, and items V = {v j }, j ∈ 1, 2, . . . , n, connected
according to a bipartite networks. At the same time, there
should be some attributes on the edges, such as rating score,
and timestamp. In Nomenclature, the notations and definitions
of the symbols are given. The tasks of the proposed MRFS
are can be summarized as follows.

1) Detecting: Suspicious subgraph (users and items),
a ranking list with suspicious metric scores.

2) Computing: Intrinsic metrics for nodes and edges under
the prior knowledge of suspiciousness from rating time
and score.

Is a user honest? Is the item shoddy? Is the edge reliable?
The purpose is to mine the intrinsic features of nodes and
edges from the node behavior information. Here, we assume
each user has intrinsic fraudulence F(u), each item has an
intrinsic badness G(v), and each edge (u, v) has an intrinsic
unreliability R(u, v). Obviously, F(u), G(v), R(u, v) are all
interrelated.

2) Definition of Related Intrinsic Metric:

1) The Fraudulence of Users: Users vary in terms of their
fraudulence which indicate whether their ratings are fair.
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Clearly, honest user ratings on items are fair. As Frauda
[9] suggested, suspicious items attract less attention
from non-fraudulent users due to their low quality. They
give the good products with high scores and the bad
products with low scores. However, fraudulent users
usually deviate from the rules above. For example, they
may give high ratings to low-quality products. The
distribution of ratings that lead to fraudsters is very
different from the rating distribution of typical users,
as observed by [30]. At the same time, fraudsters groups
their attacks, and fraudsters generate multiple links to the
item in a short period of time [38]. So, We use these
behavioral characteristics to mine the user’s essential
metric scores F(u), ∀u ∈ U . The range of the metric
is [0, 1], where 0 represents a 100% honest user, while
1 represents a 100% dishonest user.

2) The Badness of Items: Items have an intrinsic badness
G(v), ∀v ∈ V . Intuitively, a good product should get
much more high positive ratings (star 5) from honest
users, and a bad product should get much more high
negative ratings (star 1). The range of the metric is
[0, 1], 0 denotes 100% good items, while 1 denotes
100% where bad items.

3) The Unreliability of Edges: Edges vary in terms of
unreliability. Are the edges generated by normal users
reliable? But personal opinions are different from most
people and can also create unreliable edges. Similarly,
the edge generated by fraudulent users must not be
reliable. This may create links pointing to normal items
to disguise fraud users as normal ones. Therefore, we use
unreliability to indicate the edge suspiciousness that
fraudsters create for target items. The reliability R(u, v)
of connection (u, v) ranges from 0 (a normal edge) to 1
(an abnormal edge) ∀(u, v) ∈ E .

4) The Suspiciousness of Networks: Metric g is used to
measure the suspiciousness of a density network. Exist-
ing dense block detection methods [39], [40] maximize
the arithmetic or geometric average degree. Here we use
arithmetic average degree (the difference between the
two methods is explained in Holoscope [11]).

B. Description of MRFS

1) Formalization of Intrinsic Metric: Given the definition
of these metrics, we now offer MRFS and our analysis of
MRFS. Here, we propose a class of Metrics g that is used as
suspiciousness metrics. We set A ⊆ U , B ⊆ V, S = A ∪ B,
and N = U ∪ V. Our goal is to find a suspicious subgraph
S, and to approximately maximize g(S). We define a density
metric g(S) as [9], [11]

g(S) = f (S)

|S| = f (S)

|A| + |B| (1)

where f (S) denotes the total suspiciousness and can be
structured as

f (S) =
∑

(ui ,v j)∈E
R
(
ui , v j

) +
∑

ui ∈A
F(ui) +

∑

v j ∈B
G

(
v j

)
. (2)

Intuitively, the formula contains the suspiciousness of nodes
and edges. The node suspiciousness is the sum of intrinsic
metrics corresponding to the users and items in S. The edges
suspiciousness is a sum of intrinsic metrics corresponding to
the edges in between the S. g(S) satisfies the three axioms
(proof in Fraudar [9]), which is the observations of S, and
obeys a number of basic axioms as follows.

1) Keeping |S| fixed, we have that f (S) ↑⇒ g(S) ↑.
2) Keeping f (S) fixed, we have that |S| ↑⇒ g(S) ↓.
3) Keeping ρedge(S) fixed, we have that S ↑⇒ g(S) ↑.

Here, the edge density ρedge(S) is

ρedge(S) = |E |
|S|(|S| − 1)

. (3)

Thus, the problem of subgraph detection can be defined as
1) input: the bipartite rating network and 2) find: sub-
graph of S that maximizes g(S). Next, we introduce
F(u), G(v), R(u, v), respectively. |Out(u)| gives the cardinal-
ity of the edge-attribute value produced from u’s neighboring
(outgoing) edges. Similarly, |In(v)| gives the cardinality of the
edge-attribute value produced from v’s neighboring (incoming)
edges.

1) The Fraudulence of Users: Intuitively, the user’s suspi-
ciousness is mainly determined by his connection to the
item. Therefore, we simply define the user’s fraudulence
score as the average reliability score of their rating

F(u) =
∑

(u,v)∈Out(u) R(u, v)

|Out(u)| . (4)

However, this only considers the impact of the rat-
ing score and does not include the user’s behavioral
attributes such as the distribution of rating scores and
the time attribute. We will add the distribution of rating
scores and the time attributed to them later.

2) The Badness of Items: When an item receives rating
scores with different reliability edges, more importance
should be given to rating scores that have higher reli-
ability edges obviously. Therefore, in order to estimate
the badness of the product, we weigh the rating score
according to the reliability edge, giving a higher weight
to the reliable rating score, which is not important for
the rating of the low-reliability edge

G(v) =
∑

(u,v)∈In(v) R(u, v) · score(u, v)

|In(v)| (5)

where 1–5 star corresponds to 1, 0.75, 0.5, 0.25 and 0,
respectively. Note that this is a rescaled version of the
traditional five-star rating score scale. The bigger the
score, the more abnormal.

3) The Unreliability of Edges: The edge should be consid-
ered reliable if it is given by a generally honest user u,
and its rating score is close to the badness value of item
v. This deviation is measured as the normalized absolute
difference, |score(u, v) − G(v)|

R(u, v) = F(u) + |score(u, v) − G(v)|
2

. (6)
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Fig. 2. Sudden appearance of a dense subgraph at T = 2.

2) Temporal Bursts and Score Distribution: Here, we aim
at detecting the anomalies including the sudden appearance or
disappearance of large dense directed subgraphs and the user’s
rating score distribution.

a) Temporal bursts: Usually, timestamps for edge cre-
ation are available in most real settings. We can analyze the
time series, and the appearance or disappearance of a large
dense subgraph is anomalous only in a very small timestamp.
Similarly, the sudden appearance or disappearance of a large
number of edges, which just form a dense subgraph, is anom-
alous. As shown in Fig. 2, user review item, an abnormal
dense directed subgraph appears at t = 2. And users 3 and
4 launched an attack at time t = 2 (see the red subgraph in the
figure). In contrast, the appearance of subgraph {u3, u4} →
{v3, v4, v5} at t = 3 is not anomalous, since it has already
been observed at t = 1. As shown in works [41] and [11],
fraudulent users are bursty. They always give several ratings
in a very short timespan. For example, fraudulent products
receive multiple ratings and reviews in a short period of time
when click farm receives a request. Thus we include the
temporal attribute into G(v). Let, ϕv represent the normality’
score of items in multiple bursts. Or called the involvement
ratio [11], it is a measure of a sudden attack on users in
the subgraph. In order to model time series, we incorporate
a state-of-the-art algorithm in our framework. A suspicious
score 0 ≤ ϕv ≤ 1 to each item v, higher (lower, resp.) score
indicates more anomalous (normal, resp.).

b) Rating score distribution: We now consider edges with
rating scores distribution. For each node ui or vi , we use
the Kullback-Leibler (KL)-divergence to measure the loss
between the distributions from the suspicious node and other
nodes. The rating deviation Ku or Kv is scaled into [0, 1] by
KL-divergence to compute suspiciousness. The abnormality
scoring function Ku for user node u ∈ U is defined as

Ku = |Out(u)| · KL(û�Cu), Kv = |In(v)| · KL(v̂�Cv ) (7)

where û gives the discrete probability distribution associated
with the user node over the chosen rating score and Cu gives
the global discrete probability distribution of the rating score
over all edges. Similarly, item Kv is defined as such.

So, the resulting equations are

F(u) =
∑

(u,v)∈Out(u) R(u, v) + α1 · Ku

|Out(u)| + α1
(8)

R(u, v) = γ1 · F(u) + γ2 · |score(u, v) − G(v)|
γ1 + γ2

(9)

Algorithm 1 Mutually Recursive Procedure
1: Input: Rating Network (N , E), α1, β1, β2, γ1, γ2

2: Output: fraudulence, unreliability and badness scores
3: Calculate Ku, Kv , ϕv ,∀u ∈ U,∀v ∈ V
4: Initialize F0(u), R0(u, v), G0(v), with a Gaussian distrib-

ution, (u, v) ∈ E , t = 0
5: while error ≥ � do
6: Update badness of items according to Eq.(10): ∀v ∈ V ,
7: Update unreliability of edges according to Eq.(9):

∀(u, v) ∈ E ,
8: Update fraudulence of users according to Eq. (8): ∀u ∈

U ,
9: error = max(

∑
u∈U |Ft(u) − Ft−1(u)|,∑v∈V |Gt(v) −

Gt−1(v)|,∑(u,v)∈E |Rt (u, v) − Rt−1(u, v)|)
10: end while
11: return Ft (u), Gt(v), Rt (u, v)

G(v) =
∑

(u,v)∈In(v) R(u, v)·score(u, v)+β1 · Kv +β2 · ϕv

|In(v)|+β1+β2
.

(10)

Here, α1, β1, β2, γ1, γ2 are non-negative integers, to avoid
the situation where the node’s access is 0. The value of
α1, β1, β2, γ1, γ2 are set using parameter sweep, ensure that
the denominator of (8)–(10) cannot be 0 (please see the detail
description in Section IV-C).

We propose a fusion temporal bursts and score distrib-
ution approach to incorporate behavior properties into the
formulation. Three equations are the set of mutually recursive
definitions of fraudulence, unreliability, and badness of the
proposed MRFS algorithm, by combing rating network and
behavior properties together.

3) Algorithm Description: Algorithm 1 describes the
proposed method to calculate the metrics for all users,
items, and edges. The algorithm is an iterative algorithm,
Ft(u), G(v), Rt (u, v) denote the fraudulence, badness, and
unreliability metric score at the end of iteration t . So we get
the intrinsic metrics of the nodes and edges in the network.
We initialize these values for the first time with a Gaussian
distribution of 0 to 1. Then we iteratively update the scores
until convergence (see lines 5–10). In detail, convergence
occurs when all scores change minimally (see line 5). � is
the acceptable error bound, which is set to a very small
value. In each iteration, the update of Ft(u), Gt (v), Rt (u, v)
takes constant time. The complexity of each iteration is
O(|E | + |N |).

Based on the proposed fraudulence, badness, and unreli-
ability score, the detection of the most anomalous subgraph
from N and E can be formalized as the following optimization
problem: g(S). For the above optimization problem, in the
worst case, the time cost is exponentially increasing with the
node |N | in the network. Therefore, it is a better choice to
develop approximate solutions. We give Algorithm 2, a greedy
approach inspired by that of Fraud [9]. Here, we will solve
the optimization problem with an efficient unconstrained opti-
mization approach.
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Algorithm 2 Greedy Procedure to Maximize a Metric g

Require:Bipartite network (N , E), Ft(u), Gt(v), Rt (u, v),
density metric g of the form (1).
Ensure:Return the largest g(S).
1: MT = Construct priority tree of N
2: Bestg = calculate suspiciousness g(S) of node set
3: repeat
4: n = Use the MT to pop the node with the lowest score

for users or items
5: N = N \ n, delete n from N , and the edges associated

with n
6: Bestg = calculate suspiciousness scores g(S) of current

node set
7: if �n ≥ 0 then
8: Update Bestg = Curg
9: end if

10: Update MT with respect to new N .
11: until N is empty or The value of g is the largest
12: Find suspicious subgraph S.

However, how do we optimize the density metric g(S)
to maximize the suspiciousness of a subgraph in near-linear
time? We start with the entire network, and then repeatedly
remove the node that results in the highest value of g(S)
evaluated on the remaining set of nodes. According to the
calculation formula of g(S), we should delete the node with
the smallest suspicious value. Then recalculate �n according
to �n = g(N \ n) − g(N ), which represents the change in g
when we remove n from the current set. We will choose n to
maximize �n at each step. We then repeat this process: we
recompute the values of �n , then choose the next node to be
deleted, and so on. When n is removed, we only need to update
the nodes connected to it. Hence, the updates are fast: during
the life cycle of the algorithm, we will perform at most one
such update on this edge, for a total of O(|N |), updates using
appropriate data structures, as we next describe, each update
can be performed in O(log |N |) time, total O(|N | log |N |)
time.

We construct a priority tree to help us efficiently find the
user or item with a minimum metric score. The data structure
is a binary tree with all N elements as leaves, all at the
bottom level of the tree. Each non-leaf node keeps track of
the maximum priority of its two child nodes. The priority
tree updates the score of the user or item and maintains a
new minimum when the priority changes. It also supports
fast update priority: because all leaves are stored in a fixed
location, we can easily retrieve any leaf nodes and update
their priority. Then, after updating the priority of the node,
we move the minimum values of the two child nodes up and
update them to the parent node. Every operation on the MT
requires O(log |N |) time.

To sum up, MRFS is scalable, which is near-linear time
complexity in the number of edges. The time complexity of
MRFS is shown in Fig. 3. The curve (blue) shows the running
time of MRFS, compared with a linear function (black).

Fig. 3. Time complexity of MRFS.

TABLE II

DATASETS USED IN EXPERIMENTS

IV. EXPERIMENTAL ANALYSIS

A. Dataset: Rating Networks

The statistical results of eight datasets, which are publicly
available for academic research, are shown in Table II. Due
to the lack of ground truth in the data, we use the injected
synthetic data, using the same method as in [9]. We mimic the
fraudsters’ behaviors and randomly choose a certain number
of objects as target items in our experiments. Usually, the
suspiciousness of popular items is very small, unpopular items
are inclined to hire fake reviews, and the indegree of the item
we select is less than 100. Since fraudulent accounts can come
from hijacked user accounts, we can also uniformly choose a
certain number of users from the entire user set as fraudulent
users. For camouflage fraudsters, we also imitate the normal
user’s scoring behavior, and let the fraudsters rate the popular
products. To test on different fraudulent densities. The data
we synthesize has a fraud density from 0.01 to 1 for testing.
At the same time, we also mimicked the time and rating score
behavior of fraudster attacks.

In detail, AmaBaby, AmaMovies, and AmaVideo are four
collections of ratings about office products, baby-related prod-
ucts, Movies, and video products, respectively, on Amazon
[42]. In addition, Yelp is a comment dataset from the largest
comment site in the U.S., and BeerAdvocate is a comment
dataset about beer. They can be modeled using the network
(user, item, timestamp, rating score). Bitcoin over-the-counter
(OTC) (Alpha) is a user-to-user trust network of Bitcoin users
trading using the OTC (Alpha) platform [43]. The ground truth
is defined as benign users are the platform’s founder and users
he rated highly positively. Fraudulent users are the ones that
these trusted users uniformly rate negatively. The proportion
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TABLE III

EXPERIMENTAL RESULTS ON REAL DATA WITH INJECTED DENSITY BLOCK

of fraudulent users in OTC and Alpha data sets is 3.7% and
3.1%.

B. Baseline Algorithms

We selected four dense-block detection methods as compar-
ative methods.

1) HoloScope [11]: This is a graph topology-based weight-
ing scheme that dynamically reweights objects according
to our beliefs about which users are suspicious.

2) Fraudar [9]: This is an edge weighting scheme based
on the inverse logarithm of objects’ degrees, which was
inspired by IDF.

3) CatchSync [5]: This is effective at both the classic
problem of labeling suspicious behavior, as well as
surfacing new patterns of unusual group behavior.

4) Rev2 [13]: This is a method that combines the network
and behaviors, and analyze on the network without
considering behavior attribute information.

C. Parameter Settings

The parameters are mainly distributed in Algorithm 1, but
how do we set the values of α1, β1, β2, γ1 and γ2? In the
unsupervised case, the best combination of these parameters
cannot be confirmed. Therefore, the algorithm runs with
for several combinations of α1, β1, β2, γ1 and γ2 as inputs,
then find the average of F(u), G(v) and R(u, v). In our
experiments, we varied all these parameters from 0 to 2, i.e.,
0 ≤ α1, β1, β2, γ1 and γ2 ≤ 2, giving 35 = 243 combinations.
In order to make the algorithm converge faster, � is set to 0.01.

D. Detecting Suspiciousness Subgraph

We first run the algorithms on four collections of rat-
ings for different types of commodities on Amazon (see
Table II). It is very difficult to find low-density fraudsters
than high-density fraudsters, so it is a better way to detect
low-density fraudsters with high precision. We designed two
injection schemes: Camouflage and Hijacked attacks with
different injection densities as Fraudar [9]. We propose to use

F1-Score in order to give a comparison of datasets. We apply
the following equation to compute F1-Score:

F1 = 2 × (precision × recall)

precision + recall
. (11)

1) Injection Scheme C: To simulate the camouflage attack
models of fraudsters, we use three types of camou-
flage attacks as Fraudar: injection of fraud with no
camouflage, random camouflage, and biased camou-
flage. We generate datasets by injecting a fraud group
with varying configurations into AmazonVideo, Ama-
zonMovires, and AmazonOffice. In each case, we inject
200 to 2000 fraudulent users and 100 to 1000 fraudulent
items with various edge densities into real data.

2) Injection Scheme H : In the same way, we also generated
hijacking fraud with different edge densities. For the
“Hijacked” case, we use a random subset of exist-
ing users to form the fraudulent block, the fraudster’s
account has a camouflage pattern that is substantially
similar to that of an honest user.

However, some honest users may add links to fraudulent
target items in the real world. It may be that the fraudulent
items have achieved the fraud effect and induced normal
users. Taking this into consideration, we conducted another
experiment using the attack model and added edges between
honest users and fraud target items. But the density is sparser
than fraud blocks. We added random edges in this subgraph.
All other experimental settings have not changed. The fraud
detection results of our MRFS and the baselines on the
datasets are shown in Table III. Obviously, our method results
are better than the baselines. MRFS has a similar and high
F1-score both in detecting fraudulent users and fraudulent
items. As we find, MRFS achieves the best F1-Score among
the competitors in most tasks. And also, we find that Holo-
Scope and Rev2 also have relatively good results, although
they are not as good as the proposed MRFS. The main reason
may be that: 1) HoloScope only considers some topological
attributes but does not mine the deep feature of the network
and 2) Rev2 combines the network topology and behaviors but
not includes the attributes information of behaviors. However,
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Fig. 4. MRFS outperforms competitors in multiple density of injected subgraph settings. F1-Score of fraud detection on Amazon data in the experiment
with Camouflage and Hijacking.

TABLE IV

F1 ≥ 90% MINIMUM DETECTION DENSITY

the proposed MRFS considers the topological attributes of
the network and the behaviors attributes of nodes and edges
simultaneously. We better explore the essentials of nodes and
edges in the rating network.

Fig. 4 shows the results of MRFS and four comparative
methods on the Amazon networks. When the fraudulent den-
sity becomes low, the proposed method can still maintain high.
Amazon #C network is injected into the density block in three
camouflage ways, and then the average of the three F1-Score
is obtained. Compared to those comparative methods, our
algorithm can keep as high F1-Score as more than 90% before
reaching 0.024 in density, which is far better than the baseline
methods. HoloScope achieves a higher F1-Score on the sparse
network. But, HoloScope achieves excellent performance only
when initialization is a priori fraudulent density block. The
main reasons are that HoloScope just considers the topological

attributes of the network, and the fraudulent density will
greatly affect the performance of HoloScope. Therefore, Fig. 4
demonstrates that the proposed MRFS has good robustness.

To better illustrate the advantages of the proposed MRFS for
detection on different data sets of injected density blocks, two
measures are considered here: area under curve (AUC) and the
lowest detection density when F value is greater than 90%.
As shown in Table IV, MRFS is superior to other methods
in fraud detection and can be able to detect fraud well even
at low fraud density. MRFS has a minimum detection density
0.0127, which means that it can detect 20 000 fraudulent users
to establish connections for 200 fraudulent items and obtain
accurate results even under such low-density fraud. And also,
Fig. 5 quantitatively demonstrates the ability of the proposed
MRFS in networks. It can be seen from the bar chart that the
algorithm has a good performance on real networks.
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Fig. 5. Fraudsters detection on OTC and alpha networks.

V. CONCLUSION

In this work, we propose a new MRFS method of detecting
fraud in large, edge-attributed real-world bipartite graphs,
which have timestamps and rating scores (using the network).
This graph include is commonplace in modern e-commerce
platforms and other web services. We explored the nature of
nodes and edges on the network, and more closely related
to the suspiciousness of users and items. We considered the
real malicious patterns of various frauds in the experiment,
and the experimental results are very impressive. Our future
work hopes to further detect fraudulent behaviors that combine
structural patterns with behavioral attributes.
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