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Abstract—Multi-behavior recommender system aims to model
user preference representation based on multiple types of user-
item interactions (e.g., viewing, adding to favorites, adding to
the cart, and purchasing). However, existing works have two
limitations in general: 1) Most of them only concern the sparse
observed user-item interactions (explicit interaction) and ignore
the huge amount of unobserved user-item interactions (implicit
interaction), which are incapable of fully capturing user prefer-
ence in recommender systems. 2) Previous works typically tend
to only extract valuable information by distinguishing target and
auxiliary behaviors to model user reference representation, and
they fail to explore the fine-grained commonality between target
and auxiliary behaviors. To tackle these limitations, we propose
a new model named Graph Contrastive learning with Multi-
Behavior (GCMB) for a multi-behavior recommender system.
Specifically, we utilize Randomized Singular Value Decomposition
(rSVD) to inject implicit interaction into the model, and then
combine explicit interaction and implicit interaction to learn
user preference by graph contrastive learning. Furthermore,
we consider the multi-level commonality between target and
auxiliary behaviors to capture the fine-grained commonality
and then model high quality of user preference representation.
Extensive experiments on two real-world datasets demonstrate
that our method consistently outperforms various state-of-the-art
recommender methods.

Index Terms—Multi-behavior recommender system, graph
contrastive learning, explicit collaborative relation learning,
implicit collaborative relation learning, rSVD.

I. INTRODUCTION

ITH the explosive growth of online information, rec-
Wommender systems play a key role to alleviate such
information overload [1]. The recommender system aims to
learn user preference and predict the items that he/she will
be interested in based on the observed historical interactions
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between users and items. Due to the important application
value of recommender systems, they have become indispens-
able tools for online applications, e.g., online e-commerce
platform [2], [3], [4], tourism services platforms [5] and
online video [6] or music platform [7].

Recently, the development of recommender systems has
advanced rapidly in both academia and industry. However,
existing works typically concentrate on single-type interactions
between users and items (e.g., click records), overlooking
the diverse array of behaviors that can occur between them.
For example, in an online e-commerce platform, users can
engage with items in multiple ways, such as viewing, adding
to favorites, adding to the cart, and purchasing. Typically,
we suppose purchase behavior is the primary target behavior,
while assume other types of behaviors are auxiliary behavior.
These diverse behaviors offer valuable signals for constructing
a comprehensive user preference representation, which proves
beneficial in mitigating the challenge posed by significant data
sparsity within the context of the target behavior [8].

To leverage these different types of behaviors, several efforts
on methods of the multi-behavior recommender system have
been made. For example, some methods attempt to capture
the relationship between auxiliary and target behaviors while
modeling the representation of nodes. These methods use
attention scores to assign weights to the nodes of different
behaviors, integrating them to derive the node representation
for the target behavior [9], [10]. To further capture the implicit
relationship between auxiliary and target behaviors, both
the [11] and [12] utilize a relation-aware encoder to capture the
hidden dependencies between auxiliary and target behaviors
under a message-aggregation architecture. Other methods [13],
[14], [15], [16] propose that these behaviors often follow
certain ordinal relations, then they utilize the relationships
between different behaviors to learn the node representation. In
addition to distinguishing the semantic information of various
types of behaviors, [17] and [18] use meta-paths or second-
order neighbors to capture the item-item correlations reflected
in different types of behaviors.

Despite the effectiveness of the existing methods above, it is
nontrivial to effectively model user preference representation
through multiple behaviors. Firstly, most existing methods
only utilize the sparse explicit interaction and ignore the
huge amount of implicit interaction. However, in the huge
amount of implicit interaction data, the most of non-interaction
phenomena are not caused by user’s dislike, but by the
limitation of platform push opportunities, which makes users
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unable to interact with these items and give feedback. Sparse
exolicit interaction data will seriously affect the quality of user
preference representation. Although contrastive learning [19]
has been used to enhance the performance of graph-based
recommender methods and can alleviate the data sparsity
problem [20], [21], these methods often generate contrastive
views through random perturbations, which may lead to the
loss of valuable structural information, potentially misleading
the learning of node representation. Besides these methods also
ignore the implicit interaction. Secondly, the certain user could
connect to items through different behaviors, so we suspect
that there are some commonalities (e.g., brand, price, color)
between items. And these commonalities can reflect the key
reasons why users interact with items; these commonalities
are the overall user preferences under different behaviors. But
the above works tend to overlook the commonality between
target and auxiliary behaviors, which is a crucial factor in
determining whether users generate target behaviors with the
item. Although [10] utilizes the commonality between target and
auxiliary behaviors, it only focuses on the commonality between
the final preference representation of target and auxiliary
behaviors, neglecting the commonality between other layers of
user preference representation. The commonality between the
final preference representation of target and auxiliary behaviors
is broad and coarse-grained rather than fine-grained.

In light of the aforementioned limitations, we revisit the
graph contrastive learning paradigm for multi-behavior recom-
menders, introducing an effective augmentation method known
as GCMB. This approach takes into account the multi-level
commonality between target and auxiliary behaviors during
the preference representation learning process. Specifically,
in order to take into account both explicit and implicit
collaboration relationship when modeling user preference, we
first utiliz rSVD to prefill the implicit collaboration relation-
ship under multi-bahavior and generate a contrastive view.
Then, the implicit collaboration relationship is injected into
the model by aligning the original view and the contrastive
view under different behaviors. This allows our model to
extract additional information from the contrastive view to
enhance the preference representation in the original view.
Furthermore, our model considers the multi-level commonality
between target and auxiliary behaviors to capture fine-grained
similarities. This capability allows our model to refine refer-
ence representations further and achieve high-quality learning
outcomes.

In summary, we have made the following contributions to
this work:

« We emphasized the importance of implicit interaction,
and proposed to explore the relationship of implicit
multi-behavior interaction. And then we utilize implicit
interaction to improve and enhance the quality of user
preference representation.

« In our model, we explored the fine-grained commonality
to refine and improve the quality of user preference
representation.

o The effectiveness of our GCMB model is demonstrated on
two real-world datasets, showing improved recommender
performance compared to baselines.
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II. RELATED WORK
A. Graph-Based Recommender Models

Recently, Graph Neural Network (GNN) techniques have
been widely utilized in recommender systems [l1]. Some
works [22], [23] apply random walk method in graph-based
recommenders systems. Reference [22] constructs an item-item
similarity graph based on the user-item graph and runs the
item-item graph on a variant of the [24] algorithm called [25].
Graph Convolutional Networks (GCN) [26], [27], [28] have
demonstrated significant advantages in graph representation
learning, due to the essence of data in recommender system
is graph structure, so GCN has been widely applied in
recommender systems [29], [30], [31]. [31] remove non-linear
activation functions and feature transformations to simplify
GCN.

B. Multi-Behavior Recommender Systems

Multi-behavior recommender systems aim to enhance the
recommender performance of the target behavior by utilizing
multiple types of auxiliary behaviors. Existing works can
be classified into two categories based on the relationships
between behaviors.

Firstly, some works consider that different types of
interaction behaviors often follow certain orders (e.g., click
>add to cart >purchase). For example, [13] proposes a model
that associates each behavior type’s predictions in a cascading
manner. Reference [14] associates the predictions of each
behavior in a transitive manner. Reference [15] builds on
previous works and utilizes GCN to capture higher-order
information in the graph. Reference [32] incorporates the
cascading relationships between behaviors into the learning
process of embedding representation. Reference [16] is an
extension of [32] that designs feature transformation modules
to avoid misleading embedding learning. Then it aggregates
the learned embeddings of different types of behaviors for final
prediction.

Secondly, some works treat some behaviors as strong signals,
while others may be regarded as weak signals, so they use
attention scores to represent the weights of different behaviors.
Reference [17] utilizes attention mechanisms in the propagation
layer to learn behavior strength while capturing behavior
semantics through item-item propagation layers to aid in better
learning of embedding representation. References [11] and [12]
further consider the dependency between different types of
behavior embeddings in the learning process.

C. Contrastive Learning for Multi-Behavior Recommender
Systems

Reference [33] proposed a new graph contrastive learn-
ing based framework by coupling with hyper metapaths
to learn embeddings of user behavior patterns adaptively.
Reference [34] proposed a contrastive meta network to capture
the diverse multi-behavior patterns. Reference [10] further
employed contrastive learning modules to capture the com-
monality between behaviors. While these three papers utilized
comparative learning to capture commonalities in multi-
behavioral patterns, they differ from our proposed approach
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Fig. 1. The model architecture of GCMB. i) Explicit Collaborative Relation Learning Module learns the node representation under multiple behaviors

interaction. ii) Implicit Collaborative Relation Learning Module extracts implicit collaborative signals by rSVD. iii) Multi-level Community Learning Module
captures the commonality between target and auxiliary behaviors. iv) Explicit-Implicit Contrastive Learning Module combine explicit and implicit interaction

to learn user preference by graph contrastive learning.

in that this paper integrates explicit and implicit interactions
between users and items, and considers multi-level common-
alities between target and ancillary behaviors to enhance user
preference representations.

III. PRELIMINARIES
A. Problem Definition

Firstly, we define the interaction between nodes as graph
G = (V, E), where nodes V consist of the node of users u € U
and items i € I. And the edge E consists of K (K > 2)
different types of user-item interaction edges. Besides the user-
item interaction edges under the ky, (1 < k < K) behavior is
defined as EF, EX together with all nodes ( users and items )
can be defined as a subgraph Gy = (V, Ek), which also can
be expressed as an interaction adjacent matrix A e RIUI,
We hypothesize the first behavior is target behavior, and other
k — 1 behaviors are auxiliary behaviors. Usually, the target
behavior is purchase, and it is the prediction objective, the
other behaviors are regarded as auxiliary behavior, and assist
the target behavior to complete recommend tasks.

The research problem in our study is defined as follows
Input: consists of user-item interactions across various types
of behavior, labeled as {Gy,...,Gg,...,Gg}. Output: a
predictive function that estimates the likelihood of user u will
interact with item 7 under the target behavior.

B. Overall Framework

The overall framework of our GCMB model is illustrated in
Figure 1 and consists of four key modules. First, in the Explicit
Collaborative Relation Learning Module, we utilize GCN to
learn node embedding representations from user-item explicit
interaction subgraphs under different types of behaviors. These
embeddings are then integrated using automatically learned

weight coefficients. Second, in the Implicit Collaborative
Relation Learning Module, we employ rSVD to extract
implicit collaborative signals from a global perspective. This
step pre-populates implicit collaborative relationships under
multiple behaviors and injects them into the GCMB model,
thereby enhancing the user preference representation. Third, in
the Multi-level Commonality Learning Module, we capture the
multi-level commonalities between target behaviors and auxil-
iary behaviors through a multi-level aggregation layer learning
approach. Specifically, we learn the commonalities between
these behaviors at different aggregation layers to achieve finer-
grained and high-quality node representations. Finally, in the
Explicit-Implicit Contrastive Learning Module, we combine
explicit and implicit interactions through graph contrastive
learning to better learn user preferences and improve the
overall performance of the model. In summary, by introducing
rSVD to pre-populate implicit collaborative relationships and
using a multi-level commonality learning module to capture
the commonalities between different behaviors, our GCMB
model performs well in recommendation tasks.

C. Explicit Collaborative Relation Learning

First, we derive the embedding vectors E,, € R? and E; R4
for user u and item i through initialization, where d is the
embedding dimension. Next, we perform multi-layer GCN to
aggregate neighborhood information for each node in multiple
types of behavior subgraphs. The process of aggregation is
represented as follows:

A=) ),
Zf’l = a(p(AkT) . E],j’l),

where ij’l and Zl{"l represent the aggregated embedding for
user u and item i in the /y layer under the kg behavior. We

ey
(@)
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apply the activation function o (-) using a LeakyReLU with
a negative slope of 0.5. A¥ denotes the normalized adjacency
matrix, and the application of edge dropout is indicated as
p(-), aiming to mitigate overfitting concerns. Furthermore,
to preserve the inherent node information, we incorporate
residual connections between each layer:

Eﬁ,l—i—l — Z],;’I-H _,’_EIIZJ, (3)
EI-(’H_I — Zl{c,l—H +E£c,l' 4)

1

The final embedding for a node is the sum of its embeddings
across all layers,

L
Ey =Y "E\. (5)
=0
L
Ef =) "E. (6)
=0

Inspired by [10], the final node embedding is expressed as
follows:

exp (Wi * nyg)
Zﬁ:l exp(Wp, * nym)

K
E, =W, <Z Ay - El:j) + by, (8)

k=0

)

Auk =

E; = W,~<C0ncat(Ef-‘)) + b;, )

where Wj is considered a strength weight for behavior k,
which remains constant for all users. n,; represents the relative
number of interactions edges under behavior k of user u.
Additionally, W, b,, W;, b; are the weight and bias of neural
network. The final step involves calculating the inner product
between the ultimate embedding E, and E; to predict user u’s
preference towards item i. In order to optimize this module,
we employ the pairwise loss.

L= Z max(O, 1—E E + E;Ej), (10)

(u.i,jeR)

where R = (u,i,j) | (u,i) € R4+, (u,j) € R_, and Ry is the
observed interactions, R_ is the unobserved interactions.

D. Implicit Collaborative Relation Learning

To further alleviate the issue of sparse explicit multi-
behavior data, we propose to use rSVD as guidance to generate
the contrastive view under different types of behaviors and
align the node representation between the original view and
the contrastive view under different types of behaviors. By
doing so, we effectively extract supplementary information
from the contrastive view, thereby enhancing the quality of
node representation in the original view. Specifically, we
begin by performing SVD [35] on the adjacency matrix
Ak, Ak = UkSkaT. However, conducting SVD on large
matrices is computationally expensive. Therefore, drawing
inspiration from the rSVD algorithm [8], [36], [37], we opt to
approximate the range of the input matrix through a lower-rank
orthogonal matrix. Subsequently, we apply the SVD procedure
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to this reduced matrix, effectively mitigating the computational
challenges associated with larger matrices.

Ok, 8k, VT = rSVD(Ak, q), (11)
Abyp = USSEVET, (12)

where ¢ is the required rank for the decomposed matrices, and
U’; e RUxq, 3"; € RI™4, ‘7(’1‘ € R!*4 are the approximated
versions of UK, SK, VK. The global aggregation process is
expressed as follows:

Gl = o (Akyp - E), (13)

Gl = G(A]gVDT ~Ek’l).

1 u

(14)

E. Multi-Level Commonality Learning

In traditional multi-behavior recommendation methods, the
commonalities between target and auxiliary behaviors are
often overlooked, although these commonalities are crucial for
predicting whether user-item interactions will occur. Existing
methods typically rely on the final node representations to
learn the commonalities between behaviors, which can result
in overly broad and coarse-grained commonality information.

To address this issue, we propose a Multi-level
Commonality Learning Module that captures the commonali-
ties between target behavior k and auxiliary behavior k" across
different aggregation layers, thereby achieving finer-grained
and higher-quality node representations. The specific steps are
as follows:

First, Multi-layer Aggregation Learning. In the multi-layer
aggregation learning, we use GCN to learn node embed-
ding representations across multiple propagation layers. Each
propagation layer captures different levels of local structural
information. Through multi-layer aggregation, we can obtain
node representations at various levels of granularity, from
coarse to fine. Specifically, the node embedding representation
Zl’é ; at layer [ can be calculated using the following formula:

1?,1 = U((Ak) Ellcl)

where Ay is the adjacency matrix for behavior, E,’;’l is the
node embedding at layer /, and o is the activation function.
This multi-layer aggregation approach captures local structural
information at different levels, thereby providing richer node
representations.

Second, multi-level commonality extraction. After each
propagation layer, we compute the similarity between the
node representations of the target behavior £ and the auxiliary
behavior k’. Specifically, we use cosine similarity or other
similarity measures to quantify the commonalities between
these node representations. By doing so, we can capture the
multi-level commonalities between the target and auxiliary
behaviors across different propagation layers. This multi-
level commonality extraction helps to more comprehensively
understand user preference patterns across different behavior
types, thereby improving the model’s accuracy.

Next, the contrastive learning loss function. To further
improve the quality of node representations, we introduce the
InfoNCE loss function. This loss function uses contrastive

15)
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learning to compare the node representations of the target
behavior and the auxiliary behavior. The specific formula is
as follows:

exp(sim(ZZ’l, zZ; l)/r)
Y owey €Xp (sim(Z,’:J, Z}C‘,’ l)/l’)

where le:, ; and ZZ,’ ; represent the node embedding represen-
tations of user u at layer [ for behavior k and behavior &/,
respectively. sim() is the similarity function, t is the tempera-
ture parameter, and U is the set of users. Through contrastive
learning, we can better distinguish the commonalities between
target and auxiliary behaviors, thereby improving the quality
of the node representations.

Finally, integration into the model. The multi-level com-
monalities extracted through the above steps are integrated into
the model to optimize the node representations. Specifically,
we combine the loss from multi-level commonality learning
with the loss from explicit-implicit contrastive learning to
jointly optimize the overall performance of the model. The
overall loss function is as follows:

Le=Y (L% + ).

K

Ly = —log , (6

A7)

Through this approach, the multi-level commonality learn-
ing module not only captures the multi-level commonalities
between target and auxiliary behaviors but also effectively
integrates both explicit and implicit collaborative information,
thereby enhancing the accuracy and personalization of
recommendations.

FE. Explicit-Implicit Collaborative Relation Contrastive
Learning

Traditional graph-based contrastive learning methods for
recommender systems often utilize the three-view paradigm,
where generated contrast views are used for contrastive
learning, while the original view is not involved in con-
trastive learning loss. Because traditional methods usually use
randomly perturbed generated contrast views and that may
mislead the original view.

In contrast, our proposed method takes rSVD as a guide
to generate contrast views based on global collaborative
relationships. We combine explicit interaction and implicit
interaction to learn user preference by graph contrastive
learning. Consequently, we directly simplify the contrastive
learning in the infoNCE loss by aligning the representation of
the original and contrast views for different types of behaviors.
The InfoNCE loss L for the items are defined in the same
way.

els(s!, 6i'o))
ij,zo exp{s(Z,]f’l, G];;l/r) } .

The overall loss function of the Explicit-Implicit contrastive
learning module can be obtained as below,

L= Z —log

k,Lu

(18)

Ly=L"+L. (19)
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TABLE I
DATASET STATISTICS

Dataset #User #Item #View #Add-to-cart #Purchase
Beibie 21,716 7,977 2,412,586 642,622 304,576
Taobao 48,749 39,493 1,548,126 173,747 259,747

G. Joint Optimization

We combine the above two modules to optimize our rec-
ommender model, which the overall loss function of model is
formalized as,

Ly =Ly + MLs + JoLe + p]|©]3, (20)
where A1, A> and p are hyperparameters to control the influ-
ence weight of Multi-level Commonality Learning Module and
Explicit-Implicit Contrastive Learning Module and L, regular-
ization, respectively, ® represents all trainable parameters in
our Modules.

IV. EXPERIMENTS
A. Experimental Settings

1) Dataset: To demonstrate the superior performance of
our model GCMB, we conducted experiments on two real-
world datasets: BeiBei and Taobao [14] in Tabel I. The BeiBei
dataset and the Taobao dataset both consist of three different
types of user behaviors: view, add to cart, and purchase. The
interaction data in both datasets exhibit high sparsity, with the
sparsity level of 1.93% and 0.10%. Specifically, in the BeiBei
dataset, the sparsity rates for the various behaviors stand at
1.39%, 0.37%, and 0.17%, respectively. In parallel, the Taobao
dataset showcases sparsity rates of 0.08%, 0.01%, and 0.01%
for the same behaviors. Besides we observed the purchase
behavior data in both datasets is severely sparse. In the BeiBei
dataset, around 76% of users have only 0 to 15 purchase
behavior interactions, while this percentage is as high as 99%
in the Taobao dataset. In summary, both of these datasets are
highly sparse.

2) Baseline: We compare our GCMB with the following
state-of-the-art methods:

« BPR [38] supposed that observed interactions should have

a higher likelihood than unobserved interactions.

o NCF [39] used a multi-layer MLP to enhance the embed-
ding paradigm in Collaborative Filtering (CF), in order
to achieve non-linear feature interactions.

¢ NGCF [40] was an advanced CF model based on GNN,
which utilized multi-layer information propagation to
capture multi-behavior representations containing high-
order semantic information.

o LightGCN [31] performed node embedding by neigh-
borhood aggregation on the graph and removed the
transformation and nonlinear activation on the basis of
GCN.

o LightGCL [41] designed a view contrastive enhance-
ment strategy guided by rSVD for the single-behavior
recommender.
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TABLE II
THE PERFORMANCE OF MODEL WITH THE METRICS OF RECALL@K AND NDCG @K (K=10, 20, 40) ON BEIBEI, TAOBAO

Beibei Recall@10 Recall@20 Recall@d0 NDCG@10 NDCG@20 NDCG@40
BPR 0.0315 0.0482 0.0862 0.0204 0.0237 0.0314
NCF 0.0368 0.0494 0.0931 0.0184 0.0242 0.0321
single-behavior NGCF 0.0383 0.0643 0.1068 0.0188 0.0253 0.0339
LightGCN 0.0389 0.0638 0.1076 0.0192 0.0257 0.0346
LightGCL 0.0382 0.0604 0.1018 0.0202 0.0257 0.0341
NMTR 0.0389 0.0651 0.1092 0.0192 0.0258 0.0348
EHCF 0.0383 0.0642 0.1084 0.0196 0.0261 0.0351
GNMR 0.0384 0.0667 0.1173 0.0191 0.0261 0.0381
multi-behaviors MBRec 0.0395 0.0676 0.1196 0.0198 0.0272 0.0394
S-MBRec 0.0403 0.0677 0.1163 0.0205 0.0273 0.0372
MB-CGCN 0.0458 0.0726 0.1314 0.0221 0.0295 0.0413
GCMB 0.0558 0.0941 0.1478 0.0264 0.0360 0.0469
Taobao Recall@10 Recall@20 Recall@d0 NDCG@10 NDCG@20 NDCG@40
BPR 0.0143 0.0211 0.0305 0.0080 0.0097 0.0116
NCF 0.0182 0.0238 0.0401 0.0101 0.0921 0.0147
single-behavior NGCF 0.0206 0.0289 0.0412 0.0115 0.0136 0.0161
LightGCN 0.0219 0.0291 0.0420 0.0124 0.0143 0.0177
LightGCL 0.0236 0.0342 0.0477 0.0132 0.0158 0.0186
NMTR 0.0258 0.0481 0.0656 0.0157 0.0202 0.0279
EHCF 0.0276 0.0499 0.0671 0.0153 0.0210 0.0285
GNMR 0.0319 0.0458 0.0687 0.0164 0.0209 0.0288
multi-behaviors MBRec 0.0327 0.0463 0.0695 0.0177 0.0211 0.0292
S-MBRec 0.0336 0.0467 0.0664 0.0182 0.0214 0.0252
MB-CGCN 0.0366 0.0596 0.0881 0.0207 0.0265 0.0324
GCMB 0.0744 0.0989 0.1289 0.0451 0.0512 0.0574

e NMTR [13] considered the relationship of multiple
behaviors as the cascading relationship and optimized the
model under the multi-task learning framework.

« EHCEF [14] proposed a novel non-sampling transfer learn-
ing solution.

« GNMR [11] explicitly modeled the dependencies between
different types of user-item interactions under a graph-
based message-passing architecture.

« MBRec [12] focused on the collaborative relationship of
behavior patterns between cross-layer preference repre-
sentations.

o S-MBRec [10] used a multi-layer graph convolutional
neural network to capture behavior preference represen-
tations that contained high-order semantic information
and learned the differences and commonalities between
different behaviors.

« MB-CGCN [16] utilized behavior dependencies to model
the preference representation in the preference represen-
tation learning process.

3) Evaluation Metrics: In order to fully evaluate the
effectiveness of our model, we adopt two representative
evaluation metrics in the field of recommender: Recall@K and
NDCG@K [42].

4) Parameters Setting: The implementation environment
of our model GCMB is PyTorch. The learning rate
is 0.001. The training batch size is 256. The embed-
ding dim is 32. The L, regularization coefficient is 0.1
and 0.2 for Beibei and Taobao. The rank of rSVD is

4 and 2 for Beibei and Taobao. A; is searched from
{0.0001, 0.0005, 0.001, 0.005, 0.01}, A, is searched from
{0.02, 0.025, 0.03, 0.035,0.04}, and the temperature coeffi-
cient 7 is searched in {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.

B. Performance Comparison

To fully demonstrate the superiority of our model, we con-
ducted experiments with different values of K = {10, 20, 40}.
From Table II, we summarized the following observations.

Firstly, compared to all baseline methods, our model
achieved the best performance. When compared to the best
baseline method, our model showed significant improvements
in Recall@20 on both datasets, with an increase of 29.6% and
65.9%. We attribute this improvement to two main reasons:
1) Generating contrastive views guided by rSVD and then
directly aligning the node representation between the original
view and the contrastive view under different types of behav-
iors. The model can effectively extract additional information
from the contrastive views of multi-behavior to enhance the
node representation in the original views. 2) Learning multi-
level commonalities between target and auxiliary behaviors
enhanced the quality of the node representation under target
behavior.

Secondly, the overall performance of the multi-behavior rec-
ommender in the baselines outperformed the single-behavior
recommender. This reveals that auxiliary behaviors provide
valuable and useful information for the multi-behavior rec-
ommender system, positively impacting the recommendation
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Fig. 3. The ablation study of Beibei about the Multi-level Commonality
Learning module, with the metrics of Recall@K and NDCG@K (K=10,
20, 40).

for the target behavior. When compared with the best method
in single-behavior recommender method, we discover that our
model achieved significant improvements, further validating
the above conclusions.

C. Ablation Study

To explore the importance of the Explicit-Implicit
Contrastive  Learning Module and the Multi-level
Commonality Learning Module in our model, we conducted
experiments by individually removing each module and
comparing the recommender performance. As shown in
Figure 2, we use the Beibei dataset as an example. And w/o
com means to remove the Multi-level Commonality Learning
Module, w/o con means to remove the Explicit-Implicit
Contrastive Learning Module.

We observed a significant decrease in experimental results
when either of the modules was removed. Therefore, we can
conclude that both modules have a positive effect on this
model, and the Explicit-Implicit Contrastive Learning Module
can alleviate the issue of sparse observed user-item interaction
data.

Furthermore, we compared the performance of model when
only consider the commonality between final representation
and multi-level commonality. As shown in Figure 3, w/o
mlc means only consider the commonality. So, we can
demonstrate the Multi-level Commonality Learning Module is
indispensable.

D. Performance on Sparse Data

In this section, we aim to demonstrate the effectiveness
of the Multi-level Commonality Learning and the Explicit-
Implicit Contrastive Learning Modules in alleviating data
sparsity. We also seek to showcase the superior recom-
mender performance of our model on sparse datasets. To
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Fig. 4. The performance of sparse data for GCMB.

achieve this, we divided users into four groups based on
the number of interactions they have with items under the
target behavior, i.e., <15, 15-30, 30-45, and >45. Then we
compared the Recall@20 of different user groups in the
Beibei dataset through ablation experiments. Recall@20 is
the average recall value across user groups, as shown in
Figure 4.

We observed our model outperforms all ablation experi-
ments across different user groups, and w/o com and w/o
con also outperform w/o all across different user groups. This
demonstrates our model can alleviate the issue of sparse multi-
behavior data, and both the Multi-level Commonality Learning
and the Explicit-Implicit Contrastive Learning Modules play a
key role. Besides, the performance of w/o com is better than
w/o con when the user group is <15. This also demonstrates
that the Explicit-Implicit Contrastive Learning Module is
more significant when data is sparse. As the Explicit-Implicit
Contrastive Learning Module enhances node representations
of different types of behaviors, it provides a certain guarantee
for graph learning.

Additionally, we compared the performance of our model
with two representative baselines, [10] and [16]. As shown
in Figure 5 and Figure 6, our model consistently outper-
forms [10] and [16] in all user groups, confirming its superior
recommender performance on sparse datasets.
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TABLE III
PERFORMANCE OF GCMB WITH DIFFERENT LAYER ON BEIBEI

layer Recall@l0 Recall@20 Recalle40 NDCG@10 NDCG@20 NDCG@40
1 0.0070 0.0186 0.0405 0.0030 0.0058 0.0102
2 0.0558 0.0941 0.1478 0.0264 0.0360 0.0469
3 0.0408 0.0704 0.1203 0.0195 0.0269 0.0370
16 GCMB 0.12 i5 s 0.05 Recall@20 NDCG@20
~14 MB-CGCN | o o 14 MB-CGON | 0,04 0.01
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§10 0088 £, 0.03% 1
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Recall@in NDeaER efficiency, scalability, apd global sigr'lal extraction capability.
_ o001 rSVD reduces computational complexity through random sam-
0005 pling, making it suitable for large-scale datasets. It effectively
' extracts implicit collaborative signals, supplementing unob-
< 0001 served user-item interactions, and enhances user preference
] 0.0005 - representation by combining explicit and implicit signals,
000011 0.0001 improving recommet@ation accuracy and per.sonalization..
o0 0025 03 0035 004 002 0.025 003 0.035 0.04 Compared to traditional methods, rSVD is more efficient
A2 A2 than GCN for large, sparse graphs, extracts a broader range of
i o o implicit signals than Item-based CF, and provides a lightweight
Fig. 7. Performance of GCMB with different 11 and A, on Beibei. . . .
alternative to Autoencoders, especially in data-sparse sce-
narios. Experiments on two real-world datasets show that
rSVD consistently outperforms state-of-the-art recommenda-
E. Hyper-parameter Study tion methods, confirming its effectiveness and practicality.
Firstly, we consider various values for A; and Ap However, rSVD also has limitations: random sampling may
from the sets {0.0001,0.0005,0.001,0.005,0.01} and introduce uncertainty, affecting the stability of the results; the

{0.02, 0.025, 0.03, 0.035,0.04}. Then, we evaluate the
recommender performance for all combinations of A; and
Ao and present the results in the form of a heatmap. The
darker the color, the better the corresponding recommender
metrics. As can be seen in Figure 7 and Figure 8§, when
A1 = 0.001 and A, = 0.03, the recommender performance is
optimal.

Secondly, we analyze the effect of parameters T on rec-
ommender performance. By observing Figure 9, we can find
when t is larger than 0.1, the recommender performance
shows a downward trend. When v = 0.1 the model realizes
the optimal state, so we can infer that r = 0.1 is the optimal
parameter setting.

choice of the rank k and the number of samples significantly
impacts performance and requires careful tuning.

2) Enhanced Comparative Analysis: We validate the
proposed GCMB method in three ways. First, compared
to matrix factorization-based methods [38] and graph-based
methods [31], our method uses rSVD to inject implicit inter-
actions, more comprehensively capturing user preferences.
Second, unlike commonality analysis methods based on atten-
tion mechanisms [14] and meta-path-based methods [19],
our multi-level commonality learning module captures com-
monalities at different levels through multi-layer aggregation
and contrastive learning, providing finer-grained and higher-
quality node representations. Finally, by incorporating recent
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multi-behavior recommender system methods, such as MB-
CGCN [16] and MBGCN [17], our experiments show that
our method outperforms these approaches across multiple
evaluation metrics, especially in terms of implicit interaction
and commonality analysis.

3) Scalability Analysis: In this paper, the proposed GCMB
method demonstrates excellent scalability for large-scale
datasets. We address potential computational limitations and
bottlenecks by using rSVD to inject implicit interactions.
rSVD significantly reduces computational complexity to O(n -
klogk), compared to the O(n3) of traditional SVD, and
decreases memory usage through random sampling. It also
supports batch processing and parallel computation, enhancing
efficiency.

Experiments on two large real-world datasets validate the
high efficiency and accuracy of our method. To mitigate
potential bottlenecks in data preprocessing and hyperparameter
tuning, we employ efficient preprocessing techniques and
automatic hyperparameter tuning tools. Overall, the GCMB
method exhibits strong scalability and effectively addresses
computational limitations.
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4) Application Analysis: In e-commerce, GCMB enhances
user satisfaction and purchase conversion rates by providing
precise personalized recommendations through the combi-
nation of explicit and implicit interaction signals. It also
comprehensively understands user preferences via multi-
behavior analysis. In social media platforms, GCMB optimizes
content recommendations, increasing user engagement and
retention, and uncovers potential connections and interest
similarities among users through global collaborative signals.
For travel service platforms, GCMB offers personalized travel
routes and attraction recommendations, improving user expe-
rience, and predicts future user behavior through historical
behavior analysis, enabling the platform to prepare resources
and services in advance. In online video and music platforms,
GCMB generates personalized playlists, enhancing user expe-
rience, and helps users discover more content of interest by
capturing behavioral commonalities, thereby increasing user
stickiness and activity. These real-world application cases
highlight the broad applicability and significant benefits of the
GCMB method across various domains.

V. CONCLUSION

In this paper, we propose a GCMB for the multi-behavior
recommender. Specifically, to enhance the node representation
of the original view, we devise a graph contrastive learning
paradigm guided by rSVD instead of the traditional three-view
paradigm. This approach effectively injects implicit collabo-
rative relation learning into the multi-behavior recommender
model. Furthermore, we improve the quality of the node repre-
sentation by focusing on the multi-level commonality between
target and auxiliary behaviors. Extensive experiments on two
real-world datasets demonstrate that our method consistently
outperforms various state-of-the-art recommender methods.

In future work, we will integrate knowledge graphs into
the GCMB model to enhance recommendation performance.
This includes extracting entities and relationships from public
knowledge graphs (e.g., Wikidata and DBpedia), aligning them
with user behavior data, and fusing the knowledge graph
with the multi-behavior graph. Using GNNs, we will learn
embeddings and incorporate contextual information, thereby
improving the model’s understanding of user preferences. This
integration will significantly enhance feature representation,
cold-start handling, contextual awareness, and interpretability.
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