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Abstract—The growing number of consumer Internet of Things
(IoT) gadgets, including smart homes, fitness trackers, connected
appliances, and home security systems, is transforming the way
we live our daily lives. This has led to the emergence of a
collaborative cloud-edge paradigm to leverage resources and
services near the end-user, thereby providing prompt response to
delay-sensitive real-time applications. Nevertheless, the tremen-
dous amount of data generated by various IoT devices and
sent over the network is always an open security challenge.
The introduction of Federated Learning (FL) addresses the
security and data privacy shortcomings of traditional centralized
machine learning. Despite FL’s use for data privacy, it must
overcome a number of significant challenges, such as privacy
concerns, communication overhead, stragglers, and heterogeneity.
To solve these challenges, this paper proposes a novel technique
for enhancing security in IoT-enabled edge cloud computing
networks, utilizing blockchain-driven FL and Gaussian Bayesian
transfer convolutional neural network architectures for data
analysis. Blockchain-driven FL ensures the security and privacy
of consumer IoT applications. In comparison to state-of-the-
art works, the experimental results achieved throughput of up
to 89%, latency of 71%, training accuracy of 91%, validation
accuracy of 96%, and network security of 92%.

Index Terms—Consumer IoT, edge computing, cloud comput-
ing, blockchain, federated learning.

I. INTRODUCTION

THE PROLIFERATION of the Internet of Things (IoT)
paradigm, coupled with advanced technologies such
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as Artificial Intelligence (AI) has significantly paved the
way towards more sophisticated Next Generation Networks
(NGNs) [1]. Consumer IoT gadgets, such as smart homes,
fitness trackers, connected appliances, and home security
systems, are transforming our daily lives. However, the IoT
workload is characterized by low latency and high respon-
siveness [2]. Utilizing the centralized processing, analysis
and storage capabilities of cloud datacenters for serving geo-
graphically distributed IoT devices leads to increased response
time. As a result, the collaborative cloud-edge paradigm
is an optimal choice because it leverages resources and
services in close proximity to the end-user, providing prompt
response and improvising overall network bandwidth [3]. The
significance of IoT devices has increased, contributing to
the development of new consumer applications that create
intelligent environments for people, enhancing their quality
of life [4]. Nevertheless, the security of IoT devices and
data over networks remains vulnerable due to a myriad of
modern attacks and the inherent heterogeneity within the IoT
landscape [5]. In addition, the integration of AI in centralized
cloud data centers gives rise to significant challenges such as
privacy and data leakage as models are deployed on centralized
cloud data centers using data aggregated from numerous IoT
devices. A distributed learning model known as Federated
Learning (FL) provides hyper-personalized space, ensuring
data localization with less dependency on cloud infrastructure.
In FL, an initialized global model is transmitted by the server
to the end devices, which subsequently utilize their local
data for training their models [6]. Each device computes the
weights and sends them back to the Mobile Edge Servers
(MES) within a single epoch. The server then receives the
trained local models. This iterative process continues until the
training accuracy of the global model satisfies the server’s
criteria [7]. Hence, incorporating FL into the collaborative
cloud-edge paradigm retains data privacy, optimizes bandwidth
utilization and improves model accuracy [8].

However, there are still some challenges with this inte-
gration, such as privacy concerns, communication overhead,
stragglers, heterogeneity, etc. For example, it’s not easy to
keep track of model updates; it’s open to security attacks
like adversarial, model inversion, or membership inference;
the integrity of the data has been compromised, and there are
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trust issues [9]. Therefore, it becomes crucial to have a secure
and robust solution in order to avoid malicious trust estimates
and cope with attacks tailored toward trust management.
Privacy concerns pertain to the risk of exposing sensitive
data during model training [10]. To reduce the risk of data
leakage, our suggested approach incorporates cutting-edge
privacy-preserving methods like differential privacy and secure
multi-party computation. Additionally, we addressed effective
aggregate procedures to enhance the Quality of Service (QoS)
parameters [11]. Communication overhead involves the cost of
transmitting model updates across the network. Stragglers are
slow or delayed participants that can hinder training efficiency.
Heterogeneity Clients’ data distribution and system capabil-
ities vary, raising concerns. Blockchain has been introduced
to enable distributed, immutable, transparent, verifiable, and
decentralized solutions by empowering consumer IoT devices
to execute workloads collaboratively [12]. Blockchain when
integrated with FL, balances the workload across IoT devices
and overcomes the above-mentioned issues [13]. It can imple-
ment trusted distributed authentication and authorization for
devices belonging to specific IoT use cases. Apart from this,
it ensures data reliability by facilitating data traceability and
accountability for tracking billions of IoT devices, transaction
processes, and intra-device coordination [14]. Above all, it
guarantees the exchange of messages as transactions, validated
by smart contracts. Furthermore, we manage data access
using the following principles: Some of the most resilient
encryption standards support an additional layer of security
that intruders must get around [15]. These standards ensure the
secure storage of locally trained data from various transactions.
Concerns about single-point failures are alleviated, as there is
no centralized authority. It provides a secure platform for IoT
consumer devices, fostering a high level of trust because the
majority of network participants must reach a consensus to
validate each device’s transactions. The main contributions of
this research article are:

• We propose a decentralized and distributed solution to
the data-sharing challenges of machine learning models,
safeguarding data privacy in critical real-time consumer
IoT use cases.

• We design a secure blockchain-empowered FL model that
helps to mitigate potential attacks such as malware and
ransomware, device spoofing, Denial of Service (DoS),
data integrity and unauthorized access, data privacy and
eavesdropping.

• We develop a novel framework for securing network-
based data analysis using a new Gaussian Bayesian
transfer convolutional neural network method.

• We evaluate the effectiveness of the proposed work with
benchmark real-world datasets and it achieves superior
performance compared with state-of-the-art works at
influential parameters.

The rest of this paper is organized as follows: Section II
presents a brief review of state-of-the-art approaches.
Section III discusses a system framework model and the
proposed technique. Section IV presents the illustrative exper-
imental results of the proposed technique. Finally, Section V
concludes this paper.

II. RELATED WORK

Machine learning models play a major role in IoT security to
detect illegitimate users and monitor the anonymous behavior
in the network, but using a centralized system doesn’t serve as
an optimal solution [24]. Therefore, the FL approach, which
updates the model rather than the user’s data, addresses these
issues. The server side performs the aggregation based on the
received weight and bias, ensuring the privacy of end users’
data. For the participants who want to train a cooperative
model, FL offers a promising solution with synchronous and
asynchronous approaches. By learning from dispersed data,
FL delivers edge intelligence. Federated Averaging (FedAvg)
is one of the most widely used algorithms in FL [25] which
allows for distributed machine learning where data remains
local on client devices, and the model is trained collaboratively
across multiple devices. The FedAvg algorithm works by
performing local training on each client device, and then
aggregating the model updates (using a weighted average) on
a central server. Prominent industries have widely adopted the
collaborative concept, and in FL, it can reduce the privacy risk
associated with direct data exchange [26]. However, FL faces
some security challenges especially modern attacks that make
it difficult to track and store the data.

Blockchain is a decentralized and distributed ledger tech-
nology that provides secure and transparent services, where
traditional data-centric failed. The developed approach inte-
grates blockchain and FL for collaborative mode training
at local sites, ensuring data privacy for healthcare applica-
tions [16]. In the healthcare domain, the authors have used
the FL-driven blockchain approach to secure patent records.
Blockchain technology offers the smart contracts concept
between the users and sensors to enable the transfer of
healthcare records over the networks [17]. Furthermore, FL
provides collaborative training and learning mechanisms that
facilitate coordination with multiple mobile edge devices,
thereby enhancing network privacy and preventing any poten-
tial data leakage [18]. Blockchain incorporates decentralization
and transparency into the network, overcoming the limitations
of the central server and ensuring data security. The authors
depict the need for blockchain in AI-enabled edge networks
and integrate blockchain with AI over the edge network for IoT
applications [19]. Several challenges in terms of energy effi-
ciency, model optimization, data administration and existing
solutions along with their limitations have been discussed by
the authors in the article. The aggregation process in federated
learning suffers from Byzantine attacks and other security
issues where attackers try to modify the weights of the model.
A convolutional Kernel-based defense aggregation (CKADA)
approach has been proposed by authors that use the angle
between convolutional kernels to avoid the mentioned attacks
and enhance the performance in terms of accuracy and loss
parameters [20]. Interpretability and computational constraints
are major issues with traditional approaches due to which
data privacy and security are compromised in cyber-physical
systems. The authors have proposed an Interpretation-based
Privacy-Preserving FL technique (IP2FL) that mitigates the
mentioned privacy issues by integrating IP2FL with Additive
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TABLE I
COMPARISON OF OUR PROPOSED WORK WITH EXISTING STUDIES

Homomorphic Encryption (AHE) to reduce the overhead and
guarantee the privacy of data [27]. IoT data is transmitted
through open channels that attract attackers to gain the
confidential information of end users and compromise authen-
tication, integrity and confidentiality. Hence, an enhanced
secure mechanism is needed to address the mentioned chal-
lenges in IoT environments where the security-based algorithm
is implemented over an edge server. The authors have proposed
a secure approach for smart city applications where IoT
devices and base station prove their legitimacy before trans-
mitting the data [21]. The communication between the sensor
and receiver is established in three phases to evade the user
anonymity, and forging attacks.

A hybrid Convolutional Neural Network (CNN)-based
approach has been developed by authors to localize the
node using features and enhance the influential parame-
ters like mean errors, median and efficiency in LoRaWAN
networks [22]. Trust, transparency and immutability are two
major issues with federated learning-based solutions for IoT
applications. The authors have proposed a blockchain-enabled
FL-based solution that transparently provides the security
of data and replaces the centralized aggregator leading to
enhanced security as well as trustability [23]. The proposed
work uses an edge server to update the models and avoid
the possibility of data leakage in the gateway. Blockchain
technology uses a consensus process to enhance the security
in model sharing for consumer IoT applications. Blockchain
technology is a developing platform that provides services
and opportunities for traditional data-centric networks [28].
Another research [29] provided in-depth analyses of cloud-
edge collaborative architecture, emphasizing collaborative
learning mechanisms such as pre-training models, graph
neural networks, and reinforcement learning. However, they
did not address the promise of decentralized FL in col-
laborative architecture. Numerous studies have explored FL
in an edge computing context, primarily focusing on edge
computing-enabled methodologies and ignoring system entity
collaboration.

Security and privacy are major concerns with AI-enabled
IoT devices, as they use the centralized model to process
the data. The authors have proposed a Digital Twin (DT)
based on automated consumer electronic devices that send
only weights and bais to train the model using FL [30]. The
proposed approach utilizes blockchain technology to securely

store data after each training cycle, resulting in enhanced
performance metrics, including accuracy, precision, and recall.
In another research work [31], the authors discussed and
addressed the three primary concerns of FL at mobile edge
networks: communication cost, optimal resource scheduling,
privacy, and security of IoT applications. This work also
established the foundational elements and distinctive qualities
of FL. In [32], authors review the security and privacy issues
associated with FL systems. Additionally, it provides several
functions commonly used in cellular and ad hoc networks,
including resource management and content caching. The
authors employ the Mobile Edge Computing (MEC) technique
to address the limitations of the existing radio access network,
utilizing the cellular network edge [33]. The authors suggest
that MEC provides a collaborative, real-time, context-aware
framework that interacts with an underlying communication
network. The authors suggested a two-tier compute offloading
system to cut down on network latency using MEC. This
would improve energy efficiency or power consumption in
heterogeneous networks. The authors also suggested making
dynamic offloading decisions based on the anticipated IoT
workload in the collaborative edge cloud to reduce task time.
They also took into account the battery capacity of User
Equipment (UE) in software to create an ultra-dense network,
utilizing the concept of a software-defined network. Table I
compares our proposed work with existing studies based on
techniques, aims and objectives, performance, and limitations
to demonstrate its uniqueness and novelty.

III. SYSTEM MODEL

The proposed model aims to improve consumer IoT
applications’ security in an integrated cloud-edge comput-
ing paradigm using a blockchain-driven FL architecture by
analyzing network data, as depicted in Fig. 1. The work-
flow originates from the IoT layer, which constitutes various
use cases such as autonomous vehicles, predictive mainte-
nance, Unmanned Aerial Vehicles (UAVs), smart healthcare,
maritime engineering, smart homes and Augmented Reality
(AR)/Virtual Reality (VR) applications. Massive amounts of
data are generated by consumer IoT devices, for which ensur-
ing privacy and safeguarding security becomes of paramount
importance, such that sensitive or confidential information
remains protected from unauthorized access or breaches.
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Fig. 1. Proposed Framework for Blockchain enabled FL Cloud Edge
Environment.

Furthermore, we assume that all these devices possess the
capability to perform model training using device local data.
These devices need to possess computational capabilities for
training and developing localized models, for which edge
servers are proposed to cater to the resource-constrained nature
of consumer IoT devices. Finally, the global model is attained
by aggregating the results on a centralized cloud server.

The goal of this work is to address the security concerns
of 4GNet [34]. Attackers inside or outside 4GNet may use
wireless or wired channels in the backbone or access networks
to launch attacks like DoS, port scanning, data integrity
and unauthorized access, malware distribution attacks, etc.
Three distinct tiers within 4GNet disperse the nodes to
detect attacks: cloud, edge, and IoT devices. Various layers
cooperate to improve the attack detection model. Within the
FL system, each participant shares the same identity and
status. We retain all parties’ data locally, ensuring privacy
and legal compliance. Apart from this, transfer learning offers
a mechanism for knowledge migration, even in cases where
users or features lack alignment, by transferring cryptographic
parameters across datasets. FL addresses the challenge of data
silos, fostering collaboration between two or more entities that
utilize data.

FL is one of the machine learning paradigms where multiple
parties, such as devices or organizations, collaboratively train
a global model while keeping their local data private. Rather
than centralizing data in one location, FL keeps data decen-
tralized and ensures it remains on the participants’ devices or
nodes [25]. However, this decentralized approach introduces
several security and privacy concerns, such as data privacy,
model poisoning, byzantine faults and trust issues [30].
Blockchain technology has been introduced to overcome
the mentioned issues with its decentralized, immutable, and
transparent characteristics that can help mitigate these issues
and enhance the security and robustness of federated learning
systems [23]. Blockchain addresses the challenges of FL,
particularly in securing data from modern attacks by enabling

a distributed and decentralized solution. The cryptographic
features of blockchain provide a guaranteed solution to achieve
data consistency, secure transmission, and data storage. Every
node connects to the hash of the previous node, ensuring
that no one can alter the information. In addition, blockchain
can monitor new devices that have joined the network and
validate authentication and authorization based on transaction
records [16]. This mechanism improves secure communication
between devices and provides more transparent transactions,
as well as validations in the network. This collaboration occurs
seamlessly without the need for data to traverse beyond local
boundaries, thereby enhancing efficiency and mitigating con-
cerns associated with centralized data sharing. Furthermore,
we suggest a mechanism for evaluating each participant’s
trustworthiness based on the assumption that nodes will use
blockchain to validate a locally trained model. Therefore, only
after reaching a consensus does the cloud receive an updated
global model.

Blockchain enhances the security, privacy and reliability
of FL by addressing critical vulnerabilities that threaten
its effectiveness in decentralized environments [23]. Attacks
like byzantine faults, where malicious participants send cor-
rupted updates and model poisoning, where adversaries inject
backdoors into the global model, are mitigated through
blockchain’s decentralized consensus mechanisms, such as
Practical Byzantine Fault Tolerance (PBFT) or Proof-of-Stake
(PoS), ensuring that only valid updates contribute to the
model. Similarly, data poisoning attacks, which degrade model
quality by manipulating local datasets, are countered through
blockchain’s immutable ledger, which maintains a secure
and auditable record of data provenance. Privacy threats in
FL, such as gradient inversion attacks (reconstructing pri-
vate data from shared gradients) and membership inference
attacks (determining if specific data was used in training), are
mitigated by integrating blockchain with advanced privacy-
preserving techniques like homomorphic encryption, secure
multi-party computation and differential privacy, ensuring
gradients are securely aggregated without exposing sensitive
information [16]. Blockchain also eliminates the risk of single
points of failure in centralized systems by decentralizing
aggregation, making FL systems fault-tolerant and resilient
to targeted attacks. Moreover, blockchain’s transparent and
auditable framework enhances accountability, deterring infer-
ence attacks and ensuring secure management of model
updates and contributions [12]. The convergence between
blockchain and FL creates a robust, privacy-preserving and
scalable solution suitable for deployment in adversarial and
untrusted settings, such as healthcare, IoT and financial appli-
cations. Therefore, addressing security and trust challenges,
blockchain strengthens FL’s potential for real-world adoption.

In this paper, we propose a novel blockchain-driven FL
framework that prioritizes data privacy during model training,
while blockchain manages integrity, traceability, and decen-
tralization at the network’s edge to guarantee data integrity,
transparency, and decentralization for real-time consumer IoT
use cases. In addition, the proposed work helps to mitigate
potential attacks such as malware and ransomware, device
spoofing, DoS, data integrity and unauthorized access, data
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Fig. 2. Robust and Secure Connection in IoT ecosystem.

privacy and eavesdropping. It also secures network-based data
analysis using a novel Gaussian Bayesian transfer convolu-
tional neural network approach.

A. System Model Workflow

The cloud layer stores the gateway IDs and blockchain
information associated with each gateway, ensuring universal
and continuous access for end users. In any situation, the
exchange of blocks facilitates seamless knowledge availability.
Each device is characterised by a unique identification (ID)
that distinguishes it from other entities within the system. In
addition, the devices possess computational capabilities, which
assist them in carrying out Public Key Infrastructure (PKI)
and Secure Hash Algorithm (SHA2) encoding and decoding
operations. Devices and gateways’ interconnection operations
include certificate registration and data storage.

In Fig. 2, the gateway acts as an intermediary between
IoT devices and the cloud, where Blockchain helps store
gateway IDs (unique identifiers for gateways) in the cloud in
a secure, tamper-proof manner. These IDs are linked to the
blockchain to ensure that only authorized gateways can interact
with the IoT devices. The device can be issued a unique
cryptographic identity (often in the form of public/private keys
or digital certificates) using blockchain that is stored in a
distributed ledger. The blockchain records every authentication
event and device interaction in a secure, immutable ledger.
Once a device’s identity is registered on the blockchain, it
cannot be altered, ensuring that the device’s identity remains
verifiable over time. This makes it harder for malicious actors
to spoof or impersonate devices. The cloud layer may store
essential blockchain-related information, such as transaction
records, device identities, and logs of interactions between IoT
devices and gateways. This ensures that the authentication data
remains available to users and IoT devices even if some of
the devices go offline or the blockchain network experiences
failures. The entire workflow process is discussed below:

• Routine Validation at Gateway: Devices authorized by the
gateway consistently undergo routine validation. At the
IoT tier, devices D_n initiates sign-up or login attempts,
connecting to the gateway instantly. Then, the gateway
prompts for a linked device ID or requests information
about the connected devices.

• Cryptographic Encryption by Device Gateway: The
device gateway employs cryptographic technology to
encrypt device data, which is then sent to D_n, thus estab-
lishing a secure foundation for further communication.

• Decoding Unregistered or Non-Encrypted Gateway
Messages: Encrypted messages received via an unreg-
istered or non-encrypted gateway are decoded and
requested.

• Service Request to Gateway at IoT Tier: At the IoT
tier, the request is sent for services to the gateway
that includes Device ID and SHA2 key to communicate
securely between devices and the gateway.

• Validation of Information Received: The information
received in the form of an encrypted packet is decrypted
and verified to check if it is coming from a legitimate
user or not.

• Registration of Legitimate Devices: After successful val-
idation, legitimate devices are registered over the cloud
platform and become eligible to use the services from the
cloud.

• Robust and Secure Communication: Gateways commu-
nicate as per requirement with the cloud to update
the information like ID lists, and other attributes in
the incoming packet, hence, enabling robust and secure
communication.

After validation, the device sends the data in encrypted
form to a gateway which stores and processes it after decryp-
tion using a public key algorithm. The secrecy capacity is
defined as the maximum achievable data transmission rate
at which secure communication can occur, ensuring that
unauthorized parties are unable to decipher or access the
transmitted information. This rate represents the highest level
of data throughput that maintains confidentiality and prevents
eavesdroppers from obtaining any useful information from the
communication channel [35], [36].

The hash key (H) of the ith layer can be calculated by:
ψ(Hi−1, pi, pi+1), where ψ stands for an appropriate hashing
method, such as SHA256, and p stands for the layer’s settings.
A ledger block is used to keep the hash of all the layers. For
security purposes, we use the block to monitor and test the
compromised and tempered layers [35], [36]. To determine the
order of ledger block input, we selected a random number
between 1 and the entire number of layers. The layer signature
reflects the layer’s private key. The complete model examines
each updated ledger block to determine whether the layer
above it has approved the update or not.

B. Gaussian Bayesian Transfer Convolutional Neural
Network

The mixture density is expressed as a weighted sum of
k components, where the density of the jth component is
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represented by p(x; θj), with θj being the component-specific
parameters. The function p(x) represents the probability that a
given data sample belongs to the jth mixture component. The
component mixture density can be defined as follows:

p(x) =
K∑

j=1

πjp(x; θj), (1)

p(x) =
C∑

c=1

πcfc(x | θ). (2)

A vector of parameters, θ = {θ1, . . . , θk, π1, . . . , πk}, is
represented by a Mixture model, where Z is a hidden variable.
There are K discrete sets that accept the value 1 based upon
the condition zk ∈ {0, 1} and

∑
z zk = 1.

p(z, x) = p(z)p(x | z), (3)

where p(x|z) is a conditional and marginal distribution from a
multinomial distribution that relies on z.

Mixing coefficients πk are used to specify the marginal
distribution across z, illustrated as follows:

p(zk = 1) = πk. (4)

The probability density functions of X can be defined as
follows:

p(x | μk, �k) = 1√
2π |�−1|e− 1

2 (x−μx)
T�−1

x (x−μx)
T
, (5)

fc(x | μc, �c) = 1

(2π)
1
t |�c| 1

2

e− 1
2 (x−μc)

T�−1
c (x−μc) (6)

where μx is a vector of means, (μx1, . . . , μxN), and �x is an
N × N covariance matrix.

The linear superpositions of Gaussians, can be used to
represent a Gaussian mixture distribution:

p(x) =
K∑

k=1

πkp(x | μk, �k) (7)

π̂c = nc

n
(8)

μ̇c = 1

nc

∑

(i,yi=cj)

xi, p(x | zk = 1) = p(x | μk, �k) (9)

�̂c = 1

nc − 1

∑

(i|yi=c)

(xi − μc)(xi − μc)
t (10)

where x is modeled as a Gaussian distribution for a specific
value of z, and the probability density function is given by:
p(x | z) = ∏K

k=1 p(x | μk, �k)
zk .

The marginal distribution of x is determined by adding the
all-possible states of z, given as follows:

p(x) =
∑

z

p(z)p(x | z) =
K∑

k=1

πkp(x | μk, �k). (11)

For specific data vectors, the “posterior probability” is
represented by:

γ (znk) = πkN (xn | μk, �k)∑K
j=1 πjN (xn | μj, �j)

,

= p(zk = 1)p(x | zk = 1)
∑K

j=1 p(zj = 1)p(x | zj = 1)
. (12)

Set the means μk, covariances �k, and mixing coefficients
πk to their starting values, then calculate the logarithmic
likelihood. To evaluate the duties, we can use the current
parameter values as follows:

γ (znk) = πkN (xn | μk, �k)∑K
j=1 πjN (xn | μj, �j)

. (13)

We utilize the current responsibility equation to re-estimate
the parameters as follows:

μnew
k = 1

Nk

N∑

n=1

γ (znk)xn, (14)

�new
k = 1

Nk

N∑

n=1

γ (znk)
(
xn − μnew

k

)(
xn − μnew

k

)T
. (15)

The training phase, utilizing Bayesian neural networks,
requires posterior assumptions, which represent the probabilis-
tic representation of uncertainty about the true values of the
model. However, the accurate inference of the model posterior
poses a computational challenge and hence becomes imprac-
tical, especially for moderately large models. Therefore, the
model posterior is typically estimated. Variational inference
is an efficient and well-liked approximation technique. The
function f (X) = y estimates the output y from the inputs X
given the input set X = {x1, x2, . . . , xN} and a matching output
set y = {y1, y2, . . . , yN}. Using Bayesian learning, one can
extract the model posterior p(f |X, y) in a principled manner.
The posterior can only be calculated using two components.
A prior distribution p(f ), which reflects a previous belief, first
represents the estimator functions. In addition, a probability
function p(y|f ,X) is provided to show how likely it is for
the model f to correctly anticipate the output y in light of the
observations X. More specifically, the posterior is produced
from an unknown set of data (x, y) by integrating over all
feasible estimator functions (f ), which are parametric models
with parameters θ determined by:

p
(
y∗ | x∗,X, y

) =
∫

p
(
y∗ | f

)
p
(
f | x∗,X, y

)
df

=
∫

p
(
y∗ | f

)
p
(
f | x∗, θ

)
p(θ | X, y) dfdθ.

(16)

The log evidence lower bound with regard to the parameter
set θ is maximized when the aforementioned KL divergence
is minimized, according to:

KLV1 =
∫

q(θ)p(F | X, θ) logp(y | F) dFdθ − KL(q(θ)‖p(θ)).

(17)

The variational function that is produced by maximizing
KLVI closely resembles the posterior. Using the approximation
q(θ), the following formula can be simplified:

q
(
y∗ | x∗) =

∫
p
(
y∗ | f

)
p
(
f | x∗, θ

)
q(θ) df dθ. (18)
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The network samples the network parameters θ from
q(θ) when performing inference. The stage l feature extrac-
tion module, denoted as g(l), extracts the features H(l) as
specified by:

H(n) = g(l)
(

H(l−1); W(l), b(l)
)

= normalize
(

pool
(

ReLu
(

W(l) · H(l−1) + b(l)
)))

. (19)

where the operator denotes convolution. A few more convo-
luted networks make up the fully connected layers, which are
considered an extracting features layer. The size of the network
will affect the size of the resulting feature map. After the
scaling factor has been combined and transmitted, the length of
the feature space is determined using the equation as follows:

N′
x = N(l−1)

x − K′
x + 2P′

x

S′
x

, (20)

N′
y = N′

y − K′
y + 2P′

y

S′
y

, (21)

where K is the size of the ConvNet, S is the scale parameter,
and P is the fill total number of pixels. After the pooling
technique, there is a quadratic modification in the kernel
function. Cross-validation is used to determine the masses
and properties of each layer, and we yield the equation of a
connected neuron as follows:

x′
j = Relu

⎛

⎝
∑

i∈Mj

x(l−1)w′
ij + b′

j

⎞

⎠. (22)

where M is the filtering diameter, w and b represent the
connecting load as well as distance, respectively. The pooling
layer, often positioned between two fully connected layers,
is used for network segmentation. Optimum and median
aggregating methods are the two varieties. In order to decrease
the number of layers without maintaining the consistency of
the characteristics, evaluations of certain attributes in the input
neurons are assessed and combined. This is accomplished
by using a quantization phase to decrease the variance of
the converted data. The calculation for the convolutional is
provided as follows:

y = max(xi), xi ∈ x (23)

where xi is the molecule’s function in the area marked on the
convolution layer by the character x. Layers with full connec-
tivity connect all the layers from the previous convolutional
layer to the input layers, turning all localized properties into
feature sets. Our network’s neural component contains three
completely connected layers [35], [36]. Convolution layers
are more susceptible to overloading problems. To address
this problem, we use the dropout mechanism to reduce the
regularization of the initial two phases. The output layer is the
last completely linked layer, and we replace it with an output
layer that has two neurons to represent the likelihood that
output will occur. By the SoftMax function, the probability is
given as follows:

yj = exp(fj)∑2
i=1 exp(fi)

, j = 1, 2. (24)

where yj is the output probability of the jth neuron. Let
x1, x2, x3, . . . , xn be independent random variables defined
over X, we have:

In(g) = 1

n

n∑

i=1

g(xi), (25)

which describes the results calculation

E(I(g)− In(g))
2 = Var(g)

n
, (26)

Var(g) =
∫

X
g2(x) dx −

(∫

X
g(x) dx

)2

. (27)

A neural network (NN) consists of input, output, and hidden
layers. Several types of activation functions are possible in
NN, represented by nf . Input neurons are denoted by j, hidden
layers by I in the equations, and bias weight is wε̄∧(H) .

The output of the hidden layer e(H) can be calculated by:

e(H) = nf

⎛

⎝W((i))
(R̄∧(i)) +

n∑

j=1

w((i))(ji) FD

⎞

⎠, (28)

Ĝ = nf

(
W(G)

(B̂O)
+

n0∑

i=1

W(G)
(i¯)e

(i)

)
(29)

The biases Bn and weight matrices Wn are calculated by:

Wn = Un =
N∑

n=1

a ·
(

rand � −1

2

)
, (30)

Bn =
N∑

n=1

a ·
(

rand − 1

2

)
, (31)

which are used for Error Reduction Network (ERN)
optimization, as given:

∣∣∣R(f̂ )− R̂n(f̂ )
∣∣∣ ≤ sup

f ∈Hm

∣∣∣R(f )− R̂n(f )
∣∣∣

= sup
f ∈Hm

|I(g)− In(g)|. (32)

IoT devices have limited resources, making it impractical
to train machine learning models directly on them. This
is because neural network-based models require extensive
datasets and computational capacity that IoT devices typi-
cally lack. We train the model on edge servers, which offer
sufficient computational resources and deliver faster response
times compared to cloud data centers. Hence, training the
model over the edge servers would not create an extra
delay in the network. The computational complexity of deep
learning-based models, such as Gaussian Bayesian transfer
convolutional neural networks, is influenced by several param-
eters and is consistently high due to their reliance on large
datasets for training. The complexity for training a CNN is
generally O(N × D × K2 × M × m), where N is the number of
filters, D is the number of input channels, K is the kernel size,
M is the number of operations (e.g., activations) per filter, and
m is the number of samples.

IV. PERFORMANCE EVALUATION

In this section, we discuss the experimental setup, dataset
description and experimental results.
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TABLE II
COMPARATIVE ANALYSIS OF PROPOSED IOT_BFLA_ML WITH BASELINE APPROACHES BASED ON QOS PARAMETERS

A. Experimental Setup

To evaluate the performance and effectiveness of our
proposed approach, we use the MATLAB simulation toolkit
to set up a simulation environment. The system is configured
with 16 GB of RAM, an 11th generation Intel Core i7 CPU
(i7-7700) running at 3.60 GHz, and 500 GB of secondary
storage. Our study focuses on three key techniques: decen-
tralized ledger, distributed learning, and 4GNet. Together,
these techniques contribute to the advancement of blockchain-
enabled 4GNet edge networks and enhance their capabilities
for cross-silo FL.

B. Dataset Description

The work has been evaluated over 3 datasets [37]: Labeled
Faces in Wild (LFW), CelebA, and CASIA-WebFace.

• LFW: It is a standardized dataset tailored for facial
recognition, comprising 13,233 photos featuring 5,749
individuals [37]. Each photograph is labeled with
attributes such as race, age, gender, hair color, and
eyewear. LFW1 focuses on the “race: black” target
property, functioning predominantly as a race classifier,
whereas LFW2 is primarily designed as a race classifier,
emphasizing the target property “male” for LFW1.

• CelebA (CelebFaces): It contributes attributes such as
race, smile, and black hair, which are the target properties
for FL on CeleA represented as CelebA1, CelebA2,
CelebA3, and CelebA4, respectively [37]. The primary
tasks assigned to FL in the context of CelebA involve the
classification of gender and smiles. The dataset comprises
a total of 128,000 photos with 64 photographs per
participant.

• CASIA-WebFace: It comprises more than 400,000 facial
photos representing 10,575 individuals [37]. In CASIA1,
the target property is black race, and the main task is
gender classification, whereas in CASIA2, the major work
is race classification, and the target property is male.

C. Baseline Approaches

We have chosen two prominent state-of-the-art techniques
as baselines from the literature: blockchain-enabled federated
learning (FL-BC) [6] and blockchain-enabled deep reinforce-
ment learning (DRL-BC) [26] to evaluate the performance of
our proposed work (IoT_BFLA_ML). Despite being one of the
most widely used algorithms in FL [25], we did not consider

FedAvg for performance comparisons due to the following
limitations [15], [30], [38]:

1) Data Heterogeneity: Each client often has non-IID
(Independent and Identically Distributed) data, meaning that
the distribution of the data varies across clients. FedAvg
can struggle in this scenario because the aggregated model
may not generalize well if the client’s data distributions are
significantly different.

2) Model Bias: In cases of severe data imbalance, the
global model may become biased toward the data distribution
seen by the majority of clients, potentially resulting in poor
performance for clients with minority data distributions.

3) Model Update Size: While FedAvg reduces the need for
transferring raw data, the size of model updates (weights or
gradients) can still be substantial, especially with large models
or large numbers of clients.

4) Straggler Problem: In FL, some clients may take much
longer than others to compute updates, leading to delays
in the global aggregation step. Environments with varying
computational resources or unreliable connectivity exacerbate
this issue.

5) Slow Convergence rate: FedAvg can suffer from slow
convergence, especially when clients’ models are significantly
different or when clients have insufficient local training (due
to limited data or computation). This can make the training
process longer when compared to centralized methods.

6) Model Overhead on Clients: The local training
process requires clients to run machine learning models,
which can be resource-intensive, especially on devices with
limited computational power, such as smartphones or IoT
devices.

7) Poor Data Quality: Clients with low-quality data, such
as noisy or incomplete data, may train the global model on
unreliable data, thereby affecting its performance. However,
centralized learning allows for systematic data preprocessing,
which FL frequently finds challenging to control.

8) Trust Issues: The central server holds the role of
aggregating client updates, which can be problematic in
scenarios where clients do not trust the central server, leading
to concerns about data manipulation or model poisoning.

D. Results and Discussions

This section presents a comparative analysis of the proposed
work (IoT_BFLA_ML) and baseline approaches (FL-BC [6]
& DRL-BC [26]) evaluated across the mentioned datasets as
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Fig. 3. Comparison between IoT_BFLA_ML and baselines for the LFW
dataset in terms of throughput, latency, training accuracy, validation accuracy,
network security, and network robustness.

illustrated in Table II. We have evaluated all the test cases
in the edge cloud environment to thoroughly investigate the
LFW, CelebA, and CASIA-WebFace datasets, and ultimately
evaluate crucial performance metrics such as training and
validation accuracy, latency, network security, throughput, and
network robustness.

1) Test Case 1: LFW Dataset: In the first test case, we
have chosen the LFW dataset to assess the performance
of proposed work (IoT_BFLA_ML) and baseline approaches
(FL-BC [6] & DRL-BC [26], as illustrated in Fig. 3. LFW
includes images captured in diverse and uncontrolled condi-
tions, closely mimicking the real-world environments in which
IoT devices operate. This variability helps test the robustness
and adaptability of the FL models when deployed in real-
world IoT applications, ensuring they can handle diverse and
unpredictable inputs.

The proposed IoT_BFLA_ML technique secures the data
from outsider attacks and plays a vital role in ensuring the
security and privacy of data in a collaborative cloud-edge
environment. The proposed model is trained over the cloud
and can detect anomalies or all kinds of modern attacks that
usually occur in IoT networks. The LFW dataset’s diverse and
unconstrained images provide a comprehensive test bed for
assessing the robustness and accuracy of the proposed model in
various conditions, closely mirroring the environments where
IoT devices operate. The proposed approach is applied to
the mentioned dataset for 100 epochs initially to measure the
performance, then the number of epochs is increased to 100
every time up to 500. In addition, the proposed approach
analyzed the data request using a convolutional neural network
and improved the latency by up to 63%, training and validation
accuracy by up to 86% and 91%, throughput up to 83%,
network security up to 85%, and network robustness of 81%.
In the baseline approach, FL-BC achieved a latency of 59%,
training accuracy of 82%, throughput of 79%, validation accu-
racy of 85%, and network security of 81%, network robustness
of 77%; DRL-BC attained latency of up to 61%, training &
validation accuracy of 85-89%, throughput of 81%, network
security of 83%, and network robustness of 79%. Hence, By
leveraging the LFW dataset, the proposed approach ensures

Fig. 4. Comparison between IoT_BFLA_ML and baselines for the CelebA
dataset to improve several QoS parameters including throughput, latency, and
network robustness.

robust model training and validation in diverse, real-world
conditions, making it a viable solution for secure and efficient
IoT data processing.

2) Test Case 2: CelebA Dataset: In addition to this, the
work evaluates the performance of the proposed technique on
the CelebA dataset as shown in Fig. 4. Its many annotations
and large size make it a complete test for figuring out how
well the blockchain-enabled FL model works, especially at
complex, multi-attribute facial recognition tasks. The model
achieved enhanced multi-label classification accuracy, show-
casing its ability to handle complex attribute recognition tasks.
The dataset’s diverse conditions, including variations in pose,
lighting, and occlusions, consistently validated the model’s
robustness. Furthermore, the proposed technique exhibited
superior scalability and efficiency, as evidenced by improved
latency and throughput figures, making it well-suited for
real-time IoT applications. We also validated the model’s
privacy-preserving aspects, using blockchain to ensure secure
and verifiable model updates, thereby preventing unauthorised
access and data breaches.

3) Test Case 3: CASIA-WebFace Dataset: The third test
case has been conducted to evaluate the proposed work
performance over the CASIA-WebFace dataset. The authors
have applied the blockchain-driven FL approach with a
Gaussian Bayesian transfer convolutional neural network to
secure the network and detect any malware or port scanning
types of attacks. The integration of GBT-CNN in existing
frameworks offers significant advantages in securing networks
and detecting various types of attacks, such as malware and
port scanning. The ability to quantify uncertainty, leverage
transfer learning, enhance robustness, improve model con-
fidence, and scale effectively makes GBT-CNN a powerful
tool for maintaining robust and reliable network security in
dynamic and evolving threat landscapes. The simulation-based
outcome of the proposed and baseline techniques is shown in
Fig. 5. The proposed approach achieved maximum throughput
of up to 89%, latency of up to 71%, training and validation
accuracy of the model is up to 91% to 96%, network security
of 92%, and network robustness of 93%. The performance
of the existing FL-BC is assessed in the same simulation
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Fig. 5. Comparison between IoT_BFLA_ML and baselines for the CASIA-
WebFace dataset in terms of throughput, latency, training accuracy, validation
accuracy, network security, and network robustness.

environment, but the efficiency of parameters was not up to
the proposed approach. DRL-BC attained throughput of 88%,
latency of 69%, training accuracy of 89%, validation accuracy
of 94%, network security of 89%, and network robustness of
91%. Our proposed work (IoT_BFLA_ML) outperforms the
baseline approaches (FL-BC [6] & DRL-BC [26]) in terms of
QoS parameters, as demonstrated by the experimental results
using three different datasets (LFW, CelebA, and CASIA-
WebFace).

V. CONCLUSION

IoT has permeated many aspects of our daily lives in recent
years, and AI-powered intelligent services have proliferated.
However, the centralized processing of data does not serve
as a simple solution to the high scalability and robust IoT
networks, as well as the growing data privacy concerns in
consumer applications. However, there is still a constant risk
that unauthorised and dishonest entities will target sensitive
data generated by important IoT applications. Hence, ensuring
data privacy and protecting data against manipulation or
misuse become of paramount importance. FL emerged as a
distributed solution, enabling model training at local devices
and avoiding the need for data sharing. However, the data
remains susceptible to attacks by various malicious entities,
highlighting the dire need for a trustworthy and efficient
framework to secure the IoT network for better service delivery
to end users with consumer IoT applications. Hence, our work
proposes a novel approach for enhancing security in underly-
ing cloud edge networks by incorporating a blockchain-driven
FL architecture. Integration of blockchain with FL offers
a promising avenue to facilitate secure and intelligent data
sharing while maintaining data integrity. For secure network-
based data analysis, the proposed framework uses a Gaussian
Bayesian transfer convolutional neural network. The proposed
work is evaluated against various parameters such as through-
put, latency, training and validation accuracy, and network
robustness up to a significant value.

Future work can address the issue of resource management
when implementing AI models in a 5G-enabled cloud-edge

environment [8]. Moreover, explainable artificial intelligence
(XAI) can enhance the transparency and explainability of
existing AI models [24].
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