
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 70, NO. 1, FEBRUARY 2024 1877

Computation Offloading and Resource Allocation in
Failure-Aware Vehicular Edge Computing

Chaogang Tang , Member, IEEE, Ge Yan, Huaming Wu , Senior Member, IEEE,
and Chunsheng Zhu , Member, IEEE

Abstract—The advent of Intelligent Cyber-Physical
Transportation Systems (ICTS) has not only accelerated the
reformation and evolvement of smart transportation, but also
ushered in a new era of vehicular applications. These applications
typically impose stringent latency requirements and demand
substantial computing resources. Vehicular edge computing
(VEC) has emerged as an efficient solution to address these
challenges, leveraging its inherent ability to provide ultra-
low latency services. Existing studies primarily concentrate on
either optimizing resource allocation or minimizing response
latency, while ignoring the fact that the task execution in VEC
is more susceptible to failures compared to cloud computing
environments. Accordingly, we design a cost-efficient and
failure-resistant task offloading strategy for VEC systems with
the goal of minimizing the average response latency for all
tasks. Specifically, our problem is modeled as a nonlinear
multi-constraint continuous optimization problem, with tightly
coupled optimization variables in the objective function and
constraints. To tackle this issue, we initially decompose the
optimization problem into per-slot optimization subproblems.
Subsequently, we employ an effective algorithm with low time
complexity to solve these subproblems in a slot-by-slot manner.
We comprehensively evaluate the performance of our approach
through extensive simulations, demonstrating that our method
outperforms the baseline approaches in various aspects.

Index Terms—ICTS, computation offloading, resource
allocation, failure-aware, vehicular edge computing.

I. INTRODUCTION

THE CYBER-PHYSICAL Transportation Systems (CPTS)
aim to build bridges between the cyber system and

physical system to realize higher efficiency in smart trans-
portation. The rapid development of Intelligent Cyber-Physical
Transportation Systems (ICTS) has significantly expedited

Manuscript received 17 October 2023; revised 14 November 2023; accepted
9 December 2023. Date of publication 12 December 2023; date of current ver-
sion 26 April 2024. This work was supported in part by the National Natural
Science Foundation of China under Grant 62071327, and in part by the Tianjin
Science and Technology Planning Project under Grant 22ZYYYJC00020.
(Corresponding author: Huaming Wu.)

Chaogang Tang is with the School of Computer Science and Technology,
China University of Mining and Technology, Xuzhou 221116, China (e-mail:
cgtang@cumt.edu.cn).

Ge Yan is with the School of Information and Control Engineering,
China University of Mining and Technology, Xuzhou 221116, China (e-mail:
TS21060201P31@cumt.edu.cn).

Huaming Wu is with the Center for Applied Mathematics, Tianjin
University, Tianjin 300072, China (e-mail: whming@tju.edu.cn).

Chunsheng Zhu is with the College of Big Data and Internet,
Shenzhen Technology University, Shenzhen 518118, China (e-mail:
chunsheng.tom.zhu@gmail.com).

Digital Object Identifier 10.1109/TCE.2023.3342017

the transformation and advancement of smart transportation.
Its primary objective is to meet diverse demands, including
traffic management, smart parking, and autonomous driving,
by effectively integrating and leveraging data from multiple
sources in both the physical space (sensors and actuators) and
cyberspace (computation and communication) [1], [2].

The explosive growth of vehicular applications has posed
tremendous pressure on smart vehicles, given their constrained
computing and storage capacities. With the increasing amount
of computation generated by vehicles, there is a surge in
demand for computing resources [3]. However, owing to their
inherent computational limitations, vehicles frequently find it
necessary to offload specific computations to external entities
within the ICTS framework. Roadside units (RSUs) serve as a
perfect alternative for offloading and executing computations,
leveraging their abundant communication and computation
resources, which surpass those available in vehicles. This com-
puting paradigm is referred to as Vehicular Edge Computing
(VEC), where communication and computation resources are
expanded from the remote cloud center to the logical network
edge, represented by RSUs. This setup allows computations
to be executed in close proximity to the data sources, such as
smart vehicles.

As an indispensable part of ICTS, performance-enhanced
RSU enables the efficient allocation of computational
resources, offering scalability and flexibility through virtu-
alization technologies. A variety of vehicular applications,
especially those with rigorous latency requirements, can be
outsourced and performed in VEC in the form of computa-
tional tasks. However, the precise allocation of computational
resources is crucial in VEC, given that resources are relatively
constrained compared to cloud computing. Numerous studies
have focused on resource optimization from the perspective of
the edge server [4], [5] and response latency optimization from
the perspective of vehicular applications [6], [7]. Specifically,
vehicles can offload a portion or all of their tasks to RSUs
to accelerate task processing or conserve energy. This raises
questions about whether, when, and to what extent com-
putation should be offloaded to achieve these objectives.
Conversely, VEC can process these tasks by distributing
communication and computational resources among them.
Consequently, questions arise about the allocation of resources
to individual tasks to ensure their successful execution while
meeting diverse performance requirements.

Unfortunately, most of the existing literature has ignored
the fact that task execution in VEC is more prone to failures

1558-4127 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 30,2024 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4471-9856
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0001-8041-0197

1878 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 70, NO. 1, FEBRUARY 2024

compared to cloud computing [8]. The resumption of task
execution in VEC following failures is time-consuming, and,
in more severe cases, some tasks may be unrecoverable,
particularly in cases of hardware-level failures, such as edge
server malfunctions. To simplify our discussion, we focus on
recoverable failures in this paper, including temporary discon-
nections and software failures. In such scenarios, the VEC
system incurs additional energy consumption and calculation
delays for failure recovery. Task failures not only influence
the quality of service (QoS) such as reliability and availability
from the perspective of service providers, but also degrade the
quality of experience (QoE) from the perspective of service
requestors. As a result, it is worthwhile to investigate failure-
resisted task offloading strategies in VEC systems, but current
works seldom pay attention to such strategies.

Based on the aforementioned observations, the primary
focus of this paper is to develop a cost-efficient strategy
for computation offloading and resource allocation in failure-
aware VEC systems. In particular, we strive to minimize the
average response latency for all tasks within the optimization
period. To achieve this, we take into account various types of
failures and integrate them into the networking and computa-
tion models, respectively. To sum up, the contributions of this
paper are threefold, given below:

• We investigate the failure-aware task offloading in
the VEC system by incorporating task failures into
the proposed networking and calculation models. We
mathematically formulate the optimization problem, and
endeavor to minimize the average response time of all
the tasks over a long time-slotted horizon by jointly
optimizing the task offloading and resource allocation
decisions in this paper.

• The optimization variables related to task offloading
and resource allocation are tightly coupled in both
objective function and constraints. This interdependence
adds complexity to the problem-solving process. To
this end, we decompose the optimization problem into
per-slot optimization subproblems through Lyapunov
optimization. These subproblems are then resolved
sequentially in a slot-by-slot way.

• We have conducted extensive simulations to evaluate
the effectiveness of our approach. The results clearly
demonstrate that our approach to task offloading and
resource allocation in a failure-aware VEC system outper-
forms other strategies, particularly in terms of achieving
a superior average response latency.

The remainder of this paper is organized as follows.
The state-of-the-art literature is reviewed in Section II. We
present our failure-tolerant VEC architecture in Section III.
The optimization problem is described and formulated in
Section IV and Section V, respectively. Section VI presents
our algorithm for solving our optimization problem. The
simulation results are presented in Section VII, followed by a
conclusion in Section VIII.

II. RELATED WORK

This section provides an in-depth review of the state-of-the-
art literature concerning task offloading and resource allocation

in VEC systems. Currently, there is an enormous amount
of literature focusing on these aspects in VEC, encompass-
ing various objectives such as latency minimization, energy
optimization, cost optimization, or a weighted combination of
them [9], [10], [11], [12], [13], [14].

A. Traditional Approaches

Lin et al. [11] studied online task offloading for heteroge-
neous VEC, considering the environmental dynamics. Through
learning the relationship between historical observations and
rewards, they aim to minimize the expected energy consump-
tion for all the tasks with stringent latency requirements. The
task popularity is introduced to their contextual clustering
approach. Fan et al. [15] also paid attention to the task offload-
ing in VEC, by jointly optimizing task offloading, bandwidth
and computing resources in VEC. Several algorithms such
as Generalized Benders Decomposition (GBD) and greedy
algorithm are applied to guarantee the efficiency and low time
complexity.

It is challenging to schedule the computing resources
in 6G heterogeneous vehicular networks (HetVNET) while
meeting customized QoE. In view of this, Hui et al. [9]
provided personalized edge computing services for vehicles
by designing a secure edge computing architecture based on
smart contracts. A collaborative resource allocation scheme
was proposed to help these infrastructures satisfy the QoE
of vehicles. Hossain et al. [16] put forward a dynamic task
offloading scheme using a non-cooperative game (NGTO).
Each vehicle makes its decisions independently on where to
offload their vehicular tasks, so as to maximize their own
benefits. Each vehicle can adaptively adjust the task-offloading
probability in the pursuit of utility maximization, and the game
equilibrium can be achieved using their offloading algorithm.

B. AI-Based Approaches

In recent years, Artificial Intelligence (AI)-based technolo-
gies are increasingly applied to vehicular networks for a
variety of purposes [7], [17], [18], [19], [20]. For instance,
Karimi et al. [18] studied vehicular task offloading within
the context of cooperation between Mobile Edge Computing
(MEC) and cloud centers. They formulate the resource allo-
cation problem with the objective of optimizing response
latency. A deep reinforcement learning approach is adopted
for approaching an optimal solution. The numerical results
demonstrate the efficiency of their approach in terms of
acceptance rate and time complexity.

To enhance edge intelligence in vehicular networks, the
combination of federated learning and blockchain can be
leveraged to enable time-sensitive vehicular applications to
be executed in a distributed and time-efficient manner.
Zhao et al. [7] put forward a federated dual deep Q-learning
algorithm to cater to the dynamic and unpredictable nature of
vehicular networks. In their approach, each vehicle deploys
its own learning agent for state sensing, thereby improving
scalability and flexibility. Lin et al. [19] proposed a com-
putation offloading model based on the Markov Decision
Process and introduced the integration of Deep Q-Network

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 30,2024 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: COMPUTATION OFFLOADING AND RESOURCE ALLOCATION IN FAILURE-AWARE VEC 1879

Fig. 1. The considered application scenario in this paper.

with the Simulated Annealing algorithm. Their aim is to
design a cost-efficient and energy-aware computation offload-
ing strategy in VEC systems. Similarly, Zhan et al. [20] also
investigated computation offloading in VEC systems, with
a focus on minimizing user cost, in the long run, using
a deep reinforcement learning approach. Specifically, they
design an offloading policy using a deep neural network
trained by the proximal policy optimization algorithm. The
effectiveness of their approach is evaluated through extensive
simulations, which include comparisons with six baseline
algorithms. The simulation results demonstrate the advantages
of their approach in terms of reducing user cost.

C. Failure-Related Approaches

There are also several works that pay attention to failure-
related issues in vehicular networks such as [21], [22], [23].
For instance, some AI-based algorithms are used to construct
spanning trees in VANETs to handle the failure of nodes and
fast-moving vehicles. A near-optimal spanning tree is con-
structed based on two phases in the RSU in [21]. Specifically,
an artificial bee colony algorithm is adopted to construct the
spanning tree in the first stage. In the second stage, they try to
construct a near-minimum spanning tree with the maximum
number of leaves.

Despite massive efforts made to improve the performance
of VEC systems, the aforementioned works seldom take into
account task failures during service provisioning in VEC.
Owing to the resource scarcity at the edge servers compared
to the cloud center, task failures occur on occasion, which
seriously undermines the performance of VEC systems and
degrades the QoE from the perspective of resource requestors.
Hence, we believe that it is worth investigating failure-resisted
task offloading strategies in VEC systems.

III. PROPOSED FAILURE-TOLERANT VEC ARCHITECTURE

Fig. 1 illustrates the system model considered in this paper,
which extends the traditional VEC system by incorporating

task failures. The model consists of smart vehicles, roadside
units (RSUs), and a cloud center.

The cloud center serves as a centralized resource pool, offer-
ing dynamic allocation and elastic expansion of computing,
storage, and network resources to support a wide range of
services [24]. With its robust computing and storage capabili-
ties, cloud computing is particularly suitable for non-real-time
and long-term decision-making scenarios. However, accessing
the cloud center often involves traversing the core network,
resulting in substantial response delays that frequently violate
the stringent latency requirements of vehicular applications.

Moreover, RSUs play a crucial role by serving as an
intermediate geographical point between the cloud center
and smart vehicles. This positioning enables the migration
of resources from the cloud center to the logical network
edge through the deployment of edge servers at RSUs. In
contrast to the cloud center, RSUs possess the capability to
handle computations from nearby vehicles, leading to reduced
response latency and an enhanced QoE [25]. Additionally, the
deployment of resources at RSUs can alleviate the burden
on backhaul networks, thereby enhancing overall network
performance.

Notwithstanding these advantages, task failures can occur in
VEC systems owing to the aforementioned reasons. Therefore,
we have deployed the fault handler unit, as shown in Fig. 1,
and the corresponding functionalities are listed as follows:

• Failure Monitor: This unit is responsible for monitoring
the failure events and managing the related log files.
By recording and analyzing the log files, it can estimate
failure-related parameters, e.g., failure rate and recovery
rate.

• Failure Category Recognition: The unit is responsible
for failure classification based on the failure information,
including factors such as failure reasons, locations, and
frequencies. For instance, as depicted in the figure, the
failures can be categorized into hardware failures and
software failures.

• Failure Processing: The most important role of this unit
is to process the failures when they occur by employ-
ing some recovery mechanisms like checkpointing and
rollback/roll-forward technologies [8], [26].

In this architecture, vehicular applications can be par-
tially/totally outsourced and executed at RSUs, as shown in
the figure. These vehicles, which offload and execute tasks,
are commonly referred to as task vehicles.

IV. SYSTEM MODEL

In our system model, we divide the optimization period T
into T discrete time slots, such that T = {1, 2, . . . , T}, and
each slot t has a duration of τ time units. The set of task
vehicles is indexed by N = {1, 2, . . . , N}, where N is the
number of task vehicles. We use Cn(t) to denote the data
size of the task generated by task vehicle n in the t-th time
slot, and dn(t) represents the delay requirement of task vehicle
n in slot t. Task failure occurs for task vehicle n in time
slot t if the response latency for the task exceeds dn(t). Task
vehicle n has the flexibility to offload a portion or all of its

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 30,2024 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.

1880 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 70, NO. 1, FEBRUARY 2024

TABLE I
NOTATIONS AND THEIR MEANINGS

computation to the RSU for execution. To represent this, we
define a decision variable xn(t) ∈ [0, 1], which indicates the
extent of computation offloaded in time slot t. Specifically,
xn(t) = 0 means that all the computation is performed locally
at task vehicle n, and xn(t) = 1 signifies that all computation
is offloaded and executed at the edge server. In general,
xn(t)Cn(t) represents the amount of computation offloaded to
the RSU for execution in time slot t. In addition, we introduce
some key notations that will be used throughout the paper,
listed in Table I.

When a task is offloaded by task vehicle n, the response
delay typically consists of three components: the transmission
delay, the computation delay, and the feedback delay. Each
type of delay is expressed based on its respective models,
taking into account task failures. These models will be further
elaborated in the subsequent sections.

A. Networking Model

At the beginning of time slot t, a task vehicle n generates
Cn(t) units of task data, which is then stored in its local buffer.
When task vehicle n decides to offload computation, the trans-
mission delay is governed by the following considerations. Let
Sn(t) represent the amount of task data that can be transmitted
from task vehicle n to the RSU in time slot t. Task failure
occurs if the response delay exceeds the deadline. In such
cases, we denote Jn(t+1) as the amount of task data that needs
to be retransmitted by task vehicle n in the subsequent time
slot t + 1. As a result, the task data in the local buffer of task
vehicle n can be regarded as a queue, with the corresponding
backlog [27]:

Qn(t + 1) = max{Qn(t) + xn(t)Cn(t) − Sn(t), 0} + Jn(t + 1),

(1)

which implies that the remaining computation conducted
locally by task vehicle n must be completed before the
deadline. The time required for local computing at task vehicle
n in time slot t, denoted as τ loc

n (t), is calculated as follows:

τ loc
n (t) = (1 − xn(t))Cn(t)

fn
, (2)

where fn is the processing frequency of task vehicle n. As
mentioned earlier, the time τ loc

n (t) should satisfy the follow-
ing constraint:

τ loc
n (t) ≤ dn(t) ∀t ∈ T . (3)

We also consider the energy constraint in this paper.
Specifically, the energy consumption for vehicle n, denoted as
eloc

n (t), can be expressed as follows:

eloc
n (t) = ϑς(1 − xn(t))Cn(t)f

2
n , (4)

where ϑ represents the effectively switched capacitance coef-
ficient, and ς denotes the number of cycles required to process
one task-input bit at task vehicle n.

We assume that vehicle n adopts an orthogonal spectrum
for task offloading to avoid co-channel interference. The data
rate for task offloading can be expressed as:

Rn(t) = B log

(
1 + Pn(t)Hn(t)

δ2

)
, (5)

where B represents the uplink channel bandwidth between task
vehicle n and the RSU, Pn(t) is the transmission power of task
vehicle n in slot t, Hn(t) represents the channel gain between
task vehicle n and the RSU in slot t, and δ2 represents the
noise power.

To determine Sn(t) for task vehicle n in time slot t, it’s
important to consider that task failure must occur if the
transmission delay for n exceeds either the delay requirement
dn(t) or the per-slot duration τ . Generally, the task failure
causes the backlog of task-input data, so the amount of task
data (Sn(t)) to be offloaded in time slot t should exceed
the amount of computation generated in the current slot for
offloading (xn(t)dn(t)). Intuitively, Sn(t) depends upon not only
the data rate for task offloading but also the time required
for task offloading. Moreover, each task vehicle n has its own
delay requirement dn(t). When considering these factors and
the variability of backlog for each task vehicle in different
time slots, quantifying Sn(t) becomes a complex task. To ease
the discussion, we assume that the time used for computation
offloading for each vehicle in each time slot is fixed [27] and
denote it by τ trs

n . Then, Sn(t) can be expressed as:

Sn(t) = τ trs
n Rn(t). (6)

The achievable throughput between task vehicle n and the
RSU in time slot t can be calculated by:

Dn(t) = min{Qn(t) + xn(t)Cn(t), Sn(t)}. (7)

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 30,2024 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: COMPUTATION OFFLOADING AND RESOURCE ALLOCATION IN FAILURE-AWARE VEC 1881

B. Calculation Model

With the arrival of tasks in each time slot, RSU will
allocate necessary resources to these tasks before executing
them. Unlike the previous work [28], we have considered task
failures in this process, and further assume that these failures
are recoverable. Then, the calculation delay of task vehicle n,
denoted as τ clt

n (t), is comprised of three components, namely,
the queueing time lqn(t), the service time lsn(t), and the recovery
time lrn(t) if the task execution failure occurs.

The popularity of smart vehicles gives rise to a surge in
vehicular tasks. In large-scale VEC systems, there may be
hundreds of offloading requests from task vehicles within
a short time interval. Given this scenario, it’s essential to
consider the queueing time in this paper, as it constitutes a
significant portion of the response latency. Furthermore, we
assume that the task arrivals at the RSU from task vehicle
n follow a Poisson process with an average rate λn(t) in
time slot t. Additionally, information about other tasks from
N \{n} is required for obtaining the average queueing delay.
According to the queueing model, the arrival rate of all tasks
in time slot t, i.e., λ̃(t) = ∑N

n=1 λn(t), also follows a Poisson
process. Thus, the average queueing time for task vehicle n in
the waiting queue in time slot t can be calculated as:

lqn(t) = ρ(t)

μ̃(t) − λ̃(t)
, ∀n ∈ N , (8)

where μ̃(t) is the average service rate for the tasks executed at
RSU in time slot t, and ρ(t) is the service intensity and defined
as the ratio of the average arrival rate λ̃(t) to the average
service rate μ̃(t). Note that μ̃(t) can be estimated through
historical statistics by the RSU.

The service time, also referred to as the calculation delay in
this paper, represents the time taken by the RSU to execute the
offloaded task from task vehicle n. If there is no failure in this
process, the service time, denoted as lsn(t), can be expressed
as follows:

lsn(t) = Dn(t)

f n
E(t)

, (9)

where f n
E(t) is the processing frequency of the RSU allocated

to task vehicle n in time slot t. However, if a failure occurs
during task execution, the RSU needs recovery time to restart
the task from task vehicle n. This is because the task failures in
this paper are assumed to be recoverable, as mentioned earlier.

We assume that task failures at task vehicle n follow a
Poisson process with the failure rate ηn(t) [26]. Let N (t)
denote the number of failures during the time (0, t]. Then, the
probability that k failures occur for the task from vehicle n
within the time duration lsn(t) is:

P{N (lsn(t)) = k} =
(
ηn(t)lsn(t)

)k
k!

e−ηn(t)lsn(t), (10)

where E[N (lsn(t))] = ηn(t)lsn(t). Rk(lsn(t)) denotes the recov-
ery time for the k-th failure when RSU executes the task
from n. The recovery time is assumed to follow an exponential
distribution with the recovery rate θn(t). It is worth mentioning
that the recovery time only depends upon RSU. Meanwhile,

we also assume that N (lsn(t)) failures at the RSU are indepen-
dent of each other. Thus, they are independent and identically
distributed (i.i.d.) random variables. The total recovery time
can be expressed as:

R
(
lsn(t)

) =
N (lsn(t))∑

k=1

Rk
(
lsn(t)

)
, (11)

where R(lsn(t)) follows Gamma distribution, i.e., R(lsn(t)) ∼

(ηn(t)lsn(t), θn(t)). As a result, the recovery time lrn(t) can be
expressed as the mean of the total recovery time:

lrn(t) = ηn(t)lsn(t)

θn(t)
. (12)

Thus, the calculation delay of task from n, denoted by
τ clt

n (t), can be expressed as:

τ clt
n (t) = lqn(t) + lsn(t) + lrn(t). (13)

C. Result Feedback Model

The data size of the execution result typically depends on
the intrinsic features of the task, making it challenging to
quantify in most cases. Hence, current works tend to ignore the
feedback delay, with an assumption that the task-output data
size is negligible compared to the task data size. Nevertheless,
in view of the possible failure during task offloading, we
choose to quantify the data size of the result, by assuming that
the ratio of the result data size to the task data size remains the
same in each time slot [27], [29]. We denote this ratio as ρt in
time slot t. If the RSU successfully completes the task from
task vehicle n, it will return an amount of data size equal to
ρtDn(t). Therefore, the time taken to deliver the result, i.e., the
feedback delay denoted by τ

fb
n (t), is calculated as:

τ fb
n (t) = ρtDn(t)

RE,n(t)
, (14)

where RE,n is the transmission rate from RSU to n.

D. Task Data Retransmission Model

The total response delay for the task from vehicle n that
is executed at the RSU in time slot t, denoted as τn(t), is
calculated as follows:

τn(t) = τ trs
n (t) + τ clt

n (t) + τ fb
n (t). (15)

From the perspective of RSU (i.e., the edge server), if task
failures occur, the task will be resumed by the RSU using
checkpointing and rollback/roll-forward technologies. From
the perspective of task vehicle n, retransmission of task data
is necessary if task failures occur. In particular, task data
retransmission for vehicle n is required if n does not receive
the feedback before the deadline dn(t). In this scenario, we
define the variable Jn(t + 1), representing the amount of task
data that needs to be retransmitted by task vehicle n in the
next time slot t + 1, as given below:

Jn(t + 1) = Dn(t)(1 − F{dn(t) − τn(t)}), (16)

where F{·} is the unit-step function, i.e., F{x} = 1 for x ≥ 0,
and 0, otherwise.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 30,2024 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.

1882 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 70, NO. 1, FEBRUARY 2024

E. Energy Consumption Model

Task execution at the edge server incurs negligible energy
consumption, which should be considered in this paper. This
is important because both the computing capability and energy
supply at the RSU are relatively limited compared to the
cloud center. Specifically, we use ER(t) to represent the energy
consumption of the RSU used for executing the offloaded
tasks from the vehicle set N in time slot t. Then, E(t) can be
expressed as:

ER(t) = ϑEςE

N∑
n=1

Dn(t)
(
f n
E(t)

)2
, (17)

where ϑE represents the effectively switched capacitance
coefficient for the RSU, and ςE is the number of cycles
required to process one task-input bit at the RSU.

V. PROBLEM FORMULATION

In this paper, we aim to minimize the average response
latency for all the tasks along the optimization period, by
jointly optimizing offloading decision x and edge server
frequency f E, while satisfying multiple constraints. We first
define decision variables x(t) = {xn(t)|n = 1, . . . , N},∀t ∈ T ,
and f E(t) = {f n

E(t)|n = 1, . . . , N},∀t ∈ T . Thus, the decision
profile can be given as x = {x(t)|t = 1, . . . , T}, and f E =
{f E(t)|t = 1, . . . , T}. Then, the optimization problem can be
formulated as follows:

(P1) min
x,f E

1

T

T∑
t=1

N∑
n=1

τn(t)

s.t.
1

T

T∑
t=1

ER(t) ≤ Eth, (18)

eloc
n (t) ≤ En(t), ∀t ∈ T , ∀n ∈ N , (19)

τ loc
n (t) ≤ dn(t), ∀n ∈ N , ∀t ∈ T , (20)
N∑

n=1

f n
E(t) ≤ f max

E (t), ∀t ∈ T , (21)

xn(t) ∈ [0, 1], ∀n ∈ N , ∀t ∈ T , (22)

ρt ∈ [0, 1], ∀t ∈ T , (23)

f n
E(t) > 0, ∀n ∈ N , ∀t ∈ T , (24)

where constraint (18) denotes that the average energy con-
sumption for computation carried out at the edge server
across different time slots must be lower than the given
threshold Eth. This ensures that the remaining energy can be
allocated to other purposes, such as vehicle-to-infrastructure
and pedestrian-to-infrastructure communications. Similarly,
constraint (19) ensures that the energy consumption for local
computation at vehicle n in time slot t must be lower than
its threshold En(t). Constraint (20) ensures that the time
required for local computation at task vehicle n in time
slot t should be accomplished before the deadline dn(t).
Furthermore, constraint (21) ensures that the total amount of
processing frequency allocated to these tasks cannot exceed
the total computing capability of the RSU. Lastly, con-
straints (22)–(24) ensure the rationality of decision variables
and certain constants. For instance, the offloading decision

is bounded between 0 and 1, and the value of processing
frequency allocated to offloaded tasks by the RSU must be
non-negative.

The following reasons make our optimization problem P1
difficult to solve. First, the problem P1 is nonlinear due
to the presence of the min(·) operation (see Eq. (7)) and
the unit-step function F{·} in the objective function. Second,
the optimization variables for task offloading and resource
allocation are tightly coupled in both the objective function
and the constraints. Third, the long-term energy consumption
constraint (18) couples the task offloading decision x with
resource allocation decision f E across different time slots.
Last but least, optimally solving problem P1 requires the
information from all time slots, which can only be realized in
an offline way. However, the information on future time slots
can only be predicted in reality, which increases the difficulty
in obtaining high-precision solutions. Accordingly, all these
factors necessitate an online approach to solve this problem
without relying on future information.

VI. ALGORITHM DESIGN

Considering these challenges, we first convert the long-
term energy constraint (18) into per-slot constraints using
Lyapunov optimization techniques [25], [30]. By doing this,
the optimization problem across different time slots can be
converted into numerous subproblems, each focused on a
single time slot. This allows us to tackle the optimization
problem in a slot-by-slot manner, with the aim of obtaining
the suboptimal solutions to (P1).

A. Problem Transformation

In order to convert the long-term constraint (18) into per-slot
constraints, we create a virtual energy-excess queue denoted
as Z(t), and the backlog is updated as follows:

Z(t + 1) = max{Z(t) − Eth, 0} + ER(t). (25)

where Z(t) represents the variation in energy consumption at
the RSU with respect to the threshold Eth in time slot t, and
Z(1) = 0. Generally, the larger the value of Z(t), the further
the deviation.

Given the backlog Z(t), the corresponding Lyapunov func-
tion with regards to (w.r.t.) Z(t) can be defined as:

L(Z(t)) = Z2(t)

2
. (26)

Lemma 1: Given four non-negative real numbers A, B, C
and m, which satisfy C = max{B − m, 0} + A, we have C2 ≤
A2 + B2 + m2 − 2B(m − A).

Please refer to [31] for the details, we omit the proof here.
Then, the Lyapunov drift �(Z(t)) that indicates the increment
of L(Z(t)) between two consecutive states is given as:

� (Z(t)) = L(Z(t + 1)) − L(Z(t)). (27)

Based on Lemma 1, we have

Z2(t + 1) = {max{Z(t) − Eth, 0} + ER(t)}2

≤ Z2(t) + E2
th + E2

R(t) + 2Z(t)(ER(t) − Eth)

≤ Z2(t) + E2
th + E2

R(t) + 2Z(t)ER(t). (28)
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 30,2024 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: COMPUTATION OFFLOADING AND RESOURCE ALLOCATION IN FAILURE-AWARE VEC 1883

�(Z(t)) = 1

2

(
Z2(t + 1) − Z2(t)

)

≤ 1

2

(
E2

th + E2
R(t) + 2Z(t)ER(t)

)
‡≤ H(t) + Z(t)ER(t), (29)

where H(t) = 1
2 (E2

th + E2
R(t)) ≤ 1

2 (E2
th + E2

R,max(t)) � Hmax(t).
ER,max(t) is the energy consumption constraint for RSU in
time slot t which is independent of the size of task data and
the processing frequency of RSU. Thus, the upper bound of
�(Z(t)) only depends upon the information in the current
time slot. As such, we can transform the problem (P2) into
a series of per-slot deterministic optimization subproblems by
incorporating the drift-plus-penalty term in each time slot.
Furthermore, the subproblem within each time slot aims to
minimize the weighted sum of the response latency for all the
tasks, and energy consumption. In particular, the subproblem
can be defined as:

(P2) min
x,f E,∀t

Z(t)ER(t) + Vτ(t)

s.t. (19)−(24),

where τ(t) = ∑N
n=1 τn(t), and the constraint (18) in P1 has

been incorporated into problem P2 using the drift-plus-penalty
term [25], and V(> 0) is the weight of response latency, used
for adjusting the tradeoff between energy consumption control
and response time minimization.

Theorem 1: The optimality gap that denotes the differ-
ence between the solutions of P1 and P2 is a function
w.r.t. V , denoted by F(V). Furthermore, if problem P2 can
be solved optimally in each time slot, F(V) can be bounded
by O(1/V).

Please refer to [25] for the details, we omit the proof here.
As a consequence, our original aim has shifted from the long-
term optimization problem P1 to the per-slot optimization
problem P2 via the problem transformation. According to
this theorem, the optimal solution to P1 can be obtained
asymptotically provided that the problem P2 per time slot is
solved optimally.

B. Per-Slot Task Offloading and Resource Allocation

It can be seen that P2 is a per-slot optimization problem,
as the task offloading and resource allocation decisions for
the current time slot t depend on information, specifically
the backlog of task data, from the preceding time slot t −
1. Nevertheless, this inherent sequential dependency does
not hinder our ability to optimize P2 in a slot-by-slot way.
Notably, the variables Z(t), ER(t) and τ(t) in P2 are functions
of x(t) and f E(t). Let Gt(x(t), f E(t)) = Z(x(t − 1), f E(t −
1))ER(x(t), f E(t))+Vτ(x(t), f E(t)), and then P2 is actually to
minimize Gt(x(t), f E(t)), while satisfying the above constraints
(19)−(24).

Lemma 2: Given f E(t), the optimization function in
problem P2, i.e., Gt(x(t), f E(t)), is non-decreasing, w.r.t. x(t).

Proof: Please refer to the Appendix A.
From this lemma, we know that the most direct way to

optimize problem P2 is to reduce the amount of computation
offloaded to RSU from the viewpoint of task vehicles. The

inequality constraints (19) and (20) on the other hand restrict
the amount of computation for local execution at the task
vehicle side. From the above two inequality constraints, we
can obtain two kinds of maximal amounts of computation
allowed for local execution. Combining them, we can further
acquire the maximal amount of computation allowed for local
execution for task vehicle n, and thus the offloading decision
variable, denoted by x∗

n(t) can be given as:

x∗
n(t) = max

{
1 − fndn(t)

Cn(t)
, 1 − En(t)

ϑςCn(t)f 2
n

}
, ∀n ∈ N , (30)

which means that vehicle n should offload at least x∗
n(t)Cn(t)

computation to RSU for execution, so as to satisfy the latency
and energy constraints for local computing at n.

Lemma 3: Given x(t), the optimization function
Gt(x(t), f E(t)) is convex, w.r.t. f E(t).

Proof: Please refer to the Appendix B.
In addition, the constraints (19)–(24) are all linear w.r.t.

f E(t), given the offloading decision x(t). Thus, the problem
P2 is a convex problem w.r.t. f E(t). Accordingly, a dual
decomposition method can be used for resource allocation.
Given x(t), we construct the Lagrangian function for P2 as:

L(f , v) =
N∑

n=1

An
(
f n
E (t)

)2 + Bn

f n
E (t)

+ Cn

+ v

(
N∑

n=1

f n
E(t) − f max

E (t)

)
, (31)

where An = Z(x(t−1), f E(t−1))ϑEςEDn(t), Bn = VDn(t)(1+
ηn(t)/θn(t)), Cn = V(τ trs

n (t) + lqn(t) + τ
fb
n (t)), f = f E(t), and

v ≥ 0.
Based on the dual theory, the optimal solution to problem

P2 can be expressed as:

(
f∗, v∗) = arg

{
max

v
min

f
L(f , v)

}

= arg

{
max

v
min

f

N∑
n=1

An
(
f n
E (t)

)2 + Bn

f n
E (t)

+ Cn

+ v

(
N∑

n=1

f n
E(t) − f max

E (t)

)}
. (32)

We can apply the Lagrangian multiplier method to optimize
(f , v) in an iterative way. In particular, the resource allocation
profile f can be updated by a gradient descent method, while
the Lagrange multiplier v is updated by a gradient ascent
method, i.e.,

f new = f old − ξ1
∂L(f , v)

∂f

∣∣∣∣
f=f old

, (33)

vnew = vold + ξ2
∂L(f , v)

∂v

∣∣∣∣
v=vold

, (34)

where ξ1 and ξ2 are the learning rates. The corresponding
algorithm is shown in Alg. 1.

Improvement: Let’s denote the inner minimization as g(v),
which is expressed as follows:

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 30,2024 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.

1884 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 70, NO. 1, FEBRUARY 2024

Algorithm 1: Per-Slot Iterative Algorithm for Resource
Allocation (IARA)

Input: Required parameters
Output: Resource allocation profile f E(t)

1 Acquire J(t), Q(t), D(t), x(t) and Z(t);
2 Initialize the two variables f and v, respectively;
3 Set ξ1 and ξ2;
4 repeat
5 Update f based on Eq. (33);
6 Update v based on Eq. (34);
7 until stopping criterion satisfied;
8 Return f ;

g(v) = min
f

N∑
n=1

An
(
f n
E(t)

)2 + Bn

f n
E (t)

+ Cn

+ v

(
N∑

n=1

f n
E(t) − f max

E (t)

)

=
N∑

n=1

min
f n
E (t)

An
(
f n
E(t)

)2 + Bn

f n
E (t)

+ vf n
E (t) + Cn − vf max

E (t),

where g(v) can be decomposed into N convex subproblems.
Owing to the convexity, the N subproblems can be solved in a
distributed manner. Consequently, the update of the resource
allocation profile, represented by Eq. (33), can be decomposed
into N parallel operations, resulting in enhanced algorithm
efficiency.

C. Algorithm Design

With the assistance of Alg. 1, we can efficiently determine
the task offloading and resource allocation in each time slot by
jointly optimizing the two decision variables x(t) and f E(t).
Then, we propose an online optimization algorithm for task
offloading and resource allocation (TORA) that spans the
entire optimization period, as illustrated in Alg. 2. Generally,
TORA seeks the optimal solution to P2 across various time
slots. Specifically, the optimization problem is decomposed
into T subproblems, each correspondingly addressed within a
distinct time slot (lines 3–10). By solving problem P2 (line 6),
the algorithm obtains approximately optimal solutions, x∗(t)
and f∗

E(t), for the given time slot t. TORA then calculates
the total response latency for all tasks in each time slot
(line 7) and accumulates the overall response latency across
time slots (line 8). Finally, the mean response latency for all
tasks (i.e., Avg) is returned.

In addition, the following procedure as denoted in Alg. 3 is
adopted to obtain the optimal offloading decision and resource
allocation profiles for each time slot (i.e., line 6 in Alg. 2).
According to Lemma 2, minimizing Gt(x(t), f E(t)), from the
perspective of task vehicles, requires reducing the amount of
offloaded computation as much as possible, which inspires
us to utilize the greedy heuristic for offloading decision
optimization. For instance, pTORA calculates the maximal
amount of computation allowed for local execution for each
task vehicle n in time slot t, and then determines the offloading

Algorithm 2: Optimization Algorithm for Task Offloading
and Resource Allocation (TORA)

Input: Required parameters such as T , N, B, V and etc.
Output: Optimum solution to P2

1 Construct initial queues Jn(0), Qn(0), Dn(0), Z(0),
∀n ∈ N ;

2 L = 0;
3 for t = 1 to T do
4 Observe Cn(t), dn(t), λn(t), μ̃(t), ηn(t), θn(t),

∀n ∈ N ;
5 Set Eth, En(t), ER,max(t) and ρt;
6 Obtain the best solution (x∗(t), f∗

E(t)) to P2, i.e.,

(x∗(t), f∗
E(t)) = arg

{
min

x(t),f E(t)
Z(t)ER(t) + Vτ(t)

}
;

7 Calculate Lt = ∑N
n=1 τn(t), given x∗(t) and f∗

E(t);
8 L = L + Lt;
9 Update queues Jn(t), Qn(t), Dn(t), Z(t), ∀n ∈ N ;

10 end
11 Avg = L/T;
12 return Avg;

Algorithm 3: Per-Slot Optimization for Task Offloading
and Resource Allocation (pTORA)

Input: Required parameters for per-slot optimization
Output: (x∗(t), f∗

E(t))
1 for each n ∈ N do
2 Acquire x∗

n(t) based on Eq. (30);
3 Calculate An, Bn, Cn;
4 end
5 Construct the offloading decision x∗(t) for time slot t;
6 Acquire f∗

E(t) by calling Alg. 1;
7 return (x∗(t), f∗

E(t));

decision variable profile based on Eq. (30) (lines 1–4). Then,
based on Lemma 3, the algorithm optimizes the resource
allocation for the offloaded tasks at RSU by calling Alg. 1.

D. Complexity Analysis

It shall be noted that the proposed algorithms IARA and
pTORA both serve TORA. The performance of TORA is
greatly affected by IARA and pTORA. Given the offloading
decision profile in each time slot, IARA iteratively optimizes
the Lagrange multiplier and the processing frequencies allo-
cated to each task. It searches the solution by one loop
(lines 4–7), which takes time of O(K), where K is the total
number of steps for the loop. In addition, pTORA requires
the time of O(N) to obtain x∗(t) in time slot t. Then, it
requires the time of O(K) to obtain f∗

E(t) using IARA. Thus,
pTORA generally requires a total time of O(N + K). On
another hand, TORA optimizes the objective function along
time slots, and the time complexity can be expressed as O(T) ·
O(N + K) = O(NT + TK). As a consequence, we can obtain
the nearly optimal solution in polynomial time. Furthermore,
extensive simulation is required to validate the efficiency and
effectiveness of the algorithm.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 30,2024 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: COMPUTATION OFFLOADING AND RESOURCE ALLOCATION IN FAILURE-AWARE VEC 1885

TABLE II
PARAMETER SETTINGS

Fig. 2. The convergence ability of the algorithm IARA.

VII. PERFORMANCE EVALUATION

A. Experimental Settings

In this section, we conduct comprehensive simulations
to verify the effectiveness and efficiency of our strategy.
Specifically, the default values for some key parameters
involved in the simulation are listed in Table II.

B. Convergence Performance

We commence the evaluation by assessing the convergence
capability of our proposed algorithm, named IARA, which is a
crucial factor in determining the efficiency of our strategy. The
simulation results are visualized in Fig. 2, with the x-coordinate
representing the number of iterations and the y-coordinate
representing the Lagrangian values based on Eq. (31). Three
different scenarios are examined in this experiment, where
the number of tasks is set to 80, 100, and 120, respectively.
The obtained results demonstrate that the algorithm exhibits
rapid convergence within the first few iterations. Subsequently,
the optimal values stabilize and fluctuate within a constrained
range. Notably, after approximately 17 iterations, the optimal
values no longer decrease, irrespective of the number of tasks.
These simulation results provide compelling evidence that
our proposed algorithm can achieve rapid convergence in the
specific application scenario under consideration.

C. Impact of Failure Rates

We examine the impact of failure rates on the performance
of our strategy as follows. In Fig. 3 (a), we present a
performance comparison in terms of average response latency
as the number of tasks increases, with the simulation set to

Fig. 3. Performance evaluation different failure rates.

100 time slots. Three different kinds of task failure rates are
studied, which are 20%, 25% and 30%, respectively. As indi-
cated in the figure, an increase in task failure rates corresponds
to an increase in average response latency. Moreover, average
response latency increases with an increase in the number of
tasks, regardless of the failure rates. This observation can be
attributed to limited computing resources when compared to
a cloud center. Consequently, queueing time rapidly escalates
with a growing number of tasks, leading to increased average
response latency for all tasks.

Fig. 3 (b) illustrates a performance comparison in terms of
average response latency across different time slots, with the
simulation configured for 30 tasks. Similar to the previous
simulation, three kinds of task failure rates, i.e., 20%, 25%
and 30%, are investigated. Two key observations are made: A
higher task failure rate always incurs higher average response
latency, no matter how the number of time slots varies. Also,
there are no certain patterns for the average response latency
as the number of time slots varies. The following possible
reasons can result in this observation. For instance, the tasks
are generated randomly in each time slot. The connection
between two consecutive time slots is the task data that needs
to be retransmitted (i.e., Jn(t + 1)). In this context, if the
amount of task data that needs to be retransmitted is large, the
average response latency in the next time slot could be larger
than that in the current time slot. Similarly, if the amount of

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 30,2024 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.

1886 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 70, NO. 1, FEBRUARY 2024

Fig. 4. Performance evaluation on average response latency for different approaches.

task data that needs to be retransmitted is very small or even
negligible, the average response latency could be larger in the
current time slot than that in the next time slot.

D. Violations of Average Energy Consumption

In the subsequent analysis, we assess whether there are any
violations of the average energy consumption constraint after
converting the time-slot-spanned optimization problem into
per-slot optimization subproblems. The experimental results
are depicted in Fig. 4 (a). In the simulation, the global
energy consumption constraint (i.e., Eth in the constraint
inequality (18)) is set to 2400. Several conclusions can be
drawn as follows. First, regardless of the variation in the
number of time slots, there are no violations of the energy
consumption constraint. This finding validates the feasibility
of converting the original optimization problem into a series
of subproblems. It indicates that the per-slot optimization
approach is effective in maintaining energy consumption
within the specified constraints. Second, there are no determin-
istic relationships observed between the energy consumption
in different time slots. The energy consumption in each time
slot is influenced by the computational tasks assigned to
that specific time slot. As discussed earlier, there are no
deterministic relationships governing the computation tasks in
different time slots. Consequently, the absence of deterministic
relationships between energy consumption in different time
slots is expected.

In summary, the simulation results not only confirm and
validate our theoretical analysis but also provide support for
the feasibility and effectiveness of the proposed approach.
The absence of energy consumption violations and the lack
of deterministic relationships between energy consumption in
different time slots reinforce the practicality and robustness
of our strategy. These findings contribute to a deeper under-
standing of the performance and behavior of our approach in
real-world scenarios.

E. Performance Comparison

As for the performance comparison for different approaches,
we adopt one approach called “Greedy+Mean” as the baseline.
This approach combines the use of the greedy rule and the
mean strategy. Specifically, the greedy rule and the mean

strategy are employed to determine the amount of computation
to be offloaded and how computing resources are allocated
at the edge, respectively. As mentioned earlier, the maximal
amount of computation allowed for local execution for task
vehicles can be determined. Thus, the greedy rule aims to
minimize the offloaded computation to the edge for each task,
as defined in Eq. (30). Upon the arrival of tasks at the edge
server, the edge first determines the number of tasks and
then allocates computing resources to the tasks equally. The
corresponding simulation results are depicted in Fig. 3.

Fig. 4 (b) provides a performance comparison in terms of
the average response latency with varying numbers of tasks,
using a simulation with 40 time slots. This figure clearly
demonstrates that our approach obviously outperforms the
baseline, regardless of the number of tasks. Additionally,
it’s notable that the average response latency increases for
both approaches as the number of tasks increases. This rise
in response latency is attributed to the limited computing
resources at the edge. In other words, the average queueing
time for each task can grow significantly with an increasing
number of tasks. Given that queueing time is a significant
component of response latency, the average response latency
also increases as the number of tasks rises.

Fig. 4 (c) provides a performance comparison in terms of
the average response latency across varying numbers of time
slots, using a simulation with 40 tasks. This figure consis-
tently shows that our approach is superior to the baseline,
regardless of the number of time slots. At times, our approach
significantly outperforms the baseline (e.g., with 40 or 90
time slots), while in other instances, it moderately surpasses
the baseline (e.g., with 60 or 100 time slots). However, it’s
important to note that there are no deterministic relationships
for the response latency in different time slots. This variability
is due to reasons similar to those observed when investigating
the effects of task failure rates on response latency. Task data
is generated randomly in each time slot, and the backlog of
computation from the previous time slot can influence the
response latency in the current time slot. These factors can
lead to fluctuations in computation between two consecutive
time slots. Sometimes, the amount of computation in the
previous time slot is greater than that in the current time slot,
while other times it is not. Consequently, the average response
latency exhibits this same pattern of variability.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 30,2024 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.

TANG et al.: COMPUTATION OFFLOADING AND RESOURCE ALLOCATION IN FAILURE-AWARE VEC 1887

VIII. CONCLUSION

VEC has gained significant attention in recent years, owing
to its substantial advantages in satisfying the stringent latency
requirements of vehicular applications and services. In this
paper, we consider the joint optimization problem of task
offloading and resource allocation, and design a cost-efficient
and failure-resisted task offloading strategy, which distin-
guishes our work from existing research in VEC systems. Our
primary objective is to minimize the average response latency
for all the tasks. To tackle this problem, we decomposed the
original problem into a sequence of subproblems, eliminating
the long-term constraints. Furthermore, we introduced several
algorithms to tackle these subproblems. Through extensive
simulations, we have validated the feasibility, effectiveness,
and efficiency of our strategy. For future work, we intend
to explore more general scenarios, such as those involving
multiple edge servers to support task offloading.

APPENDIX A
PROOF OF THE LEMMA 2

For simplicity, we rewrite Gt(x(t), f E(t)) as Gt(x, f E) =
Z · ER(x, f E) + Vτ(x, f E), since Z(t) only depends upon the
information from the previous time slot t−1. As a result, Z(t)
is actually independent of x(t) and f E(t), and we treat Z(t) as
a constant in slot t (i.e., Z) in the above equation. Therefore,
we have

ER
(
x, f E

) = ϑEςE

N∑
n=1

Dn(t)
(
f n
E (t)

)2

= ϑEςE

[
D1(t)

(
f 1
E (t)

)2 + · · · + DN(t)
(
f N
E (t)

)2]

= ϑEςE

[
min{Q1(t) + x1(t)C1(t), S1(t)}

(
f 1
E (t)

)2

+ · · · + min{QN(t) + xN(t)CN(t), SN(t)}(f N
E (t)

)2]
.

Let H(xn(t)) = min{Qn(t)+xn(t)Cn(t), Sn(t)}(f n
E(t))2, ∀n ∈ N .

Obviously, H(xn(t)) is a segmented function w.r.t. xn(t), i.e.,

H(xn(t)) =
{

Sn(t)
(
f n
E(t)

)2
, xn(t) ≥ Sn(t)−Qn(t)

Cn(t)

(Qn(t) + xn(t)Cn(t)) ∗ (f n
E (t)

)2
, otherwise

Since Sn(t)(f n
E(t))2 is independent of xn(t), H(xn(t)) is non-

decreasing w.r.t. xn(t).
∑N

n=1 H(xn(t)) is also non-decreasing,
and thus ER(x, f E) is non-decreasing w.r.t. x, given f E. On
the other hand, the other term Vτ(x, f E) in Gt(x, f E) is also
non-decreasing w.r.t. x, given f E, according to Eqs. (13)–(15).
Accordingly, given f E(t), the optimization function in problem
P2 is non-increasing w.r.t. x(t), and the proof is completed.

APPENDIX B
PROOF OF THE LEMMA 3

Given x(t), the optimization function can be expanded as:

Gt
(
x(t), f E(t)

) = Z
(
x(t − 1), f E(t − 1)

)
ER
(
x(t), f E(t)

)
+ Vτ

(
x(t), f E(t)

)

=
N∑

n=1

Z
(
x(t − 1), f E(t − 1)

)
ϑEςEDn(t)

(
f n
E (t)

)2

+ V

(
τ trs

n (t) + lqn(t) + τ fb
n (t) +

(
1 + ηn(t)

θn(t)

)
Dn(t)

f n
E (t)

)

=
N∑

n=1

An
(
f n
E (t)

)2 + Bn

f n
E (t)

+ Cn,

where An � Z(x(t−1), f E(t−1))ϑEςEDn(t), Bn � VDn(t)(1+
ηn(t)/θn(t)), and Cn � V(τ trs

n (t) + lqn(t) + τ
fb
n (t)). Obviously,

An, Bn, and Cn are all independent of f n
E(t), and thus can be

regarded as constants, under the premise that x(t) is given.
Let Hn � An(f n

E (t))2+Bn/f n
E(t)+Cn, ∀n ∈ N and we prove

that Hn is convex w.r.t. f E(t) as follows. The partial derivatives
by differentiating Hn w.r.t. f E(t) can be obtained as:

∂Hn

∂f i
E(t)

=
{

2Anf n
E(t) − Bn

(f n
E (t))

2 , i = n,

0, i
= n.

Then, the second partial derivatives are given as:

∂2
Hn

∂f i
E(t)∂f j

E(t)
=
{

2An + 2Bn

(f n
E (t))

3 , i = n and j = n,

0, otherwise.

The Hessian matrix of Hn can be expressed as:

M(Hn) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · 0
0 · · · · · · · · · 0
0 · · · · · · · · · 0
0 · · · 2An + 2Bn

(f n
E (t))

3 · · · 0

· · · · · · · · · · · · · · ·
0 · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

It is noticeable that XTMX ≥ 0 always holds for an
arbitrary nonzero vector X, so M(Hn) is positive semi-
definite. Accordingly, Hn is convex w.r.t. f E(t), ∀n ∈ N .
Owing to the additivity attribute of convex function,

∑N
n=1 Hn

is also convex w.r.t. f E(t). Thus, the proof is completed.

REFERENCES

[1] R. W. Liu et al., “Intelligent data-driven vessel trajectory prediction in
marine transportation cyber-physical system,” in Proc. IEEE Int. Conf.
Internet Things (iThings) IEEE Green Comput. & Commun. (GreenCom)
IEEE Cyber, Phys. & Soc. Comput. (CPSCom) IEEE Smart Data
(SmartData) IEEE Congr. Cybermat., 2021, pp. 314–321.

[2] Z. Guo, D. Meng, C. Chakraborty, X.-R. Fan, A. Bhardwaj, and K. Yu,
“Autonomous behavioral decision for vehicular agents based on cyber-
physical social intelligence,” IEEE Trans. Comput. Social Syst., vol. 10,
no. 4, pp. 2111–2122, Aug. 2023.

[3] J. Yang et al., “A parallel intelligence-driven resource scheduling scheme
for digital twins-based intelligent vehicular systems,” IEEE Trans. Intell.
Veh., vol. 8, no. 4, pp. 2770–2785, Apr. 2023.

[4] Z. Zhang, N. Wang, H. Wu, C. Tang, and R. Li, “MR-DRO: A fast
and efficient task offloading algorithm in heterogeneous edge/cloud
computing environments,” IEEE Internet Things J., vol. 10, no. 4,
pp. 3165–3178, Feb. 2023.

[5] A. Bechihi, E. Panteley, P. Duhamel, and A. Bouttier, “A resource
allocation algorithm for formation control of connected vehicles,” IEEE
Control. Syst. Lett., vol. 7, pp. 307–312, 2023.

[6] J. Liang, J. Zhang, V. C. M. Leung, and X. Wu, “Distributed information
exchange with low latency for decision making in vehicular fog
computing,” IEEE Internet Things J., vol. 9, no. 19, pp. 18166–18181,
Oct. 2022.

[7] N. Zhao, H. Wu, F. R. Yu, L. Wang, W. Zhang, and V. C. M. Leung,
“Deep-reinforcement-learning-based latency minimization in edge intel-
ligence over vehicular networks,” IEEE Internet Things J., vol. 9, no. 2,
pp. 1300–1312, Jan. 2022.

[8] B. Yang, F. Tan, and Y. Dai, “Performance evaluation of cloud service
considering fault recovery,” J. Supercomput., vol. 65, no. 1, pp. 426–444,
2013.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 30,2024 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.

1888 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 70, NO. 1, FEBRUARY 2024

[9] Y. Hui et al., “Secure and personalized edge computing services in
6G heterogeneous vehicular networks,” IEEE Internet Things J., vol. 9,
no. 8, pp. 5920–5931, Apr. 2022.

[10] C. Tang and H. Wu, “Joint optimization of task caching and computation
offloading in vehicular edge computing,” Peer-to-Peer Netw. Appl.,
vol. 15, no. 2, pp. 854–869, 2022.

[11] Y. Lin, Y. Zhang, J. Li, F. Shu, and C. Li, “Popularity-aware online
task offloading for heterogeneous vehicular edge computing using
contextual clustering of bandits,” IEEE Internet Things J., vol. 9, no. 7,
pp. 5422–5433, Apr. 2022.

[12] S. Liu, Q. Yang, S. Zhang, T. Wang, and N. N. Xiong, “MIDP:
An MDP-based intelligent big data processing scheme for vehicular
edge computing,” J. Parallel Distrib. Comput., vol. 167, pp. 1–17,
Sep. 2022.

[13] S. Wang, J. Li, G. Wu, H. Chen, and S. Sun, “Joint optimization of
task offloading and resource allocation based on differential privacy in
vehicular edge computing,” IEEE Trans. Comput. Social Syst., vol. 9,
no. 1, pp. 109–119, Feb. 2022.

[14] C. Tang, W. Chen, C. Zhu, Q. Li, and H. Chen, “When cache
meets vehicular edge computing: Architecture, key issues, and
challenges,” IEEE Wireless Commun., vol. 29, no. 4, pp. 56–62,
Aug. 2022.

[15] W. Fan et al., “Joint task offloading and resource allocation for vehicular
edge computing based on V2I and V2V modes,” IEEE Trans. Intell.
Transp. Syst., vol. 24, no. 4, pp. 4277–4292, Apr. 2023.

[16] M. D. Hossain et al., “Dynamic task offloading for cloud-assisted
vehicular edge computing networks: A non-cooperative game theoretic
approach,” Sensors, vol. 22, no. 10, p. 3678, 2022.

[17] X. Huang, L. He, X. Chen, L. Wang, and F. Li, “Revenue and
energy efficiency-driven delay-constrained computing task offloading
and resource allocation in a vehicular edge computing network: A deep
reinforcement learning approach,” IEEE Internet Things J., vol. 9, no. 11,
pp. 8852–8868, Jun. 2022.

[18] E. Karimi, Y. P. Chen, and B. Akbari, “Task offloading in vehicular
edge computing networks via deep reinforcement learning,” Comput.
Commun., vol. 189, pp. 193–204, May 2022.

[19] B. Lin, K. Lin, C. Lin, Y. Lu, Z. Huang, and X. Chen, “Computation
offloading strategy based on deep reinforcement learning for con-
nected and autonomous vehicle in vehicular edge computing,” J. Cloud
Comput., vol. 10, no. 1, p. 33, 2021.

[20] W. Zhan, C. Luo, J. Wang, G. Min, and H. Duan, “Deep reinforcement
learning-based computation offloading in vehicular edge computing,”
in Proc. IEEE Glob. Commun. Conf., Waikoloa, HI, USA, 2019,
pp. 1–6.

[21] R. Danehchin, “Enhancing fault tolerance in vehicular ad-hoc networks
using artificial bee colony algorithm-based spanning trees,” Int. J. Syst.
Assuran. Eng. Manag., vol. 13, no. 4, pp. 1722–1732, 2022.

[22] A. Javed, A. Malhi, and K. Främling, “Edge computing-based fault-
tolerant framework: A case study on vehicular networks,” in Proc.
16th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), 2020,
pp. 1541–1548.

[23] R. Florin, A. G. Zadeh, P. Ghazizadeh, and S. Olariu, “Towards
approximating the mean time to failure in vehicular clouds,”
IEEE Trans. Intell. Transp. Syst., vol. 19, no. 7, pp. 2045–2054,
Jul. 2018.

[24] C. Tang, S. Xia, Q. Li, W. Chen, and W. Fang, “Resource pooling in
vehicular fog computing,” J. Cloud Comput., vol. 10, no. 1, p. 19, 2021.

[25] C. Tang, C. Zhu, H. Wu, Q. Li, and J. J. P. C. Rodrigues, “Toward
response time minimization considering energy consumption in caching-
assisted vehicular edge computing,” IEEE Internet Things J., vol. 9,
no. 7, pp. 5051–5064, Apr. 2022.

[26] J. Yao and N. Ansari, “Fog resource provisioning in reliability-aware
IoT networks,” IEEE Internet Things J., vol. 6, no. 5, pp. 8262–8269,
Oct. 2019.

[27] H. Liao, Y. Mu, Z. Zhou, M. Sun, Z. Wang, and C. Pan, “Blockchain
and learning-based secure and intelligent task offloading for vehicular
fog computing,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 7,
pp. 4051–4063, Jul. 2021.

[28] C. Tang, C. Zhu, N. Zhang, M. Guizani, and J. J. P. C. Rodrigues, “SDN-
assisted mobile edge computing for collaborative computation offloading
in Industrial Internet of Things,” IEEE Internet Things J., vol. 9, no. 23,
pp. 24253–24263, Dec. 2022.

[29] Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-based
task offloading for vehicular cloud computing systems,” in Proc. IEEE
Int. Conf. Commun., 2018, pp. 1–7.

[30] Z. Zhou, Y. Guo, Y. He, X. Zhao, and W. M. Bazzi, “Access control and
resource allocation for M2M communications in industrial automation,”
IEEE Trans. Ind. Informat., vol. 15, no. 5, pp. 3093–3103, May 2019.

[31] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Found. Trends� Netw., vol. 1,
no. 1, pp. 1–144, 2006.

Chaogang Tang (Member, IEEE) received the B.S.
degree from the Nanjing University of Aeronautics
and Astronautics, Nanjing, China, and the Ph.D.
degree from the School of Information Science and
Technology, University of Science and Technology
of China, Hefei, China, in 2012. He is currently with
the China University of Mining and Technology. His
research interests include vehicular edge computing
Internet of Things, and big data.

Ge Yan received the bachelor’s degree in engi-
neering from Anhui Polytechnic University in 2021.
He is currently pursuing the master’s degree with
the School of Information and Control Engineering,
China University of Mining and Technology. His
research interests include vehicular edge computing,
and Internet of Things.

Huaming Wu (Senior Member, IEEE) received
the B.E. and M.S. degrees in electrical engineer-
ing from Harbin Institute of Technology, China,
in 2009 and 2011, respectively, and the Ph.D.
degree (Highest Hons.) in computer science from
Freie Universität Berlin, Germany, in 2015. He is
currently an Associate Professor with the Center
for Applied Mathematics, Tianjin University. His
research interests include model-based evaluation,
wireless and mobile network systems, mobile cloud
computing, and deep learning.

Chunsheng Zhu (Member, IEEE) received the
Ph.D. degree in electrical and computer engineer-
ing from The University of British Columbia,
Canada, in 2016. He is currently an Associate
Professor with the College of Big Data and
Internet, Shenzhen Technology University, China.
His research interests include the Internet of Things,
wireless sensor networks, cloud computing, big data,
social networks, and security.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 30,2024 at 08:27:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

