
Signal Processing 156 (2019) 84–91

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

Channel pruning based on mean gradient for accelerating

Convolutional Neural Networks

Congcong Liu, Huaming Wu

∗

Center for Applied Mathematics, Tianjin University, Tianjin 30 0 072, PR China

a r t i c l e i n f o

Article history:

Received 27 March 2018

Revised 14 September 2018

Accepted 27 October 2018

Available online 28 October 2018

Keywords:

Channel pruning

Convolutional Neural Networks

Mean gradient

Hierarchical global pruning

Acceleration

a b s t r a c t

Convolutional Neural Networks (CNNs) are getting deeper and wider to improve their performance and

thus increase their computational complexity. We apply channel pruning methods to accelerate CNNs and

reduce its computational consumption. A new pruning criterion is proposed based on the mean gradient

for convolutional kernels. To significantly reduce Float Point Operations (FLOPs) of CNNs, a hierarchi-

cal global pruning strategy is introduced. In each pruning step, the importance of convolutional kernels

is evaluated by the mean gradient criterion. Hierarchical global pruning strategy is adopted to remove

less important kernels, and get a smaller CNN model. Finally we fine-tune the model to restore network

performance. Experimental results show that VGG-16 network pruned by channel pruning on CIFAR-10

achieves 5.64 × reduction in FLOPs with less than 1% decrease in accuracy. Meanwhile ResNet-110 net-

work pruned on CIFAR-10 achieves 2.48 × reduction in FLOPs and parameters with only 0.08% decrease

in accuracy.

© 2018 Elsevier B.V. All rights reserved.

p

[

o

O

s

f

p

S

w

t

t

w

p

o

t

o

t

i

i

w

c

s
1. Introduction

Convolution neural networks (CNNs) have achieved remarkable

success in various recognition tasks [1–3] , especially in computer

vision [4–6] . CNNs have achieved state-of-the-art performance in

these fields compared with traditional methods based on manually

designed visual features [7] . However, these deep neural networks

have a huge number of parameters. For example, AlexNet [4] net-

work contains about 6 × 10 6 parameters, while a better perfor-

mance network such as VGG [6] network contains about 1.44 × 10 8

parameters, which causes higher memory and computational costs.

For instance, VGG-16 model takes up more than 500MB storage

space and needs 1.56 × 10 10 Float Point Operations (FLOPs) to clas-

sify a single image. The huge memory and high computational

costs of CNNs restrict the application of deep learning on mo-

bile devices with limited resources [8] . What’s more, deep learn-

ing models are known to be over-parameterized [9] . Denil et al.

[10] pointed out that deep neural networks can be reconstructed

by a subset of network parameters without affecting network per-

formance, which means that there are a huge number of redun-

dant connections in neural network models and we can reduce

the memory and computational costs by pruning and compressing

such connections [11,12] .
∗ Corresponding author.

E-mail address: whming@tju.edu.cn (H. Wu).

l

w

r

i

https://doi.org/10.1016/j.sigpro.2018.10.019

0165-1684/© 2018 Elsevier B.V. All rights reserved.
The huge memory consumption and high computational com-

lexity of deep neural networks drive the research of compression

13,14] and acceleration algorithms [15,16] , and pruning [17] is one

f effective methods. In the 1990s, LeCun et al. [18] introduced the

ptimal Brain Damage pruning strategy, they had observed that

everal unimportant weight connections could be safely removed

rom a well-trained network with negligible impact on network

erformance. Hassibi et al. [19] proposed a similar Optimal Brain

urgeon pruning strategy and pointed out that the importance of

eight was determined by the second derivative. However, these

wo methods needed to calculate Hessian matrix, which increased

he memory consumption and computational complexity of net-

ork model. Recently, Han et al. [20,21] reported impressive com-

ression rates and effective decrease of the number of parameters

n AlexNet network and VGG Network by pruning weight connec-

ions with small magnitudes and then retraining without hurting

verall accuracy. The decrease of parameters was mainly concen-

rated in full connection layers, which achieved 3 ∼ 4 × speedup

n full connection layers during inference time. However, this prun-

ng operation had generated an unstructured [22] sparse model,

hich additionally required sparse BLAS libraries [23] or even spe-

ialized hardware to achieve its acceleration [16] . Similar to our

tudy, Li et al. [24] measured the relative importance of a convo-

ution kernel in each layer by calculating the sum of its absolute

eights, i.e., its l 1 norm. Compared to the minimum weight crite-

ion [24] , our criterion is based on mean gradient of feature maps

n each layer, which more intuitively reflects the importance of fea-

https://doi.org/10.1016/j.sigpro.2018.10.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2018.10.019&domain=pdf
mailto:whming@tju.edu.cn
https://doi.org/10.1016/j.sigpro.2018.10.019

C. Liu and H. Wu / Signal Processing 156 (2019) 84–91 85

t

r

[

t

d

s

(

o

t

n

c

r

n

i

F

w

b

m

p

b

b

2

d

9

l

c

w

2

V

i

f

t

c

n

r

v

W

a

W

w

T

n

a

m

W

s

v

k

B

g

c

b

f

l

a

o

a

(a) Channel pruning between convolutional layers [24]

(b) Channel pruning with batch normalization layers

Fig. 1. Channel pruning for networks without shortcut connections. (a) Channel

pruning between convolutional layers. Pruning a channel and its corresponding fea-

ture maps between convolutional layers. (b) Channel pruning with batch normal-

ization layers. Pruning a channel and its corresponding batch normalization layer.

(For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Table 1

The change of FLOPs on convolutional layers.

Convolutional layer FLOPs FLOPs pruned Rate

l + 1 c l+1 c l k
2 h l w l mc l k

2 h l w l m/ c l+1

l + 2 c l+2 c l+1 k
2 h l+1 w l+1 c l+2 m k 2 h l+1 w l+1 m/ c l+1

2

c

i

W

w

s

f

t

l

a

r

a

d

d

v

s

t

n

t

R

p

R

t

ure extracted from convolutional kernels. Another pruning crite-

ion obtained the sparsity of activations after a non-linear ReLU

25] mapping. Hu et al. [26] believed that if most outputs after

hese non-linear neurons are zero, the probability of neuronal re-

undancy should be bigger. This criterion measured importance

core of a neuron by calculating its Average Percentage of Zeros

APoZ). However, APoZ pruning criterion requires the introduction

f threshold parameters, which will vary from layer to layer. These

wo criteria simply and intuitively reflect the importance of chan-

els for convolutional kernels or feature maps, but do not directly

onsider the final loss after pruning. In this paper, pruning algo-

ithm was based on the importance of feature maps in each chan-

el, and considered the effect on network performance after prun-

ng a channel. Meanwhile hierarchical global pruning strategy and

LOPs constraint were introduced to significantly reduce the net-

ork FLOPs.

Firstly, channel pruning for CNNs with different structures will

e achieved in Section 2 . Secondly pruning criterion based on the

ean gradient and hierarchical global pruning strategy will be pro-

osed in Section 3 . Effectiveness of the algorithm will be presented

y experimental comparisons in Section 4 . Finally, the paper will

e concluded in Section 5 .

. Pruning channels and corresponding feature maps

The paper mainly studies the effect of channel pruning on re-

ucing network FLOPs. Convolutional layers accounts for more than

0% [27] FLOPs of common CNNs. Therefore, we only prune convo-

utional layers, Sections 2.1 and 2.2 implement specific pruning on

hannels and their corresponding feature maps for different net-

orks, respectively.

.1. Channel pruning for networks without shortcut connections

For a CNN structure without shortcut connections [6] , such as

GG network or AlexNet network, the process of channel prun-

ng is shown in Fig. 1 . Input feature maps x l ∈ R

c l ×h l ×w l are trans-

ormed to output feature maps x l+1 ∈ R

c l+1 ×h l+1 ×w l+1 by convolu-

ion operation, where x l+1 are used as input feature maps for next

onvolutional layer, c l and c l+1 represent the number of chan-

els for feature maps x l and x l+1 , respectively, h l and w l rep-

esent height and width of feature maps x l , respectively. Con-

olution operation is implemented by convolution kernel matrix

 l +1 ∈ R

c l+1 ×c l ×k ×k , where k is size of convolutional kernel, such

s k = 3 for VGG network. W l+1 is composed by c l+1 3D kernel

(i)
l+1

∈ R

c l ×k ×k , i ∈

(
1 , 2 , · · ·, c l+1

)
, each kernel W

(i)
l+1

is convolved

ith input feature maps x l to generate one output feature map.

herefore, when the i th output channel for the convolutional ker-

el matrix W l+1 is removed, the i th output feature map (marked

s green in the output feature maps x l+1 in Fig. 1 (a)) will be re-

oved, and the i th input channel for the next convolutional kernel

 l+2 (marked as green in W l+2 in Fig. 1 (a)) will also be removed.

Furthermore, there are batch normalization (BN) layers in CNNs

hown in Fig. 1 (b), similar to the process of pruning between con-

olutional layers, when the i th output channel for convolutional

ernel matrix W l+1 is removed, the i th channel for the subsequent

N layer and its corresponding output feature map (marked as

reen in W BN and x BN) will be removed.

Channel pruning for non-tensor BN layers cannot reduce the

omputational complexity of CNNs, the reduction in network FLOPs

y channel pruning only needs to consider the change of FOLPs

or convolutional layers. Table 1 shows the change of FLOPs on the

 + 1 th and l + 2 th convolutional layers when m output channels

re removed for the l + 1 th convolutional kernel matrix. It can be

bserved that FLOPs on the l + 1 th and l + 2 th convolutional layers

re both reduced by m/ c l+1 .
.2. Channel pruning for residual networks

The architectures of Residual Networks (ResNets) [6] are more

omplex than plain CNNs [6] . Shortcut connections are inserted

n the ResNets, which makes channel pruning more complicated.

hen channels are pruned in a residual block, we should consider

hether the corresponding channels need to be pruned in down-

ample layers or not. Fig. 2 illustrates the channel pruning process

or ResNets.

It can be seen that channel pruning inside a residual block is

he same as channel pruning for networks in Section 2.1 . Since the

ast feature maps x l+2 in residual block and feature maps gener-

ted by shortcut connection are of the same dimension, we should

emove same output channels of convolution kernel matrix W l+2

nd W down −sample simultaneously. The channels to be pruned for

own-sample layer(marked as orange in shortcut connection) are

etermined by the corresponding channels pruned for the last con-

olutional layer of residual block, which ensures that the dimen-

ion of feature maps P(x l) is consistent with the dimension of fea-

ure maps x l+2 .

FLOPs for ResNets is the same as that of corresponding plain

etworks. Shortcut connections introduce neither extra parame-

er nor computation complexity. Therefore reduction in FLOPs for

esNets by channel pruning is the same as Table 1 . When m out-

ut channels are removed for the l + 1 th convolutional layer in

esNets, FLOPs on the convolutional layer and the next convolu-

ional layer are both reduced by m/ c l+1 .

86 C. Liu and H. Wu / Signal Processing 156 (2019) 84–91

Fig. 2. Channel pruning for ResNets [24] . The channels to be pruned for down-

sample layer (marked as orange in W down −sample) are determined by the pruned

channels of the last convolutional layer of residual block. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)

Fig. 3. The flow chart of channel pruning.

Fig. 4. Transformation for network parameters. Output channels for l th convolu-

tional layer are pruned (marked as green in W l), its corresponding feature maps

and input channels for the next convolutional layer are also pruned (marked as

green in x l and W l+1). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

3

n

w

i

t

f

l

v

c

f

W

w

w

c

e

W

W

n

D

w

r

A

m

C

A

v

m

w

p

n

3. Channel pruning strategy

The proposed strategy for channel pruning consists of the fol-

lowing steps: (1) Given a pre-trained network model; (2) Evalu-

ating the importance of feature map on each channel by mean

gradient criterion; (3) Adopting a hierarchical global pruning strat-

egy to prune less important channels and corresponding feature

maps; (4) Alternate iterations of pruning and further fine-tuning;

(5) Stopping pruning until the desired pruning target is achieved.

The flow chart is depicted in Fig. 3 . Our desired pruning target is

to reduce FLOPs for network models as much as possible without

compromising original accuracy.
.1. Mean gradient criterion for pruning

Channel pruning for convolutional layers reduces the number of

etwork parameters, which inevitably leads to a decrease in net-

ork performance, therefore the choice of channels to be pruned

s especially important. As shown in Fig. 4 , pruning channels for

he l th convolutional layer reduces the number of output channels

rom c l to desired number ˜ c l , where 0 < ˜ c l � c l , and the l th convo-

utional kernel matrix W l is transformed to ˜ W l . For the l + 1 th con-

olutional layer, the number of input channels is also reduced from

 l to ˜ c l , and the l + 1 th convolutional kernel matrix W l+1 is trans-

ormed to ˜ W l+1 . The set of network parameters is denoted by

 =

{

W 1 , W 2 , · · · , W l , W l+1 , · · · , W L

}

,

here L represents the depth of convolutional layers in the net-

ork. For simplicity, bias terms are ignored. Fig. 4 illustrates that

hannel pruning will lead to changes in the set of network param-

ters, which is transformed to

˜
 =

{

W 1 , W 2 , · · · , ˜ W l , ˜ W l+1 , · · · , W L

}

.

Consider the set of network parameters converted from W to
˜
 , which is optimized to minimize the loss function C

(
·
)

of the

etwork. A set of training examples is represented as

 =

{

X =

{
x 0 , x 1 , · · · · · · , x N

}
, Y =

{
y 0 , y 1 , · · · · · · , y N

}}

,

here X and Y represent an input and a target output of the neu-

al network, respectively; N is the number of training examples.

 good channel pruning method should maintain network perfor-

ance when the set of network parameters changes, i.e.,

(
D| ˜ W

)
≈ C

(
D|W

)
. (1)

ccording to Eq. (1) , the problem of channels selection can be con-

erted into a combinatorial optimization:

in

W

′

∣∣∣C (D| ˜ W

)
− C

(
D|W

)∣∣∣, s.t.

{∥∥ ˜ W l

∥∥
0

=

˜ c l ∥∥ ˜ W j

∥∥
0

= c j , j � = l
(2)

here the l 0 norm in

∥∥ ˜ W l

∥∥
0

represents the number of non-zero

arameters for the l th element ˜ W l in

˜ W , which means that the

umber of output channels for convolutional kernel matrix ˜ W
l

C. Liu and H. Wu / Signal Processing 156 (2019) 84–91 87

Table 2

VGG-16 and the pruned model on CIFAR-10.

Layer h l × w l Channels FLOPs FLOPs/channels Channels Pruned%

Conv1 224 × 224 64 8.67 × 10 7 1.35 × 10 6 5 92.2%

Conv2 224 × 224 64 1.85 × 10 9 2.89 × 10 7 6 90.6%

Conv3 112 × 112 128 9.25 × 10 8 7.23 × 10 6 7 94.5%

Conv4 112 × 112 128 1.85 × 10 9 1.45 × 10 7 2 98.4%

Conv5 56 × 56 256 9.25 × 10 8 3.61 × 10 6 72 71.9%

Conv6 56 × 56 256 1.85 × 10 9 7.23 × 10 6 68 73.4%

Conv7 56 × 56 256 1.85 × 10 9 7.23 × 10 6 61 76.2%

Conv8 28 × 28 512 9.25 × 10 8 1.81 × 10 6 328 35.9%

Conv9 28 × 28 512 1.85 × 10 9 3.61 × 10 6 348 32.0%

Conv10 28 × 28 512 1.85 × 10 9 3.61 × 10 6 345 32.6%

Conv11 14 × 14 512 4.62 × 10 8 9.03 × 10 5 329 35.7%

Conv12 14 × 14 512 4.62 × 10 8 9.03 × 10 5 335 34.6%

Conv13 14 × 14 512 4.62 × 10 8 9.03 × 10 5 318 37.9%

Linear1 1 4096 1.03 × 10 8 2.50 × 10 4 4096 0%

Linear2 1 4096 1.68 × 10 7 4.10 × 10 3 4096 0%

Linear3 1 10 4.60 × 10 4 4.10 × 10 3 10 0%

Total — — 1.55 × 10 10 — — 48%

Table 3

The pruned model for VGG-16 on CIFAR-10. Inference time in the last column is tested on Intel(R)

Xeon(R) CPU E5-2660 v3 @ 2.60GHz with batch size 32.

Model Error FLOPs Pruned Params Pruned Time (speed up)

VGG16 7.53% 1.55 × 10 10 — 1.34 × 10 8 — 26.0

VGG16-pruned-A 8.25% 2.74 × 10 9 82.3% 8.60 × 10 7 36.0% 5.4(4.8 ×)

VGG16-pruned-B 7.49% 4.59 × 10 9 70.3% 1.03 × 10 8 23.3% 9.0(2.9 ×)

c

v

m

h

f

f

m

x

m

c

�

w

e

f

e

s

p

t

3

p

v

e

w

C

t

n

i

0

t

w

t

s

l

i

l

e

C

C

C

m

l

i

t

s

�

e

s

m

d

s

p

v

i

t

l

p

q

s

r

v

p

l

hanges to ˜ c l , and the number of output channels of other con-

olution kernel matrix remains unchanged.

A new pruning criterion based on mean gradient of feature

aps is introduced, this criterion prunes a particular channel that

as an almost flat gradient of loss function C
(

·
)

with respect to

eature maps x l , i.e. it prunes the channel and its corresponding

eature map with the minimum mean gradient. Let the l th feature

aps be denoted as:

 l =

{

x

(1)
l

, x

(2)
l

, · · · · ··, x

(c l)

l

}

,

ean gradient �MG of the k th channel for feature maps x l is cal-

ulated as follows:

MG

(
x

(k)
l

)
=

∣∣∣∣ 1

M

∑

m

∂C
∂x

(k)
l,m

∣∣∣∣, (3)

here M is the length of vectorized feature map, x (k)
l,m

denotes any

lement of x (k)
l

. The gradient terms in Eq. (3) are easily computed

rom the same computations for back-propagation, �MG gives an

xpectation of the change magnitude on loss function with re-

pect to output feature map on each channel. For training exam-

les N > 1, �MG is computed for each example separately, and then

he final result is obtained by averaging all examples.

.2. Hierarchical global pruning strategy

Combining with the mean gradient criterion, this section pro-

oses hierarchical global pruning strategy: according to each con-

olutional layer’s sensitivity to pruning, the global pruning strat-

gy is adopted between the layers with similar sensitivity. For net-

orks without shortcut connection, such as VGG-16 network on

IFAR-10 dataset [28] , network architecture and various parame-

ers information are shown in Table 2 . And the pruned model is

amed as VGG16-pruned-A, which is described in Table 3 .

The CIFAR-10 dataset consists of 60, 0 0 0 images, whose size

s 32 × 32, and the number of images in each category is 6,
 0 0, with 10 categories. During training, images are converted

o 256 × 256 and then randomly cropped to 224 × 224 for net-

ork input, flip horizontal is applied to implement data augmen-

ation. During testing, images are converted to 256 × 256 and then

caled to 224 × 224 using a center crop for network input. Since

ayers with the same size of feature maps have similar sensitiv-

ties to pruning [24] , global pruning strategy is applied to the

ayers with similar sensitivities. For VGG-16 network, the strat-

gy is applied to the first four convolutional layers: Conv1, Conv2,

onv3, Conv4, the three middle convolutional layers: Conv5, Conv6,

onv7, and the last six convolutional layers: Conv8, Conv9, Conv10,

onv11, Conv12, Conv13. Pruning ratio for each hierarchy is deter-

ined by the total number of output channels for convolutional

ayers.

Compared with layer-by-layer pruning and retraining, the prun-

ng ratio of each convolutional layer does not need to be de-

ermined in advance according to the hierarchical global pruning

trategy. Channel and its corresponding feature map with small

MG are removed in Eq. (3) , the sensitivity of convolutional lay-

rs is studied actively during each pruning process, and a rea-

onable ratio for each convolutional layer can be reached. What’s

ore, pruning on layer-by-layer is extremely time-consuming and

oes not give a holistic view of network robustness resulting in a

maller network model. On the other hand, compared with global

runing strategy, our strategy makes pruning ratio for each con-

olutional layer closer to the ratio for the whole network, and it

s impossible to obtain a significant reduction in network FLOPs in

he case that there is a large difference in pruning ratio for convo-

utional layers.

FLOPs constraint on CNNs is introduced to further reduce com-

utational complexity of networks. FLOPs for different layers re-

uire different amounts of computation due to the channles and

izes of input feature maps and convolution kernels. The pruning

atio of each hierarchy is determined by the FLOPs ratio of all con-

olutional layers within the hierarchy to the whole network. The

runing ratio varies with the number of channels for convolutional

ayers during each pruning.

88 C. Liu and H. Wu / Signal Processing 156 (2019) 84–91

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Channels Pruned Away

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y(
%

)

VGG-16,CIFAR-10,prune channels with different order for mean gradient

Conv1,minimum
Conv1,maximun
Conv1,random
Conv4,minimum
Conv4,maximun
Conv4,random
Conv7,minimum
Conv7,maximun
Conv7,random
Conv13,minimum
Conv13,maximun
Conv13,random

Fig. 5. Comparison of three pruning methods for VGG-16 on CIFAR-10. The impor-

tance of channels is evaluated by its mean gradient. And pruning channels ran-

domly is compared with our pruning criterion.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Channels Pruned Away

0

1.547

3.094

4.641

6.188

7.735

9.282

10.829

12.376

13.923

15.47

F
LO

P
s

VGG-16,CIFAR-10,Comparison with global channel pruning

ours
global pruning

x109

Fig. 6. Comparison with global pruning strategy.

r

l

p

c

e

l

q

4

1

i

d

w

i

p

a

d

w

d

g
3.3. Fine-tuning of the pruned networks

After each pruning, performance degradation would be com-

pensated by fine-tuning the networks. Pruning and fine-tuning it-

eratively strategy is adopted, channel pruning is firstly performed,

then the network is fine-tuned to enhance performance, and a

smaller network model is obtained by updating parameters before

next pruning. In addition, the mean gradient �MG of each channel

is standardized to get ˆ �MG during pruning. Its formula is shown as

follows:

ˆ �MG

(
x (k)

l

)
=

�MG

(
x (k)

l

)
√ ∑

j

(
�MG

(
x (j)

l

))2
, (4)

l 2 -normalization can avoid the influence of the depth of convolu-

tional layers on �MG , which ensures the reasonability of sorting

mean gradient across multiple layers. In conclusion, our channel

pruning algorithm is described in Algorithm 1 .

Algorithm 1 Channel pruning algorithm based on mean gradient.

Input: A pre-trained Model: M

Given the number of channels for each pruning: n

Given a desired pruning ratio: R

Training set: D

Testing set: T

Output: A pruned model: M pruned

1: Compute performance P M

of M on T

2: Calculate the number of pruning iterations I using R and n

3: for i in range(I) do

4: Obtain the number of channels n h for each hierarchy in each

iteration according to the corresponding constraint condition

5: Calculate mean gradient �MG of each channel using Eq. (3)

6: Apply l 2 -normalization that rescale �MG to ˆ �MG by Eq. (4)

7: Adopt global pruning strategy in each hierarchy

8: Update the set of network parameters to get new model

M new

, update M by M new

9: Fine-tune M on D using SGD algorithm

10: end for

11: Fine-tune the network until the model converges and M is

saved as M pruned

4. Experiments

To verify the validity of our algorithm, the following experi-

ments are conducted. Effect of removing channels with different

order for mean gradient on network accuracy is considered in

Section 4.1 , which indicates that channels with larger mean gra-

dient are more important in network performance. The compari-

son results of our strategy and global pruning strategy are shown

in Section 4.2 . Comparisons of different pruning criteria are given

in Section 4.3 , which shows that our algorithm can reduce FLOPs

for networks effectively. Finally, the pruned models for VGG-16 and

ResNet-110 are given in Sections 4.4 and 4.5 respectively.

4.1. Effect of mean gradient on network performance

We compare the sensitivity of pruning channels for VGG-16 on

CIFAR-10 with minimum mean gradient, maximum mean gradi-

ent and random channels. We show reduction in accuracy of sev-

eral convolution layers, there are big differences between the three

methods. This section mainly considers the effect of mean gradient

on network performance, and thus, there is no fine-tuning using

SGD algorithm. As shown in Fig. 5 , the accuracy of pruning chan-

nels with the maximum mean gradient drops quickly as pruning
atio increases, which indicates the importance of channels with

arger mean gradient. What’s more, from the comparison between

runing with minimum mean gradient and random channels, we

an see that accuracy of pruned network with minimum gradi-

nt maintains better when pruning ratio of convolutional layers is

ess than 40%, while accuracy of pruning network randomly drops

uickly when pruning ratio is low to 20%.

.2. Comparison with global pruning strategy

According to Algorithm 1 , the parameters of VGG-16 on CIFAR-

0 are set as follows: we remove 100 channels at each pruning

teration, i.e. n = 100 , subsequently, we perform 5 epochs SGD up-

ates with batch-size 32, momentum 0.9, learning rate 10 −4 , and

eight decay 10 −4 . Fig. 6 shows the curve of model FOLPs chang-

ng with different pruning ratios, while our strategy and global

runing strategy are applied for VGG-16 on CIFRA-10 respectively,

nd neither of these strategies introduce FLOPs constraint con-

ition. It can be seen that reduction in FLOPs is more obvious

ith hierarchical global pruning strategy. To further analyze the

ifference of reduction in network FLOPs with above two strate-

ies, We compare pruning ratios of convolutional layers with large

C. Liu and H. Wu / Signal Processing 156 (2019) 84–91 89

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Channels Pruned Away on whole network

a

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
b

C
ha

nn
el

s
P

ru
ne

d
A

w
ay

 o
n

ea
ch

 la
ye

r

VGG-16,cifar10,global channel prunning

Conv2
Conv4
Conv6
Conv7
Conv11
Conv12
Conv13
b=a

(a)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Channels Pruned Away on whole network

a

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
C

ha
nn

el
s

P
ru

ne
d

A
w

ay
 o

n
ea

ch
 la

ye
r

VGG-16,cifar10,hierarchical global channel prunning

Conv2
Conv4
Conv6
Conv7
Conv11
Conv12
Conv13
b=a

(b)

Fig. 7. Pruning ratio curves on convolutional layers. (a) Global pruning strategy. (b) Hierarchical global pruning strategy.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
FLOPs Pruned Away

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y(
%

)

VGG-16,CIFAR-10,Comparison of pruning criteria

Mean Gradient
Mean Activation
Minimum weight
APoZ
Mean Gradient,FLOPs

(a)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Channels Pruned Away

0

1.547

3.094

4.641

6.188

7.735

9.282

10.829

12.376

13.923

15.47

F
LO

P
s

VGG-16,CIFAR-10,Comparison of pruning criteria

Mean Gradient
Std Activation
Mean Activation
Minimum weight
APoZ
Mean Gradient,FLOPs

(b)

Fig. 8. Comparison of pruning criteria. (a) The curve between model FLOPs and network accuracy for VGG-16 on CIFAR-10. (b) The curve between pruning ratio and model

FLOPs for VGG-16 on CIFAR-10.

d

e

C

C

r

s

t

l

w

r

l

l

g

i

t

l

r

p

Table 4

Comparison of pruned models for VGG-16 on CIFAR-10.

Model Accuracy Params Flops

VGG16-MW [24] + 0.93% 2.78 × 1.52 ×
VGG16-pruned-A −0.72% 1.56 × 5.64 ×
VGG16-pruned-B + 0.04% 1.30 × 3.37 ×

e

e

l

4

o
ifference in value FLOPs / Channel , which is described in Table 2 ,

.g. convolutional layers with large FLOPs / Channel : Conv2, Conv4,

onv6, Conv7; and convolutional layers with small FLOPs / Channel :

onv11, Conv12, Conv13. As shown in Fig. 7 , horizontal axis a rep-

esents pruning ratio on whole network and vertical axis b repre-

ents pruning ratio on each layer, Fig. 7 (a) illustrates that the rela-

ionship between the horizontal and vertical axis for convolutional

ayers with small FLOPs / Channel (Conv11, Conv12, Conv13) is b > a ,

hich means pruning ratios of these layers are all bigger than the

atio of whole network, in contrast, pruning ratio of convolutional

ayers with large FLOPs / Channel (Conv2, Conv4, Conv6, Conv7) is

ess than the ratio of whole network. That is main reason that

lobal pruning strategy cannot implement a significant reduction

n network FLOPs. In Fig. 7 (b), the curves are all concentrated near

he diagonal line b = a , which means that pruning ratio of each

ayer is similar to the ratio of the whole network.

Fig. 7 further explains the experimental result in Fig. 6 that

eduction in FLOPs is more obvious with the hierarchical global

runing strategy when the pruning ratio of the whole network is
qual to these two strategies. The hierarchical global pruning strat-

gy can maintain a similar pruning ratio on each convolutional

ayer and achieve a more significant reduction in network FLOPs.

.3. Comparison with other pruning criteria

There are many pruning criteria which evaluate the importance

f a feature map or convolutional kernel. Common criteria include:

1. Minimum weight [24] :

�MW

(
W

(k)
l

)
=

1

∑

j

∣∣W

(k)
l, j

∣∣, (5)

N

90 C. Liu and H. Wu / Signal Processing 156 (2019) 84–91

Table 5

The pruned model for ResNet-110 on CIFAR-10. Inference time in the last column is tested on Intel(R)

Xeon(R) CPU E5-2660 v3 @ 2.60GHz with batch size 128.

Model Error FLOPs Pruned Params Pruned Time (speed up)

ResNet110 6.47% 2.53 × 10 8 — 1.72 × 10 6 — 2.71

ResNet110-pruned-A 6.56% 1.46 × 10 8 42.3% 1.02 × 10 6 40.7% 2.02(1.34 ×)

ResNet110-pruned-B 6.55% 1.02 × 10 8 59.7% 0.72 × 10 6 58.1% 1.66 (1.63 ×)

Table 6

Comparison of pruned models for ResNet-110 on CIFAR-10.

Model Accuracy Params FLOPs

ResNet110-MW [24] −0.23% 1.47 × 1.63 ×
ResNet110-pruned-A −0.09% 1.69 × 1.72 ×
ResNet110-pruned-B −0.08% 2.39 × 2.48 ×

b

a

t

t

m

I

i

S

s

M

M

d

r

4

t

8

i

C

w

i

fl

t

f

v

r

e

r

c

fi

m

e

t

w

a

a

f

R

r

r

w

m

0

5

i

m

t

i

e

i

m

d
where N is the dimensionality of convolutional kernel W

(k)
l

af-

ter vectorization, and W

(k)
l, j

denotes any element of W

(k)
l

.

2. Mean Activation [29] :

�MA

(
x

(k)
l

)
=

1

M

∑

m

x

(k)
l,m

, (6)

where M is the length of vectorized feature map x (k)
l

.

3. Std Activation [29] :

�std

(
x

(k)
l

)
=

√

1

M

∑

m

(
x

(k)
l,m

− μ
x (k)

l

)2
, (7)

where μ
x
(k)
l

is the mean of feature map x (k)
l

. This criterion

is similar to the Mean Activation criterion, calculating feature

maps generated after convolution operations.

4. APoZ [26] :

AP oZ(o

(k)
l

) =

1

M

∑

m

f (o

(k)
l,m

= 0) , (8)

where o l is the l th layer activation neurons produced by non-

linear ReLU neurons, o

(k)
l,m

denotes any element of o

(k)
l

, f (·) is

indicator function, i.e.

f (condition) =

{
1 , i f condition is true
0 , else

(9)

activation neurons o l are different from feature maps x (k)
l

in

Eq. (3) .

Fig. 8 shows comparison results of pruned VGG-16 models on

CIFAR-10 with different pruning criteria, and its parameters setting

is consistent with Section 4.2 . Fig. 8 (a) illustrates that the accu-

racy of the pruned model with mean gradient criterion is relatively

stable as model FLOPs reduces, especially when the floating point

calculation is reduced to over 70%, our pruning criterion achieves

the highest network accuracy. On the other hand, mean gradient

criterion obtains an effective reduction in network FLOPs with the

same pruning ratio in Fig. 8 (b), and our algorithm achieves the best

result in reducing FLOPs after adding FLOPs constraint.

4.4. Pruning VGG-16 on CIFAR-10

The pruned models for VGG-16 on CIFAR-10 are shown in

Table 3 , VGG16-pruned-A indicates that network pruning ratio

is 48%, which means the number of pruning iterations I = 20

in Algorithm 1 , and the number of output channels for VGG16-

pruned-A is shown in the last two columns of Table 2 . VGG16-

pruned-B indicates that network pruning ratio is 34%, i.e. the num-

ber of pruning iterations I = 14 . Inference time is not only affected
y network FLOPs but also by specific convolution operations, par-

llel algorithms, hardware and other factors, therefore inference

ime for these two pruned models is measured to compare the ac-

ual acceleration with VGG-16 network. We compare above pruned

odels with model VGG16-MW [24] and its pruning ratio is 37.1%.

t notes that the architecture of VGG16-MW and the size of the

nput image for VGG16-MW are different from those described in

ection 2.2 , which affect the accuracy of pruned models. We can

ee that pruning ratio of VGG16-pruned-B is smaller than VGG16-

W from Table 4 , but its FLOPs has achieved a sharper drop.

oreover, VGG16-pruned-A obtains the best results in FLOPs re-

uction and actual speed up with less than 1% decrease in accu-

acy.

.5. Pruning ResNet-110 on CIFAR-10

ResNet-110 is divided into three hierarchies by residual blocks,

he size of its corresponding feature maps are 32 × 32, 16 × 16,

 × 8, respectively. According to the process of pruning for ResNets

n Section 2.2 , we obtain the pruned model for ResNet-110 on

IFAR-10. During training, images are randomly cropped to 32 × 32

ith padding 4 for network input, flip horizontal is applied to

mplement data augmentation. And images are not cropped and

ipped horizontally during testing. The number of pruning itera-

ion is I = 15 in Algorithm 1 for ResNet110-pruned-A, and I = 23

or ResNet110-pruned-B. 1/64 of output channels for the last con-

olutional layer will be removed during each pruning in each

esidual block. At the same time, hierarchical global pruning strat-

gy is applied in pruning the first two convolutional layers in each

esidual block. We prune 1/64 of output channels for the first two

onvolutional layers in each hierarchy during each pruning. We

rstly perform 5 epochs SGD updates with batch-size 128, mo-

entum 0.9, learning rate 10 −2 , and we continue fine-tuning 5

pochs with learning rate 10 −3 . FLOPs for ResNets is so low that

he FLOPs constraint does not apply for ResNets. For Residual Net-

orks with low FLOPs, Table 5 shows that pruning ratios of FLOPs

nd parameters maintain high ratios, and the decrease of network

ccuracy is less than 0.1% with half of the parameters are pruned

or ResNet-110. The comparison of our pruned models with model

esNet110-MW [24] is shown in Table 6 . Convolutional layers in

esidual blocks are all pruned with our pruning strategy, so pa-

ameters are reduced more significantly than ResNet110-MW [24] ,

hich only prune the first layer of residual blocks. The best pruned

odel achieves 2.48 × reduction in FLOPs and parameters with

.08% decrease in accuracy.

. Conclusion

In this paper, we apply channel pruning to accelerate CNNs and

ntroduce a new criterion based on the mean gradient of feature

aps, we propose hierarchical global pruning strategy to effec-

ively reduce network FLOPs. During each pruning, we measure the

mportance of feature maps on each channel by its mean gradi-

nt and use hierarchical global pruning strategy to remove lower

mportant feature maps, and then we obtain a smaller network

odel. We focus on the effect of removing feature maps on re-

uction in network FLOPs. In order to accelerate CNNs effectively,

C. Liu and H. Wu / Signal Processing 156 (2019) 84–91 91

w

e

i

I

o

e

a

A

F

e

a

H

R

[

[

[

[

[

[

[

[
e apply FLOPs constraint condition to determine pruning ratio of

ach hierarchy. Channel pruning for VGG-16 and ResNet-110 are

mplemented respectively with less than 1% decrease in accuracy.

n the future, we would like to combine our pruning strategy with

ther pruning criteria, channel pruning for both convolutional lay-

rs and full connection layers will be achieved to simultaneously

ccelerate and compress CNNs.

cknowledgment

This work was supported by the National Natural Science

oundation of China (Grant Number: 61801325), the Natural Sci-

nce Foundation of Tianjin City (Grant Number: 18JCQNJC0 060 0)

nd the Huawei Innovation Research Program (Grant Number:

O2018085138).

eferences

[1] R. Girshick , Fast R-CNN, in: IEEE International Conference on Computer Vision,
2015, pp. 1440–1448 .

[2] H. Noh , S. Hong , B. Han , Learning deconvolution network for semantic
segmentation, in: IEEE International Conference on Computer Vision, 2016,

pp. 1520–1528 .
[3] X. Jia , E. Gavves , B. Fernando , T. Tuytelaars , Guiding the long-short term mem-

ory model for image caption generation, in: IEEE International Conference on

Computer Vision, 2016, pp. 2407–2415 .
[4] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep con-

volutional neural networks, in: International Conference on Neural Information
Processing Systems, 2012, pp. 1097–1105 .

[5] K. Simonyan , A. Zisserman , Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556 (2014) .

[6] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition,

in: Computer Vision and Pattern Recognition, 2016, pp. 770–778 .
[7] M. Kuhn , K. Johnson , An introduction to feature selection, in: Applied Predic-

tive Modeling, Springer, 2013, pp. 487–519 .
[8] C. Szegedy , V. Vanhoucke , S. Ioffe , J. Shlens , Z. Wojna , Rethinking the inception

architecture for computer vision, in: Computer Vision and Pattern Recognition,
2016, pp. 2818–2826 .

[9] Y.D. Kim , E. Park , S. Yoo , T. Choi , L. Yang , D. Shin , Compression of deep convo-

lutional neural networks for fast and low power mobile applications, Comput.
Sci. 71 (2) (2015) 576–584 .

[10] M. Denil , B. Shakibi , L. Dinh , N. De Freitas , et al. , Predicting parameters in
deep learning, in: Advances in Neural Information Processing Systems, 2013,

pp. 2148–2156 .
[11] E.L. Denton , W. Zaremba , J. Bruna , Y. LeCun , R. Fergus , Exploiting linear struc-
ture within convolutional networks for efficient evaluation, in: Advances in

Neural Information Processing Systems, 2014, pp. 1269–1277 .
[12] G.E. Hinton , N. Srivastava , A. Krizhevsky , I. Sutskever , R.R. Salakhutdinov , Im-

proving neural networks by preventing co-adaptation of feature detectors,
Comput. Sci. 3 (4) (2012) pgs.212–223 .

[13] H. Zhou , J.M. Alvarez , F. Porikli , Less is more: towards compact cnns, in: Euro-
pean Conference on Computer Vision, Springer, 2016, pp. 662–677 .

[14] A. Novikov , D. Podoprikhin , A. Osokin , D.P. Vetrov , Tensorizing neural

networks, in: Advances in Neural Information Processing Systems, 2015,
pp. 442–450 .

[15] V. Lebedev , V. Lempitsky , Fast convnets using group-wise brain damage, in:
Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on,

IEEE, 2016, pp. 2554–2564 .
[16] W. Wen , C. Wu , Y. Wang , Y. Chen , H. Li , Learning structured sparsity in deep

neural networks, in: Advances in Neural Information Processing Systems, 2016,

pp. 2074–2082 .
[17] G. Castellano , A.M. Fanelli , M. Pelillo , An iterative pruning algorithm for feed-

forward neural networks, IEEE Trans. Neural Netw. 8 (3) (1997) 519–531 .
[18] Y. LeCun , J.S. Denker , S.A. Solla , Optimal brain damage, in: Advances in Neural

Information Processing Systems, 1990, pp. 598–605 .
[19] B. Hassibi , D.G. Stork , Second order derivatives for network pruning: optimal

brain surgeon, Adv. Neural Inf. Process. Syst. 5 (1992) 164–171 .

20] S. Han , J. Pool , J. Tran , W. Dally , Learning both weights and connections for ef-
ficient neural network, in: Advances in Neural Information Processing Systems,

2015, pp. 1135–1143 .
[21] S. Han , H. Mao , W.J. Dally , Deep compression: Compressing deep neural net-

works with pruning, trained quantization and huffman coding, Fiber 56 (4)
(2015) 3–7 .

22] S. Anwar , K. Hwang , W. Sung , Structured pruning of deep convolutional neural

networks, ACM J. Emerg. Technol. Comput.Syst. (JETC) 13 (3) (2017) 32 .
23] C. Szegedy , W. Liu , Y. Jia , P. Sermanet , S. Reed , D. Anguelov , D. Erhan , V. Van-

houcke , A. Rabinovich , Going deeper with convolutions, in: IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 1–9 .

24] H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf, Pruning filters for efficient
convnets, (2016) arXiv:1608.08710v1 .

25] V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann ma-

chines, in: International Conference on International Conference on Machine
Learning, 2010, pp. 807–814.

26] H. Hu, R. Peng, Y.W. Tai, C.K. Tang, Network trimming: a data-driven neu-
ron pruning approach towards efficient deep architectures, (2016) arXiv:1607.

03250v1 .
[27] T.J. Yang, Y.H. Chen, V. Sze, Designing energy-efficient convolutional neural net-

works using energy-aware pruning, arXiv preprint (2017).

28] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images
(2009).

29] R. Reed , Pruning algorithms-a survey, IEEE Trans. Neural Netw. 4 (5) (1993)
740–747 .

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100006606
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0023
http://arxiv.org/abs/1608.08710v1
http://arxiv.org/abs/1607.03250v1
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30351-7/sbref0024

	Channel pruning based on mean gradient for accelerating Convolutional Neural Networks
	1 Introduction
	2 Pruning channels and corresponding feature maps
	2.1 Channel pruning for networks without shortcut connections
	2.2 Channel pruning for residual networks

	3 Channel pruning strategy
	3.1 Mean gradient criterion for pruning
	3.2 Hierarchical global pruning strategy
	3.3 Fine-tuning of the pruned networks

	4 Experiments
	4.1 Effect of mean gradient on network performance
	4.2 Comparison with global pruning strategy
	4.3 Comparison with other pruning criteria
	4.4 Pruning VGG-16 on CIFAR-10
	4.5 Pruning ResNet-110 on CIFAR-10

	5 Conclusion
	 Acknowledgment
	 References

