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a b s t r a c t 

Different convolutional neural networks (CNNs) may learn different levels of discriminative features to 

represent the raw face data. To enhance the discrimination of deeply learned face features, we propose 

a customized weighted discriminative loss (CWD loss) to seek a customized constraint for mitigating the 

large perturbations caused by imbalanced distribution of correctly-classified features and misclassified 

features. It focuses on mapping the raw data into a feature space such that deeply learned face features 

can achieve a high discrimination for representation, by restraining the intra-class variations and the 

inter-class variations, simultaneously. Extensive experiments carried out on several famous face recogni- 

tion benchmarks, including LFW, YTF, FGLFW and BLUFR, demonstrate that the proposed approach can 

achieve superior performance over the related approaches. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Face recognition has been one of the most challenging and at-

ractive studied topics of computer vision. Accurate face recogni-

ion depends on high-quality face representation, which should be

iscriminative for the inter-personal variations, and be discrimi-

ative for the intra-personal variations, simultaneously. However,

onventional face representations are built on local descriptors,

hich are too shallow to differentiate the complicated nonlinear

acial appearance variations, such as pose, illumination, expression

nd occlusion. The complicated facial appearance variations call for

ore advanced techniques for robustness face representation. Re-

ently, deep learning [1] has achieved impressive results in com-

uter vision applications, including action recognition [2] , object

egmentation [3] , object tracking [4,5] , attention prediction [6,7] ,

hoto cropping [8] , semantic segmentation [9] , motion segmen-

ation [10] and salient object detection [11–14] . Further, the face

eatures based on deep learning has achieved phenomenal perfor-

ance for robustness face representation [15–18] . 

Taigman et al. [19] proposed the DeepFace system, which used

oftmax loss as the supervisory signal to train CNN model and

chieved 97.35% on LFW database [20] , approaching to the human-

evel 97.53%. The authors later extended this work in [21] , by
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ncreasing the size of the training database to 10 million subjects

ith 50 images each on average. They proposed a bootstrapping

trategy to select training identities that consist of both easy and

ard samples to avoid the saturation existed in CNN. Meanwhile,

un et al. [22–24] proposed the DeepID series of papers, each of

hich steadily increased the performance of face recognition on

FW database. Particularly, a number of new ideas were incorpo-

ated over the series of papers. DeepID [22] used multiple CNNs

o get fusion face features and applied Bayesian learning frame-

ork [25] to get the suitable metric. DeepID2 [23] combined the

ace Identification loss and Face Verification loss for more effec-

ive training and empirically verified that the combined supervi-

ory signal is helpful to promote the power of CNN to extract

iscriminative features. DeepID2 + [24] considered to increase the

imension of hidden representations to achieve new state-of-the-

rt performance on both LFW and YTF benchmarks [26] . 

Inspired by designing effective supervisory signal for CNN

n DeepID2 + [24] , Schroff et al. [27] introduced Triplet loss for

aceNet system, which used nearly 10 0M–20 0M training faces

onsisting of about 8M different identities for training the pow-

rful CNN models. Further, Parkhi et al. [28] focused on how to

ollect very large scale face databases (such as 2.6 million) and

ow to construct effective CNN architectures. As a supplement,

u et al. [29] investigated the influence of different CNN architec-

ures and tested different implementation choices for extracting

ace features. All these researchers contribute to give a better

https://doi.org/10.1016/j.neucom.2018.11.076
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.11.076&domain=pdf
mailto:skun@hnu.edu.cn
https://doi.org/10.1016/j.neucom.2018.11.076
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understanding and innovate ideas to promote the development of

face recognition. 

Recently, designing suitable loss functions for extracting CNN

face features has achieved great success. For example, Wen et al.

[30] used the joint supervision of Softmax loss and Center loss

for training CNN face features. Wang et al. [31] inherited the

idea of Center loss and studied the effect of normalization during

training and optimized cosine similarity instead of inner-product.

Liu et al. [32] proposed L-Softmax to employ a margin constraint

for Softmax loss to achieve a classification angle margin between

classes. Liu et al. [33] later extended L-Softmax loss by considering

the cosine normalization. These works all achieved excellent

performance on face recognition by adopting well-designed CNN

architectures. 

Among these effective loss based approaches, CenterApproach

[30] that focusing on minimizing the intra-class variations between

each feature and its corresponding class center, has achieved great

success for addressing face recognition problems with only 0.7M

training data. However, mentioned by Wen et al. [30] , there exist

large perturbations caused by few mislabeled samples. Specially,

when the number of the misclassified features is much more than

the number of the correctly-classified features, it causes poor sep-

arability. On the contrary, if most of the correctly-classified fea-

tures are not so close to the center feature, even the number of

correctly-classified features surpasses the number of the misclassi-

fied features, poor compactness will emerge. Further, if these per-

turbations are not given enough treatment, it may result in less

discrimination for face representation. How to better mitigate the

large perturbation (such as poor separable distribution and poor

compact distribution) and better enhance the performance of CNN

for extracting more discriminative face features, is still a challeng-

ing problem. 

In this paper, we propose the customized weighted discrimi-

native (CWD) loss to address the large perturbation problem. The

major contributions of this paper are summarized as follows: 

• We analyze the large perturbations from the aspect of misclas-

sified features and correctly-classified features during the train-

ing, and propose a CWD loss to supervise the learning of CNN

for getting more discriminative face features, by seeking a cus-

tomized weighted constraint for the two kinds of features. 

• We use a toy example for showing the phenomenon of alleviat-

ing the perturbations of the features. Detailed analysis are also

reported on issues such as the limitations and future directions

of the proposed approach. 

• We evaluate the performance of the proposed approach on

LFW, YTF, FGLFW and BLUFR benchmarks, the experimental re-

sults show that the proposed approach can achieve promising

performance for face recognition. 

2. The proposed approach 

2.1. Center loss and motivation 

As mentioned before, CenterApproach [30] is a simple and

trainable approach for addressing face recognition problems. It

takes advantage of the Center loss L C to characterize the intra-class

variations by summing the distance between each feature and its

corresponding class center, where 

L C = 

1 

2 M 

M ∑ 

i =1 

‖ x i − c l i ‖ 

2 , (1)

M is the mini-batch size, l i is the corresponding label for fea-

ture x i , c l i is the class center for l i th class. By minimizing L C , the

intra-class variations of the deeply learned face features can be de-

creased during the training, and the CNN models can be restrained

to obtain more discriminative face features. 
However, according to Wen et al. [30] , there exist large per-

urbations caused by few mislabeled samples. If these mislabeled

amples are not given enough treatment, poor separability or poor

eparability may occur when there are much more misclassified

eatures or much more correctly-classified features, respectively. In

uch cases, the learned face features may not be so discrimina-

ion for face recognition. To address the issue, we propose a new

ethod in the following to give more treatment for mentioned

erturbations. 

.2. Customized weighted discriminative loss 

The customized weighted discriminative (CWD) loss is to super-

ise CNNs for getting more discriminative learned features, which

s formalized as 

 CW D = 

1 

2 M 

M ∑ 

i =1 

˜ d ( x i , c l i , c p i ) , (2)

here M is the mini-batch size, ˜ d ( x i , c l i , c p i ) is a triplet distance

efined as 

˜ 
 ( x i , c l i , c p i ) = 

{
τ · d( x i , c l i ) l i = p i , 
(1 − τ ) · d( x i , c l i ) l i � = p i , 

(3)

 i is the feature for i th sample, l i is the label of x i , c n is the class

enter for n th class, p i is the predicted label of x i , which is ob-

ained from the softmax prediction in the last layer of a given CNN.

nd d ( · , ·) is the pre-defined distance, we simply adopt the com-

only used L2-distance, τ ∈ (0, 1) is a tradeoff hyper-parameter.

he triplet distance is designed for measuring the large perturba-

ions caused by misclassified features and correctly-classified fea-

ures. 

Actually, different proportions of the correctly-classified fea-

ures ( l i = p i ) and the misclassified features ( l i � = p i ) may cause

ifferent levels of perturbations, which will influence on both

he intra-class variations and the inter-class variations during the

raining. CWD loss introduces the hyper-parameter τ to restrain

he perturbations for the feature distribution caused by the two

inds of features. With a customized τ , CWD loss is expected to

ive suitable treatment for the perturbations. Namely, it aims to

ake the learned face features get away from the situation of poor

eparability or poor compactness, to better restrain the intra-class

ariations and the inter-class variations for learning highly discrim-

native face features. 

We use the joint supervision of Softmax loss L S and CWD loss

 CW D to train CNNs, by solving the following optimization objec-

ive 
∗ = min 

θ
L S (X, Y, θ) + λL CW D (X, Y, θ) , (4)

here 

 S (X, Y, θ) = − 1 

M 

M ∑ 

i =1 

log 
e 

w 

� 
l i 

x i + b l i ∑ N 
j=1 e 

w 

� 
j 

x i + b j 
, (5)

 is the training data set, Y is the label data set, θ is the parame-

er set, w l i 
, b l i are parameters in last fully connected layer, λ is a

rade-off hyper-parameter, N is the class number. The correspond-

ng learning framework is shown in Fig. 1 . 

The optimization objective (4) can be easily optimized by the

tandard stochastic gradient descent, according to (6) and (7) , and

he learning process is summarized in Algorithm 1 . 

∂ L CW D 

∂ x i 
= 

{
τ
M 

( x i − c p i ) l i = p i , 
1 −τ

M 

· ( x i − c p i ) l i � = p i , 
(6)

∂ L CW D 

∂ c n 
= 

τ

M 

∑ 

( c n − x l m ) + 

1 − τ

M 

∑ 

( c n − x l m ) . (7)
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Fig. 1. Framework of face recognition based on the proposed approach. 

Algorithm 1 Deep discriminative face features learning by cus- 

tomized constraint. 

Input: Training data set X , training label set Y . Initialized param- 

eters θ
t 
, the n th class center c t n and learning rate μt ; hyper- 

parameter λ, τ and center learning rate γ , t ← 0 . 

Output: Parameters θ
t max . 

while not convergence and t < t max do: 

1. t = t + 1 ; 

2. Compute joint loss L S (X, Y, θ
t 
) + λL CW D (X, Y, θ

t 
) ; 

3. Update θ by θ
t+1 = θ

t − μt 
∑ 

i [ 
∂ L t 

S 

∂ x t 
i 

+ λ
∂ L t 

CWD 

∂ x t 
i 

] 
∂ x t 

i 

∂ θt according to 

(6); 

4. Update c n by c t+1 
n = c t n − λγ

∂ L t 
CWD 

∂ c t n 
according to (7); 

end while 
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Table 1 

Architecture of LeNet ++ . 

Name Filter Output size 

Input – 28 × 28 × 3 

conv1a 5 × 5 conv, stride 1, pad 2 28 × 28 × 32 

conv1b 5 × 5 conv, stride 1, pad 2 28 × 28 × 32 

pool1 2 × 2 max-pool, stride 2 14 × 14 × 32 

conv2a 5 × 5 conv, stride 1, pad 2 14 × 14 × 64 

conv2b 5 × 5 conv, stride 1, pad 2 14 × 14 × 64 

pool2 2 × 2 max-pool, stride 2 7 × 7 × 64 

conv3a 5 × 5 conv, stride 1, pad 2 7 × 7 × 128 

conv3b 5 × 5 conv, stride 1, pad 2 7 × 7 × 128 

pool3 3 × 3 max-pool, stride 2 3 × 3 × 128 

fc4 – 2 

fc5 – 10 

Table 2 

Architecture of ResNet-27. 

Name Filter Output size 

Input – 112 × 96 × 3 

conv1a 3 × 3 conv, stride 1, pad 0 110 × 94 × 32 

conv1b 3 × 3 conv, stride 1, pad 0 108 × 92 × 64 

pool1 2 × 2 max-pool, stride 2 54 × 46 × 3 

res1 B (3, 3) × 2 54 × 46 × 3 

conv2 3 × 3 conv, stride 1, pad 0 52 × 44 × 128 

pool2 2 × 2 max-pool, stride 2 26 × 22 × 128 

res2 B (3, 3) × 2 26 × 22 × 128 

conv3 3 × 3 conv, stride 1, pad 0 24 × 20 × 256 

pool3 2 × 2 conv, stride 2 12 × 10 × 256 

res3 B (3, 3) × 5 12 × 10 × 256 

conv4 3 × 3 conv, stride 1, pad 0 10 × 8 × 512 

pool4 2 × 2 max-pool, stride 2 5 × 4 × 512 

res4 B (3, 3) × 3 5 × 4 × 512 

fc5 – 512 

fc6 – 10575 
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. Experiments and results 

In this section, we evaluate the effectiveness of the proposed

pproach for face recognition. For fair comparison, the softmax loss

pproach and the center loss approach are used as the baselines

hroughout the article. All experiments are implemented in the

affe library [34] on Linux OS with the NVIDIA Tesla K80. 

.1. Implementation details 

.1.1. Databases 

• Data for visualization: We use the database MNIST [35] , a clas-

sical handwritten digit database with 60,0 0 0 training examples

and 10,0 0 0 testing examples, for MNIST visualization. 

• Training data: We use CASIA-WebFace database [36] , it is a typi-

cal public face training database that containing 10,575 subjects

and 494,414 images collected from the Internet. We choose it as

the training database for obtaining CNN model because that it

is almost independent of the LFW and YTF databases, and thus

can dispel the chaos of evaluations. 

• Testing data: We use several famous and challenging face recog-

nition benchmarks to evaluate the effectiveness of the proposed

approach for face feature extraction. The testing benchmarks

are the Labeled Faces in the Wild (LFW) database [20] , the

Fine-grained LFW (FGLFW) database [37] , YouTube Faces (YTF)

database [26] and the Benchmark of Large-scale Unconstrained

Face Recognition (BLUFR) [38] . The details will be described in

the corresponding Section 3.3.1, Section 3.3.2 , and Section 3.3.3 ,

respectively. 

For data preprocessing of the face recognition tasks, we keep

he detection and alignment of the training database and the

esting database the same for each task as [39–41] by using
1 
eetaFace. 

1 [Online]. Available: https://github.com/seetaface/SeetaFaceEngine . 
.1.2. CNN architectures 

We use two CNN architectures: 2 LeNet ++ and ResNet-27 re-

eased by Wen et al. [30] , shown in Tables 1 and 2 . LeNet ++ is

or MNIST visualization and to illustrate the effectiveness of the

roposed approach for alleviating the perturbations of the learned

eatures, which will be described in Section 3.2 . The features are

aken from fc4. ResNet-27 is for face feature extraction and to

erify the effectiveness of the proposed approach on related face

ecognition tasks, which will be described in Section 3.3 . The deep

ace features are taken from fc5 and the testing settings are same

s [30] . 

Note: The B (3, 3) in Table 2 denotes a residual block composed

f two 3 × 3 convolutional layers. For example, B (3, 3) × 3 and B (3,

) × 5 denote 3 blocks in groups of convolutions and 5 blocks in

roups of convolutions, respectively. 

.2. MNIST visualization 

We use a toy example similar to [30] on MNIST database to

how the objective of our proposed algorithm. Specially, we define

 metric Dis 3 , the average cosine distance of each sample and its

elevant class center, to measure the perturbations of the features,

here 

is = 

N ∑ 

i =1 

N i ∑ 

j=1 

1 

N i N 

c T 
i 

x i j 

‖ 

c i ‖ 

∥∥x i j 

∥∥ , 

 i is the center feature for class i , x ij is the feature for class i, N i is

he feature number for class i, N is the class number. 
2 [Online]. Available: https://github.com/ydwen/caffe-face . 
3 The larger the Dis, the less the perturbations of the features. 

https://www.github.com/seetaface/SeetaFaceEngine
https://www.github.com/ydwen/caffe-face
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Fig. 2. We use Dis to measure the perturbations of the learned features for re- 

lated approaches. For each case, as the training iteration increases, the Dis increases, 

which indicates that the perturbations of the features are alleviated gradually. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Performance (%) on LFW and YTF. 

Method #Train LFW YTF 

FaceNet [27] 200M 99.63 95.1 

DeepFace [19] 4M 97.35 91.4 

VGG [42] 2.6M 98.95 97.3 

NormFace [31] 1.5M 99.19 94.72 

CenterApproach [30] 0.7M 99.28 94.9 

WebFaceCNN [36] 0.49M 97.73 92.24 

L-Softmax [32] 0.49M 98.71 –

SphereFace [33] 0.49M 99.42 95.0 

DeepID2 [24] 0.2M 99.15 –

Model A 0.44M 97.82 92.66 

Model B 0.44M 99.03 93.30 

Model C 0.44M 99.12 93.76 

Table 4 

Performance (%) on FGLFW. 

Method #Train Accuracy 

Noisy Softmax [43] 0.5M 94.50 

CenterApproach [30] 0.7M 93.28 

Human [37] n/a 92.00 

DCMN [37] 0.5M 91.00 

VGG [31,42] 2.6M 85.78 

DeepFace [19,31] 0.5M 78.78 

DeepID2 [23,31] 0.2M 78.25 

Model A 0.44M 90.87 

Model B 0.44M 94.28 

Model C 0.44M 95.07 
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4 All CNN models used in our experiments are without fine-tuning operations. 

And other values of τ , that may lead to better CNN models, is beyond the scope of 

consideration. 
We record the Dis changes during the training on MNIST test-

ing dataset in Fig. 2 and illustrate the best distributions for related

approaches in Fig. 3 (a) and Fig. 3 (b), respectively. 

Fig. 2 shows that the Dis corresponding to our approach

surpasses the other two curves by a clear margin in the end.

Fig. 3 shows that the best Dis corresponding to CWD loss is larger

than that of Center loss. Besides, we also observe that the diagram

of a class for Softmax + CWD is slightly smaller than that in Soft-

max + Center. All these demonstrate the proposed approach can

better alleviate the large perturbations of features during the train-

ing. 

3.3. Face recognition 

In this subsection, we evaluate the effectiveness of the pro-

posed approach on ResNet-27 for face recognition, including sev-

eral challenging face verification tasks and face identification tasks.

The nearest neighbor and threshold comparison are used according

to [30] . 

3.3.1. Face recognition on LFW and YTF 

We choose the challenging LFW database [26] and YTF database

[26] as the standard face verification benchmarks for demonstrat-

ing the effectiveness of the proposed approach. Both LFW and YTF

contain the well investigated and relatively unconstrained imag-

ing conditions, such as occlusions, poses, expressions and illumi-

nations. The former contains 5749 identities of totally 13,233 im-

ages and the latter is consists of 3425 videos of 1595 different

identities. Besides, we choose the public CASIA-WebFace database

[36] for training CNNs, which contains 494,414 face images amount

to 10,575 subjects. 

As mentioned, CWD loss distinguishes the role of the correctly-

classified features and the misclassified features for learning. Par-

ticularly, when τ = 0 . 5 , it reduces to Center loss [30] . However,

Center loss, as a special case of CWD loss, it equates the intra-class

variations for the two kinds of features, which seems not enough

to handle the complex perturbations during the training. To show

the significance of τ , we fix the learning rate as 0.1 for total 30,0 0 0

iterations, fix λ = 0 . 006 experientially according to [30] , and range

τ in [0 . 1 , 0 . 2 , . . . , 0 . 9] to investigate the sensitiveness. The results

on LFW are shown in Fig. 4 . 

From Fig. 4 , the performance fluctuates as τ changes, and the

best performance has achieved at τ = 0 . 2 but not τ = 0 . 5 . That is
o say, the correctly-classified features and the misclassified fea-

ures are not suitable for treating equally. 

By setting the best parameter of τ = 0 . 2 for ResNet-27, we set

he initial learning rate as 0.1, then decrease it by 0.1 at 30,0 0 0

terations and 50,0 0 0 iterations until reaching the maximum it-

ration 60,0 0 0 to further evaluate the performance. For conve-

ience, we denote model A, model B and model C as the final CNN

odels 4 supervised by Softmax loss, Softmax loss + Center loss

nd Softmax loss + CWD loss, respectively. Several state-of-the-art

ethods are also listed to compared with the proposed approach.

e present the verification results in Table 3 . 

The table shows that the proposed model C not only per-

orms better than model A and model B by clear margins, but

lso achieves comparable performance with several state-of-the-

rt methods, such as DeepFace, VGG, L-Softmax and WebFaceCNN,

ith more less training data. These show the effectiveness of the

roposed approach for learning more discriminative face features,

hich coincides with our analysis in Section 2.2 that it is neces-

ary to give suitable treatment for different levels of perturbations,

eeking a customized restraint for correctly-classified features and

isclassified features is more important than treating equally. 

.3.2. Face recognition on FGLFW 

FGLFW [37] is a database shares the same 30 0 0 genius matches

n LFW, however, replaces the random impostor matches by seek-

ng another 30 0 0 similarly-looking face pairs to reduce the inter-

lass variance. It emphasizes both the large intra-class variance

nd the tiny inter-class variance simultaneously compared to LFW.

hus we choose it as a more challenging image-to-image face ver-

fication benchmark. Since FGLFW only modifies the negative face

airs defined in the standard LFW protocol, the testing paradigms

f LFW can be directly used. Similarly, we list the state-of-the-art

esults and also report our final performance in Table 4 . 
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Fig. 3. Evaluation of the Dis performance for different supervision signals. 

Fig. 4. Evaluation on LFW by ranging τ for ResNet-27. 

 

m  

i  

m  

T  

i  

f

3

 

i  

f  

s  

i  

t  

p  

t  

e  

a  

p  

t

 

0  

t  

t  

f  

f  

t  

a  

d

Table 5 

Performance (%) for BLUFR protocol. 

Method TPR@FAR = 0.1% DIR@FAR = 1% 

NormFace [31] 95.83 77.18 

CenterApproach [30,31] 93.35 67.86 

LightenedCNN [31,44] 89.12 61.79 

WebFaceCNN [36] 80.26 28.9 

Model A 82.22 56.81 

Model B 93.64 70.73 

Model C 94.79 73.69 
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From the table, the proposed model C surpasses the baseline

odel B and model A by 0.79% and 4.2%, respectively. Compar-

ng with the state-of-the-art methods in the first part of the table,

odel C even surpasses the second best Noisy Softmax by 0.57%.

hese all show that the proposed approach is effective for learn-

ng discriminative face features when it comes to more challenging

ace verification tasks. 

.3.3. Face recognition on BLUFR 

BLUFR is a more challenging protocol that containing both ver-

fication and open-set identification scenarios, it is designed to

ully exploit all the 13,233 LFW face images for large-scale uncon-

trained face recognition evaluation, with a focus at low FARs. It

ntroduces 10 trials of face verification tasks, with each trial con-

aining about 156,915 genuine matching scores and 46,960,863 im-

ostor matching scores on average for performance evaluation. Fur-

her, it also designs 10 random trials of face identification tasks,

ach trial consists about 10 0 0 subjects to constitute the gallery set,

bout 4350 face images of 10 0 0 subjects to constitute the genuine

robe set, and about 4357 images of 3249 subjects to constitute

he impostor probe set. 

According to Liao et al. [38] , we report the average TPR@FAR =
 . 1% and DIR@FAR = 1% for face verification and face identifica-

ion 

5 in Table 5 . From the table, the proposed model C surpass

he baseline model B by 1.15% and 2.96% on face verification and

ace identification performance, respectively. Besides, it also per-

orms better than several state-of-the-art methods on both the

wo face recognition tasks, such as CenterApproach, LightenedCNN

nd WebFaceCNN. These show that the proposed approach is also
5 TAR is the true acceptance rate, FAR is the false acceptance rate, and DIR is the 

etection and identification rate. 

a  

a  

t  

i

ffective for learning discriminative face features for more chal-

enging face recognition tasks. 

All these experimental results demonstrate that the proposed

pproach, which distinguishes the role of the correctly-classified

eatures and the misclassified features for restraining the intra-

lass variations, is an effective and easy way to learn more dis-

riminative face representation. 

.4. Discussion 

.4.1. Limitations 

The proposed approach is verified to be effective in

ections 3.2 and 3.3 . However, it still suffers from several limita-

ions. 

Firstly, the proposed approach still gives not enough treatment

or the complex intra-class variations and the inter-class variations

n the CNN training, which causes some poor performance. For ex-

mple, the performance of the proposed approach (model C) not

lways better than the baseline model B, shown in Tables 6–8 . And

here are also many failure examples in the testing period, shown

n Fig. 5 . 
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Fig. 5. Display of failure examples. (a) and (b) display the false positive matches and the false negative matches in the 10 folds testing of LFW, respectively. (c) and (d) 

display the false positive matches and the false negative matches in the 8th fold of FGLFW, which is the most challenging of the 10 folds. 

Table 6 

Number of failure examples for LFW evaluation. 

Fold 1 2 3 4 5 6 7 8 9 10 

Model B 9 5 5 7 11 5 5 8 0 3 

Model C 8 4 2 7 7 7 7 5 2 4 

 

 

 

 

 

 

Table 7 

Number of failure examples for YTF evaluation. 

Fold 1 2 3 4 5 6 7 8 9 10 

Model B 35 40 33 37 25 28 24 31 45 37 

Model C 34 36 33 30 20 29 22 34 45 29 

I  

m  

i  

f  

a  

i  

s  
From the three tables, there are still some cases that model C

performs worse than model B, which is illustrated in the number

of the failure examples marked by the double underlines. 

From Fig. 5 , we find that the number of false negative matches

are more than the number of the false positive matches in both

LFW case and FGLFW case, which means that the treatment for the

intra-class variations is still not enough in the proposed approach.
n addition, we can also found that the false positive matches are

isclassified due to the similar facial appearances, such as the sim-

lar expression, similar pose, similar skin color, and so on. For the

alse negative matches, they are not only influenced by the facial

ppearances, but also suffer from the conditions, such as occlusion,

llumination, decoration, and even the false positive detected faces,

uch as #128 , #3694 , #4242 in LFW. For small scale database, the
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Fig. 6. Center difference values on WebFace databse for related CNNs. 

i  

c  

e  

t  

f  

s  

a

 

a  

a  

t  

t  

a  

h  
ssue can be partly alleviated by considering more suitable prepro-

essing techniques, such as cropping and manual assistance. How-

ver, for more challenging video face recognition, it is intractable

o deal with so many false positive faces and some undetected

aces, which calls for more advanced video detection techniques,

uch as developing more effective video face detectors by taking

dvantage of [10,14] . 
Secondly, the proposed approach does not always work for

ll mainstream CNN architectures. For example, we evaluate the

daptability of the proposed approach on the other two CNN archi-

ectures, AlexNet [45] and VGG-16 [42] . For AlexNet, we set the ini-

ial learning rate as 0.01, then decrease it by 0.2 every 20,0 0 0 iter-

tions until reaching the maximum iteration 160,0 0 0, and the best

yper-parameter is τ = 0 . 8 . For VGG-16, we set the initial learning
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Table 8 

Number of failure examples for FGLFW evaluation. 

Fold 1 2 3 4 5 6 7 8 9 10 

Model B 39 34 33 41 29 31 40 40 26 30 

Model C 30 29 35 34 28 20 31 45 21 23 

Table 9 

Performance (%) for AleNet. 

Method #Train LFW YTF 

Softmax 0.44M 95.32 89.84 

Softmax + Center 0.44M 96.6 90.76 

Softmax + CWD 0.44M 97.42 91.64 
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rate as 0.0 0 01 by finetuning the model released in [42] similar to

[7,12] . 

For AlexNet, Softmax + CWD gives the respectable perfor-

mance, shown in Table 9 . However, Softmax + CWD and Softmax

+ Center do not work when it comes to the VGG-16 architecture.

The two strategies even causes serious divergence problems com-

pared to simply using Softmax, which is due to the inconsistency

of the initialization of the feature distribution and the initialization

of the center features, 6 shown in Fig. 6 . 

From the figure, the center difference value, the distance of the

initial center feature and the mean of the initial features of the cor-

responding subject, is illustrated to measure the degree of the in-

consistency for related CNN architectures. It is clear that the order

of magnitude of the center difference value in VGG-16 ( Fig. 6 (c)) is

much larger than that of the other two CNN architectures ( Fig. 6 (a)

and Fig. 6 (b)), which means that we should pay more attention to

the center feature initialization to avoid such inconsistency phe-

nomenon to further improve the proposed approach. 

3.4.2. Future work 

Based on the preceding discussion of the limitations of the pro-

posed approach, the work in this paper is still insufficient and

needs more in-depth study in the future. The meaningful direc-

tions are summarized in the following. 

• Giving more suitable treatment for both the intra-class varia-

tions and the inter-class variations by dynamically and effec-

tively setting the hyper-parameter τ , and also trying cosine dis-

tance instead of L2-distance, such as [31,33] . 

• Making the initialization and updating of the center feature

more general for the mainstream CNN architectures, such as

[46] . 

• Pay attention to more challenging video face recognition to dig

out the potential problems existed in the proposed approach

and then try to improve the performance, such as taking ad-

vantage of the merits of [10,14] . 

4. Conclusion 

In this paper, we propose the customized weighted discrimi-

native (CWD) loss to learn deep discriminative face features. The

aim of CWD loss is to alleviate the perturbation phenomenon by

distinguishing the role of the correctly-classified features and the

misclassified features. Extensive experiments on MNIST visualiza-

tion and several famous and important face recognition tasks show

the superior of the proposed approach. Detailed analysis are also

reported on issues such as the limitations and future directions of

the proposed approach. 
6 We use the same center feature initialization as is used in [30] . 

 

 

 

cknowledgment 

This work was supported by the National Natural Science Foun-

ation of China (Grant Number: 61801325 ), the Natural Science

oundation of Tianjin City (Grant Number: 18JCQNJC0 060 0 ) and

he Fundamental Research Funds for the Central Universities. The

uthors would like to thank the referees for their constructive sug-

estions. 

eferences 

[1] Y. LeCun , Y. Bengio , G. Hinton , Deep learning, Nature 521 (7553) (2015)

436–4 4 4 . 
[2] J. Charles , T. Pfister , D. Magee , D. Hogg , A. Zisserman , Personalizing human

video pose estimation, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, 2016, pp. 3063–3072 . 

[3] K. Fragkiadaki , P. Arbelaez , P. Felsen , J. Malik , Learning to segment moving ob-

jects in videos, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2015, pp. 4083–4090 . 

[4] L. Wang , W. Ouyang , X. Wang , H. Lu , Visual tracking with fully convolutional
networks, in: Proceedings of the IEEE Conference on Computer Vision, 2015,

pp. 3119–3127 . 
[5] X. Dong , J. Shen , W. Wang , Y. Liu , L. Shao , F. Porikli , Hyperparameter op-

timization for tracking with continuous deep q-learning, in: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2018,
pp. 518–527 . 

[6] W. Wang , J. Shen , Deep visual attention prediction, IEEE Trans. Image Process.
27 (5) (2018) 2368–2378 . 

[7] W. Wang , J. Shen , H. Ling , A deep network solution for attention and aesthetics
aware photo cropping, IEEE Trans. Pattern Anal. Mach. Intell. PP (99) (2018) 1 . 

[8] W. Wang , J. Shen , Deep cropping via attention box prediction and aesthetics
assessment, in: Proceedings of the IEEE International Conference on Computer

Vision, IEEE, 2017, pp. 2205–2213 . 

[9] J. Long , E. Shelhamer , T. Darrell , Fully convolutional networks for semantic seg-
mentation, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, IEEE, 2015, pp. 3431–3440 . 
[10] J. Shen , J. Peng , L. Shao , Submodular trajectories for better motion segmenta-

tion in videos, IEEE Trans. Image Process. (99) (2018) . 1–1. 
[11] W. Wang , J. Shen , X. Dong , A. Borji , Salient object detection driven by fixation

prediction, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, IEEE, 2018, pp. 1711–1720 . 
[12] W. Wang , J. Shen , L. Shao , Video salient object detection via fully convolutional

networks, IEEE Trans. Image Process. 27 (1) (2018) 38–49 . 
[13] Z. Wang , J. Ren , D. Zhang , M. Sun , J. Jiang , A deep-learning based feature hybrid

framework for spatiotemporal saliency detection inside videos, Neurocomput-
ing 287 (2018) 68–83 . 

[14] W. Wang , J. Shen , L. Shao , Consistent video saliency using local gradient flow

optimization and global refinement, IEEE Trans. Image Process. 24 (11) (2015)
4185–4196 . 

[15] B. Leng , Y. Liu , K. Yu , S. Xu , Z. Yuan , J. Qin , Cascade shallow CNN structure for
face verification and identification, Neurocomputing 215 (2016) 232–240 . 

[16] W. Sun , H. Zhao , Z. Jin , A complementary facial representation extracting
method based on deep learning, Neurocomputing 306 (2018) 246–259 . 

[17] Y. Li , W. Zheng , Z. Cui , T. Zhang , Face recognition based on recurrent regression

neural network, Neurocomputing 297 (2018) 50–58 . 
[18] B. Wu , Z. Chen , J. Wang , H. Wu , Exponential discriminative metric embedding

in deep learning, Neurocomputing 290 (2018) 108–120 . 
[19] Y. Taigman , M. Yang , M. Ranzato , L. Wolf , DeepFace: closing the gap to hu-

man-level performance in face verification, in: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops, IEEE, 2014,

pp. 1701–1708 . 

[20] G.B. Huang , M. Ramesh , T. Berg , E. Learned-Miller , Labeled faces in the wild: a
database for studying face recognition in unconstrained environments, Techni-

cal Report 07-49, University of Massachusetts, Amherst, 2007 . 
[21] Y. Taigman , M. Yang , M. Ranzato , L. Wolf , Web-scale training for face identifi-

cation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, IEEE, 2015, pp. 2746–2754 . 

[22] Y. Sun , X. Wang , X. Tang , Deep learning face representation from predicting

10,0 0 0 classes, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2014, pp. 1891–1898 . 

[23] Y. Sun , Y. Chen , X. Wang , X. Tang , Deep learning face representation by joint
identification-verification, in: Proceedings of the Advances in Neural Informa-

tion Processing Systems, 2014, pp. 1988–1996 . 
[24] Y. Sun , X. Wang , X. Tang , Deeply learned face representations are sparse, se-

lective, and robust, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, IEEE, 2015, pp. 2892–2900 . 

[25] D. Chen , X. Cao , L. Wang , F. Wen , J. Sun , Bayesian face revisited: a joint formu-

lation, Proceedings of the European Conference on Computer Vision, Springer,
2012, pp. 566–579 . 

[26] L. Wolf , T. Hassner , I. Maoz , Face recognition in unconstrained videos with
matched background similarity, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, IEEE, 2011, pp. 529–534 .

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100006606
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0001
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0001
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0001
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0001
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0006
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0006
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0006
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0013
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0013
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0013
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0013
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0013
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0013
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0014
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0014
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0014
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0014
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0016
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0016
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0016
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0016
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0021
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0021
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0021
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0021
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0021
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0025
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0025
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0025
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0025
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0025
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0025
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0026
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0026
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0026
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0026


M.M.Y. Zhang, K. Shang and H. Wu / Neurocomputing 332 (2019) 71–79 79 

 

 

[  

[  

 

 

[  

 

 

 

[  

 

 

 

[  

 

 

[  

 

 

[  

 

[  

 

[  

 

 

[  

[  

 

[  

[  

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[27] F. Schroff, D. Kalenichenko , J. Philbin , FaceNet: a unified embedding for face
recognition and clustering, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, IEEE, 2015, pp. 815–823 . 
28] O.M. Parkhi , A. Vedaldi , A. Zisserman , Deep face recognition, in: Proceedings

of the British Machine Vision Conference (BMVC), 1, 2015, p. 6 . 
29] G. Hu , Y. Yang , D. Yi , J. Kittler , W. Christmas , S.Z. Li , T. Hospedales , When face

recognition meets with deep learning: an evaluation of convolutional neural
networks for face recognition, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition Workshops, IEEE, 2015, pp. 142–150 . 

30] Y. Wen , K. Zhang , Z. Li , Y. Qiao , A discriminative feature learning approach for
deep face recognition, in: Proceedings of the European Conference on Com-

puter Vision, Springer, 2016, pp. 499–515 . 
[31] F. Wang , X. Xiang , J. Cheng , A.L. Yuille , NormFace: L 2 hypersphere embed-

ding for face verification, in: Proceedings of the ACM Multimedia, ACM, 2017,
pp. 1141–1149 . 

32] W. Liu , Y. Wen , Z. Yu , M. Yang , Large-margin softmax loss for convolutional

neural networks., in: Proceedings of the International Conference on Machine
Learning, 2016, pp. 507–516 . 

[33] W. Liu , Y. Wen , Z. Yu , M. Li , B. Raj , L. Song , SphereFace: deep hypersphere em-
bedding for face recognition, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, IEEE, 2017, pp. 212–220 . 
34] Y. Jia , E. Shelhamer , J. Donahue , S. Karayev , J. Long , R. Girshick , S. Guadarrama ,

T. Darrell , Caffe: convolutional architecture for fast feature embedding, in: Pro-

ceedings of the ACM Multimedia, ACM, 2014, pp. 675–678 . 
[35] Y. LeCun , L. Bottou , Y. Bengio , P. Haffner , Gradient-based learning applied to

document recognition, Proc. IEEE 86 (11) (1998) 2278–2324 . 
36] D. Yi, Z. Lei, S. Liao, S.Z. Li, Learning face representation from scratch, 2014 .

arXiv preprint: 1411.7923 
[37] W. Deng , J. Hu , N. Zhang , B. Chen , J. Guo , Fine-grained face verification:

FGLFW database, baselines, and human-DCMN partnership, Pattern Recognit.

66 (2017) 63–73 . 
38] S. Liao , Z. Lei , D. Yi , S.Z. Li , A benchmark study of large-scale unconstrained

face recognition, in: Proceedings of the IEEE International Joint Conference on
Biometrics, IEEE, 2014, pp. 1–8 . 

39] S. Wu , M. Kan , Z. He , S. Shan , X. Chen , Funnel-structured cascade for multi-
-view face detection with alignment-awareness, Neurocomputing 221 (2017)

138–145 . 

40] J. Zhang , S. Shan , M. Kan , X. Chen , Coarse-to-fine auto-encoder networks
(CFAN) for real-time face alignment, in: Proceedings of the European Confer-

ence on Computer Vision, Springer, 2014 . 
[41] Y. Zhang , K. Shang , J. Wang , N. Li , M.M.Y. Zhang , Patch strategy for deep face

recognition, IET Image Process. 12 (5) (2018) 819–825 . 
42] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, 2014 . arXiv preprint: 1409.1556 

43] B. Chen , W. Deng , J. Du , Noisy softmax: improving the generalization ability of
DCNN via postponing the early softmax saturation, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, IEEE, 2017 . 
44] X. Wu, R. He, Z. Sun, A lightened CNN for deep face representation, 2015 . arXiv

preprint: 1511.02683 
45] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep con-
volutional neural networks, in: Proceedings of the Advances in Neural Infor-

mation Processing Systems, 2012, pp. 1097–1105 . 
46] M.M. Zhang , Y. Xu , H. Wu , Orientation truncated centre learning for deep face

recognition, Electron. Lett. 54 (19) (2018) 1110–1112 . 

Monica M.Y. Zhang received the B.S. degree from the

School of Mathematics and Information Science, Henan
University, in 2013. She is currently pursuing the Ph.D.

degree with the Center for Combinatorics, Nankai Univer-

sity. Her main interests include face recognition, image
processing, machine learning, and deep learning. 

Kun Shang received the B.S. degree from the Faculty

of mathematics and statistics, Hubei University, in 2011

and Ph.D. degree in the Center for Applied Mathematics
of Tianjin University, in 2018. He is currently an assis-

tant professor in the College of Mathematics and Econo-
metrics of Hunan University in China. His main interests

include pattern recognition, image processing, low-rank 
tensor minimization and optimization theory and algo-

rithm. 

Huaming Wu received the B.E. and M.S. degrees from

Harbin Institute of Technology, China in 2009 and 2011,

respectively, both in electrical engineering. He received
the Ph.D. degree with the highest honor in computer sci-

ence at Freie Universität Berlin, Germany in 2015. He is
currently an assistant professor in the Center for Applied

Mathematics, Tianjin University. His research interests in-
clude model-based evaluation, wireless and mobile net-

work systems, mobile cloud computing and deep learn-

ing. 

http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0027
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0027
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0027
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0027
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0030
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0030
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0030
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0030
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0030
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0035
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0035
http://arxiv.org/abs/1411.7923
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0036
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0036
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0036
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0036
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0036
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0036
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0037
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0037
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0037
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0037
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0037
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0038
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0038
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0038
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0038
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0038
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0038
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0039
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0039
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0039
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0039
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0039
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0040
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0040
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0040
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0040
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0040
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0040
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0041
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0041
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0041
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0041
http://arxiv.org/abs/1511.02683
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0043
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0043
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0043
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0043
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0044
http://refhub.elsevier.com/S0925-2312(18)31423-1/sbref0044

	Learning deep discriminative face features by customized weighted constraint
	1 Introduction
	2 The proposed approach
	2.1 Center loss and motivation
	2.2 Customized weighted discriminative loss

	3 Experiments and results
	3.1 Implementation details
	3.1.1 Databases
	3.1.2 CNN architectures

	3.2 MNIST visualization
	3.3 Face recognition
	3.3.1 Face recognition on LFW and YTF
	3.3.2 Face recognition on FGLFW
	3.3.3 Face recognition on BLUFR

	3.4 Discussion
	3.4.1 Limitations
	3.4.2 Future work


	4 Conclusion
	Acknowledgment
	References


