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A B S T R A C T

The startling rise in smart vehicles stimulates the rapid development of new paradigms such as Social Internet
of Vehicle (SIoV) and Vehicular Fog Computing (VFC). Trustworthiness has been regarded as a dominating issue
in all the have-to-be-addressed issues in SIoV, and many reputation-based countermeasures have been adopted
to solve the trustiness-related issues in IoV. However, little attention has been paid to the reputation of vehicles
when they provision computational resources in VFC, which is worthy of further investigation since some fog
vehicles pursue more revenues or fewer costs at the expense of delivering poor-quality computing services. Such
selfish behaviors should be discouraged. In this paper, we put forward a reputation-based service provisioning
scheme, and a reputation management scheme consisting of the decentralized reputation updating and global
reputation synchronization in VFC, aiming to prevent the fog vehicles from delivering low-quality computing
services by maximizing the accumulated reputation of all the serving fog vehicles in the optimization period.
An online approach is adopted to handle the requests in a slot-by-slot way. The simulation results show its
effectiveness and advantages when compared to other existing approaches.
1. Introduction

There are around 1.5 billion vehicles in the world and the number of
them may skyrocket to 2.8 billion by 2036 [1]. The rapid development
of Internet of Vehicles (IoV) makes vehicles inter-connected and inter-
active with each other. IoV that integrates internal vehicle network,
inter-vehicle network and mobile Internet can perceive information
pertaining to vehicular state and the surroundings [2]. In the past
few years, smart vehicles have made up a huge part of the market in
the automobile industry. Apart from sensing ability, smart vehicles are
further capable of storage, calculation and analysis, owing to various
vehicle-mounted facilities. In this context, several newly emergent
paradigms have gained widespread attention in both industry and
academia, typically exemplified by Social Internet of Vehicle (SIoV) [3]
and Vehicular Fog Computing (VFC) [4]. In particular, the former is
devoted to the development of vehicular social abilities such as social
communication and low-cost infotainment service provisioning, which
are driven primarily by strong social instincts in people, even if they
become vehicle travelers on the road [5]. The latter concentrates on
computational service provisioning by leveraging the computing power
of vehicles.

Among all the have-to-be-addressed issues in SIoV, trustworthiness
is regarded as the most urgent one, because wireless links for infor-
mation dissemination and multimedia content sharing are established
among unacquainted vehicles/drivers in vehicular social networks.
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Many hostile behaviors may exist, attempting to damage vehicular
social networks, e.g., some malicious vehicles may send bogus or
improper messages uninterruptedly to undermine the trustiness of ve-
hicles towards each other. Against this background, many reputation-
based countermeasures have been adopted to solve the trustiness-
related issues in IoV and acquired satisfactory effects such as [6–10].
On the other hand, however, researchers seldom apply reputation-
based mechanisms to service provisioning in VFC.

The explosive growth in the Internet of Things (IoT) devices has
led to staggering demands for computational resources, because these
size-limited devices generate a huge amount of data but cannot process
and analyze them by themselves owing to their limited computational
capabilities [11]. Vehicles with idle computational resources can be-
come a tempting choice for service provisioning in this context, and
such an observation also stimulates the fast development of VFC. For
instance, smart vehicles deploying services (e.g., related libraries and
databases) can respond and serve the offloading requests from IoT
devices (e.g., smartwatches and wearable health devices). Owing to
the profit-driven factors, vehicles may display selfish behaviors, e.g., to
pursue more revenues or fewer costs at the expense of delivering poor-
quality computing services. Such irresponsible service delivery from
selfish vehicles not only degrades the Quality of Service (QoS) and
Quality of Experience (QoE) [12], but also exerts a negative influence
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on unselfish vehicles delivering high-quality services as consistently
claimed.

Unfortunately, current works seldom consider how to prevent selfish
vehicles from delivering low-quality services in VFC, although there is
extensive literature that applies blockchain-based technologies to the
security, privacy and trust issues that arise in VFC [13–16]. Despite
the merits of blockchain-based technologies, they do not perfectly
suit the scenario of computation outsourcing and service provision-
ing in VFC, because the offloading requests from IoT devices usually
have strict delay requirements. To tackle the above issue, we put
forward a lightweight reputation-based mechanism to prevent selfish
vehicles from delivering low-quality services in VFC. Particularly, the
contributions of the paper are threefold, as given below:

• We propose a reputation-based service provisioning scheme in
VFC, aiming to prevent fog vehicles from delivering low-quality
computing services. The defined reputation has considered multi-
ple impressions which come from both the IoT devices sending the
requests and the local server that allocates the service requests.

• A reputation management scheme with the decentralized repu-
tation updating and global reputation synchronization is put for-
ward, which tries to prevent the fog vehicles from tampering with
their own reputation values to mislead the service requestors.
The reputation is updated based on multiple factors to ensure the
fairness and objectivity in the paper.

• We try to maximize the accumulated reputation of all the serving
fog vehicles in the optimization period. Owing to the feature of
the sequential arrival of service requests, it is difficult to optimally
solve it in an off-line way. We put forward an online approach to
serve the service request sequentially. The simulation evaluation
shows the advantages compared to other existing approaches.

The rest of this paper is arranged as follows. The literature review
s conducted in Section 2. We give some preliminaries about the hier-
rchical end–fog–cloud system architecture where the reputation-based
ervice provisioning strategy is applied in Section 3. The system model
s introduced in Section 4 and the optimization problem is formulated
n Section 5. Extensive simulation is conducted in Section 6, followed
y the conclusion in Section 7.

. Related works

Reputation has been extensively studied in a wide range of fields
17–20], including computer science, sociology, economics, and psy-
hology. The study has already yielded extremely useful and fruitful
esults, and thus it is pretty difficult to survey all the representative
orks from various fields [21], owing to the limitation of space.
ccordingly, we only pay attention to the recent works related to our
eputation-based service provisioning in this paper.

Smart vehicles, which are empowered with computing capabili-
ies, can shoulder more responsibilities in Vehicular Ad Hoc Networks
VANETs), e.g., task calculation, event evaluation and information
orwarding [22,23]. Atwa et al. [1] leveraged fog nodes to collect the
rust evaluations from vehicles, and proposed a notion of Task-based
xperience Reputation (TER), such that different types of tasks can
e allocated to the most appropriate vehicles for execution based on
he reputation values of the vehicles. Engoulou et al. [24] analyzed
nd summarized some locally perceived factors that can affect the
ehaviors of vehicles. Such parameters and factors usually include
peed, acceleration, transmission range, direction, frequency of a DoS
ttack, and so on. Then, they strive to construct a decentralized repu-
ation framework based on these parameters with the aim to identify
alicious vehicles and prevent them from getting access to the internet

f vehicles (IoV) network. A trust game was proposed in [7], wherein
nvestors, trustworthy trustees, and untrustworthy trustees compete for
ssets. The assets are owned and supervised by a third party. The
2

third party has been authorized to modify the reputation value of each
participant.

Indeed, there are malicious vehicles in IoV which try to undermine
the IoV network. For instance, some vehicular nodes will silently
drop messages or packets. Such passive response to the information
forwarding is also called a black-hole attack. Despite solutions applied
to handling this black-hole attack, most of them are either centralized
or dependent upon other nodes’ opinions. Thus, Nabais et al. [8] put
forward a decentralized reputation framework in the hope to detect and
punish vehicular nodes with black-hole behaviors in the IoV network.

In addition to the black-hole attack in IoV and VANETs, there are
also other malicious behaviors, e.g., vehicular nodes can transmit and
forward useless and even wrong traffic information, so as to let other
nodes make wrong decisions on route planning. To tackle this issue,
a reputation-based algorithm is put forward in [25] to guide reliable
route planning in IoV. The proposed algorithm can detect suspicious
information.

Service caching has gained extensive attention recently for its ad-
vantages in improving the QoS of requested computing services hosted
at vehicles and also QoE of service requestors, by caching related source
codes and data beforehand at the edge server. However, it requires
incentives to motivate the first requestor offloading the tasks, since
as the first one, the requestor has to offload the task and pay for the
task execution. To tackle this issue, an SDN-based cache-enabled VEC
framework was proposed in [26]. In particular, they evaluated the
contributions of each vehicular node by its reputation value. In the
meanwhile, they leveraged Stackelberg game to model the incentive
mechanism and proved the existence and uniqueness of Stackelberg
equilibrium for the proposed game.

Reputation-based mechanisms are usually important for securing
communications in IoV networks. However, security and efficiency can
seldom be achieved at the same time. Therefore, Su et al. [27] proposed
a centralized reputation management framework to identify malicious
vehicles in IoV networks. They have made a bold step in exploring
the feasibility of this framework as well as the potential threats to it.
Simulation results have shown that their scheme can take effect more
quickly and is better than current trust management schemes.

In spite of the explosive growth in the number of vehicles that can
participate in Vehicular Crowd-Sensing (VCS), including data analysis,
information forwarding, and task calculation, not all vehicles on the
roads are willing to contribute to VCS systems. In view of this, Yu
et al. [9] put forward a reputation-based incentive approach in a VCS
system in which both the utility of the cloud center and the participants
are considered. In particular, they design a reputation-based reverse
combination auction incentive method. For instance, the reputation of
each participant is incorporated into the incentive approach to avoid
maliciously raising bidding prices. Huang et al. [28] put forward a
global trust evaluation framework to accurately eliminate malicious
Mobile Data Collectors (MDCs) for clean data collection environment.
In particular, UAVs are adopted in their work to validate the data sub-
mitted by MDCs. Extensive experiments have revealed the advantages
of their approach compared to existing works.

In VANETs, with the rapid development of smart vehicles [29,30],
content request and delivery have become the norm. Zhu et al. [10] cat-
egorized the entities in VANETs into Parked Vehicles (PVs), Roadside
Unit (RSU) and Moving Vehicles (MVs), respectively. RSU is responsible
for delivering the content requested by MVs and PVs are leveraged
for assisting RSU by storing the content in advance. Owing to the
selfishness of PVs, a reputation-based scheme is used for identifying
malicious PVs. Meanwhile, a two-layer auction game is utilized to
model the cooperation among PVs, MVs, and RSUs. This approach can
maximize the utility of RSUs as well as the throughput of content
transmission to a great extent. Nevertheless, it needs to take a relatively
long time to achieve mutually satisfactory results and it also does not
consider the privacy of vehicles. Therefore, it is not suitable for our

scenario in this paper.
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Fig. 1. A hierarchical end–fog–cloud system architecture.

The above literature does not consider how to evaluate fog vehicles
when they are contributing the computational resources for serving
the service requests. The majority of vehicles assume that the services
can be delivered as claimed. However, malicious vehicles can deliver
low-quality services for pursuing their own profits. To the best of our
knowledge, this is the first effort to concentrate on computing service
provisioning, considering the possibility of potentially malicious fog
nodes delivering low-quality services in VFC.

3. Preliminaries

A hierarchical end–fog–cloud system model is presented in Fig. 1.
The end layer mainly consists of size-limited and computing capacity-
restricted IoT devices such as smartwatches, smart bracelets and wear-
able health devices. A great deal of data is gathered and plenty of
tasks from the IoT devices are formed. When the IoT devices need to
perform these tasks, they have to request the corresponding services
from the fog layer. The fog layer, as the intermediate layer between
the cloud layer and the end layer, consists of two entities. One is the
roadside unit (RSU) deployed with the fog servers (FS). The other is
the vehicles with idle computational resources and willing to contribute
them in the form of service provisioning. We thus call them fog vehicles
or fog nodes. The fog vehicles can directly respond to the service
requests from the IoT devices. Meanwhile, they can also mitigate the
pressure of the fog server when the latter is overloaded. The cloud
layer consists of a remote cloud center residing in the core/backbone
network. Usually, the fog layer and cloud layer work cooperatively
to provide computational resources. For example, the advantage of
the cloud layer is that the powerful computing capabilities there can
support even unlimited resource requests. However, it comes at the
expense of a relatively long response delay. On the other hand, the fog
layer can satisfy the strict delay requirement, and thus perfectly suits
the time-critical service requests that the cloud layer does not suit.

In our system model, the two layers assume more responsibilities,
e.g., to manage the reputation scheme proposed in this paper. Com-
puting services can be provisioned in a decentralized and centralized
way, respectively. For the former, the offloading links can be directly
3

established after initial beacon exchanging between IoT devices and
fog vehicles. However, this way cannot prevent selfish vehicles from
delivering poor-quality services, and they can even tamper with their
own reputation values to attract nearby IoT devices. On the other
hand, the centralized service provisioning in this paper means that fog
vehicles only accept the service requests designated by RSU covering
them. This type of service provisioning may take time to determine
which vehicles are suitable for the requests, thus yielding relatively
long response latency. Nevertheless, the advantage is that the service
execution at fog vehicles can be supervised by RSUs. Thus, it is difficult
for fog vehicles to tamper with their reputation values.

Combining the merits of the two ways for service provisioning, we
put forward a reputation-based service provisioning in VFC, aiming to
prevent selfish fog vehicles from delivering low-quality services in this
architecture. Particularly, the reputation for each fog vehicle cannot be
manipulated deliberately by themselves under the supervision of the
RSUs. Each time a fog vehicle finishes serving the service request, it
will obtain a score from RSU to assess its performance during service
provisioning. Such a score has considered multiple factors such as the
impressions from IoT devices and RSU, respectively, which will be
elaborated on later. Then the score is integrated into the reputation
of the fog vehicle. The reputation of the fog vehicle is updated by the
covering RSU every time it serves the service request. Generally, the
fog vehicle delivering poor-quality computing service will be punished
and one delivering high-quality computing service will be rewarded.

Note that one RSU together with the deployed fog server can act as
a local server and manage the reputation for its covering fog vehicles.
We assume that two neighboring RSUs have no overlaps, such that a
fog vehicle can only be covered by at most one RSU at the same time.
Owing to the high mobility of vehicles, they may enter or leave the area
one RSU serves. Thus, when one fog vehicle leaves the area, RSU stops
updating its reputation and sends the final value of reputation back to
the cloud center for global reputation synchronization. On the other
hand, when a fog vehicle gets access into the area, the serving RSU
will retrieve the reputation of the vehicle from the cloud center and
dynamically update it according to its performance. Specifically, Fig. 2
shows the sequence of interactions for reputation management and
reputation-based service provisioning in the end–fog–cloud architec-
ture. The presented interactions among the four entities can be sketched
out as follows:

• Each fog vehicle and IoT device register to the cloud center
with Unique Identifications (ID) such as Ethernet addresses. The
fog vehicle is assigned with an initial reputation value after
registration.

• Local server downloads the reputation value from the cloud cen-
ter for each fog vehicle that gets access to its serving area. The
reputation of all the fog vehicles is maintained by the local server.
The local server will decide which fog vehicle to respond to
the offloading request when the service request from IoT device
arrives.

• IoT device sends the related data to the fog vehicle and waits
for the execution. Meanwhile, the fog vehicle executes the service
upon the arrival of the service request.

• When the fog vehicle leaves the area, the local server writes back
its reputation value immediately to the cloud center for global
synchronization.

The above decentralized reputation management and service pro-
visioning are feasible based on the following assumptions. First, the
reputation stored in the cloud center cannot be forged, which is possible
since various lightweight encryption techniques can be applied. Second,
the local server (i.e., RSU with the deployed fog server) is trustworthy,
which is also possible since they are usually deployed by the local
government without selfish interest driving. Third, the fog vehicles are
willing to accept the supervisor of the local server, which means that
their information such as speed, destination, waiting queue, and the
amount of computational resources are known to the local server.



Journal of Systems Architecture 131 (2022) 102735C. Tang and H. Wu
Fig. 2. Sequence of interactions to display reputation management and service execution in end–fog–cloud architecture.
Table 1
Notations.

Notation Description

𝑚 Number of fog vehicles
𝑇 Number of discrete time slots
𝜛 The length of each time slot
(𝑡) The size of service-input data for the request at time slot 𝑡
 (𝑡) The number of CPU cycles needed to accomplish the service at time

slot 𝑡
(𝑡) Expected response delay from the IoT device at time slot 𝑡
 The set of fog vehicles
𝑖 The global reputation value of 𝑉𝑖
𝑖(𝑡) The current reputation of 𝑉𝑖 in time slot 𝑡
𝑓𝑖,𝑚𝑖𝑛 The minimal processing frequency of 𝑉𝑖
𝑓𝑖,𝑚𝑎𝑥 The maximal processing frequency of 𝑉𝑖
𝐵𝑑𝑣 The wireless channel bandwidth
𝐻𝑑𝑣(𝑡) The channel gain between the device and fog vehicle
𝑃𝑑𝑣(𝑡) The transmission power from the device
𝛿2(𝑡) The noise power
𝜆𝑖(𝑡) The arrival rate of service requests at 𝑉𝑖 in time slot 𝑡
𝑓𝑖(𝑡) The processing frequency of 𝑉𝑖 in time slot 𝑡
𝜗 The effectively switched capacitance coefficient
𝜍 The number of cycles to perform one service-input bit at 𝑉𝑖
𝛽𝑡 The weight attached to the impression of the IoT devices in time

slot 𝑡 on 𝑉𝑗

One pending issue during the above interaction needs to be ad-
dressed, i.e., how to schedule the service requests for the fog vehicles
to ensure that (1) service requests are served without violating the
constraints such as the energy consumption; (2) to encourage fog vehi-
cles to deliver high-quality services, e.g., in terms of response latency,
reliability or success rate. We will expatiate upon it in what follows.

4. System model

The considered model in this paper consists of 𝑚 fog vehicles and
one local server. The optimization period  is divided into 𝑇 discrete
4

time slots, indexed by  = {0,… , 𝑇 − 1}, and each slot has a duration
𝜛. 𝜛 is small enough so that there is only one service request from
IoT devices arriving at the local server within 𝜛. Denote the service
request in time slot 𝑡 by (𝑡) = ((𝑡), (𝑡),(𝑡)), where (𝑡) denotes
the size of service-input data (e.g., the related processing codes) to be
transmitted over the wireless channel,  (𝑡) is the number of CPU cycles
needed to accomplish the service, and (𝑡) is the expected response
delay from the perspective of the IoT device. If the real response delay
is not longer than (𝑡), then the IoT device sending (𝑡) is satisfied.
Otherwise, the QoE begins to decline. Assume that the fog vehicles
can provide computing services under the supervision of the local
server, indexed by  = {𝑉0,… , 𝑉𝑚−1}. Each 𝑉𝑖 can be represented by
a vector (𝑖, 𝑓𝑖,𝑚𝑖𝑛, 𝑓𝑖,𝑚𝑎𝑥), where 𝑖 is its global reputation value which
can be downloaded from the cloud center or the local server, 𝑓𝑖,𝑚𝑖𝑛
and 𝑓𝑖,𝑚𝑎𝑥 are the minimal and maximal processing frequencies of 𝑉𝑖,
respectively. Usually, the processing frequency is an important factor to
indicate the amount of computational resources leveraged for serving
the service request. For instance, a larger processing frequency means
more computational resources to be used for the service request, as
well as more costs such as energy consumption. As a result, selfish fog
vehicles pursue profit maximization by reducing costs, thus delivering
low-quality services, e.g., in terms of response latency. Specifically,
some notations of key variables to be used hereinafter are summarized
in Table 1.

4.1. Delay model

From the perspective of IoT devices, their QoE for the requested
services mainly depends on one metric, i.e., the response delay. The
devices are satisfied, if the execution result is returned before the
expected response delay. Actually, the shorter the response delay, the
more they are satisfied. In this paper, the response delay includes three
parts in this paper and they are the transmission delay, the calculation
delay and the returning delay.
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4.1.1. Transmission delay
The transmission delay 𝑑𝑡𝑟𝑠(𝑡) for the requested service in time slot 𝑡

denotes the time taken to transmit the service-input data from the IoT
device to the fog vehicle, and it can be given as:

𝑑𝑡𝑟𝑠(𝑡) =
(𝑡)
𝑟(𝑡)

, (1)

where 𝑟(𝑡) is the transmission rate for the service-input data in time slot
𝑡, given below [31]:

𝑟(𝑡) = 𝐵𝑑𝑣(𝑡) log2(1 +
𝑃𝑑𝑣(𝑡)𝐻𝑑𝑣(𝑡)

𝛿2(𝑡)
), (2)

where 𝐵𝑑𝑣, 𝐻𝑑𝑣(𝑡) and 𝑃𝑑𝑣(𝑡) are the wireless channel bandwidth, the
channel gain between the device and fog vehicle, and the transmission
power from the device, respectively. 𝛿2(𝑡) is the noise power.

4.1.2. Calculation delay
The calculation delay 𝑑𝑐𝑙𝑡(𝑡) for the requested service in time slot 𝑡

denotes the time taken for the fog vehicle to accomplish the calculation
of the service. This delay includes the queueing delay and the execution
delay. We denote the two parts by 𝑑𝑞(𝑡) and 𝑑𝑒(𝑡), respectively. To
simplify the analysis, we assume that the arrival of service requests
at each fog vehicle in time slot 𝑡 follows a Poisson process with the
arrival rate 𝜆𝑖(𝑡), 𝑖 ∈ {0,… , 𝑚 − 1}. 𝜆𝑖(𝑡) can be easily estimated based
on historical statistics. The service rate is 𝑓𝑖(𝑡)∕ (𝑡), where 𝑓𝑖(𝑡) is
the processing frequency of fog vehicle 𝑉𝑖 in time slot 𝑡. Based on
the M/M/1 queueing model, the average queuing delay in the waiting
queue can be expressed as [32]:

𝑑𝑞(𝑡) =
𝜆𝑖(𝑡) 2(𝑡)

𝑓𝑖(𝑡)(𝑓𝑖(𝑡) − 𝜆𝑖(𝑡) (𝑡))
. (3)

The execution delay (i.e., the service time) 𝑑𝑒(𝑡) is given as:

𝑑𝑒(𝑡) =
 (𝑡)
𝑓𝑖(𝑡)

. (4)

Thus, the calculation delay (i.e., the sojourn time) 𝑑𝑐𝑙𝑡(𝑡) is [32]:

𝑑𝑐𝑙𝑡(𝑡) =
𝜆𝑖(𝑡) 2(𝑡)

𝑓𝑖(𝑡)(𝑓𝑖(𝑡) − 𝜆𝑖(𝑡) (𝑡))
+

 (𝑡)
𝑓𝑖(𝑡)

. (5)

Meanwhile, the energy consumption 𝑒𝑖(𝑡) for accomplishing the service
in time slot 𝑡 at the fog node 𝑉𝑖 is expressed as:

𝑒𝑖(𝑡) = 𝜗𝜍 (𝑡)𝑓 2
𝑖 (𝑡), (6)

where 𝜗 is the effectively switched capacitance coefficient, and 𝜍 is the
number of cycles needed to perform one service-input bit at 𝑉𝑖. From
this equation, it is obviously observed that the larger the processing
frequency, the more the energy consumption. In other words, more
computational resources to be used bring about more costs for the fog
vehicles and fewer profits.

The returning delay denotes the time taken to send back the execu-
tion result to the IoT device. Similar to other works [32,33], we also
assume that the size of the execution result is much smaller than that of
the service-input data. Hence, we have omitted the returning delay of
the execution result. The response delay 𝑑𝑟𝑠𝑝(𝑡) for the service request
in time slot 𝑡 is:

𝑑𝑟𝑠𝑝(𝑡) = 𝑑𝑡𝑟𝑠(𝑡) + 𝑑𝑐𝑙𝑡(𝑡). (7)

To depict the quality of service that one fog vehicle delivers, we
give the following definitions:

Definition 1 (Utility Function). A utility function is attached to a fog
vehicle to represent its value to a service requestor. The corresponding
utility value of fog vehicle 𝑉𝑖 that serves the service request in time slot
𝑡 is defined as a measurable gain of accomplishing the service, given as:

𝑖(𝑡) =

⎧

⎪

⎨

⎪

1 if 𝑑𝑟𝑠𝑝(𝑡) ≤ (𝑡)
𝑖,𝑚𝑎𝑥(𝑡)−𝛿(𝑑𝑟𝑠𝑝(𝑡)−(𝑡))

𝑖,𝑚𝑎𝑥(𝑡)
if (𝑡) < 𝑑𝑟𝑠𝑝(𝑡) < (𝑡) + 𝑖,𝑚𝑎𝑥(𝑡)∕𝛿 (8)
5

⎩0 if 𝑑𝑟𝑠𝑝(𝑡) ≥ (𝑡) + 𝑖,𝑚𝑎𝑥(𝑡)∕𝛿
Note that 𝑖,𝑚𝑎𝑥(𝑡) > 0, and 𝛿 > 0. In particular, fog vehicle 𝑉𝑖 will
obtain a maximum utility if the service request is accomplished within
its expectation (𝑡). Otherwise, the utility will decay linearly with a
lope of 𝛿 until it equals zero, as the response latency increases. In other
ords, the quality of service that the fog vehicle delivers declines as the
alue of its utility function decreases. Generally, the larger the utility
alue, the higher the quality of the delivered service.

efinition 2 (Expected Utility). The expected utility 𝑖(𝑡) is defined as
the average utility value of the fog vehicle 𝑉𝑖 for accomplishing the
service requests coming from the last 𝐾 time slots, given as:

𝑖(𝑡) =
1
𝐾

𝑡−1
∑

𝑗=𝑡−𝐾
𝑖(𝑗). (9)

Definition 3 (Utility Difference). The utility difference of the fog vehicle
𝑉𝑖, denoted by △𝑖(𝑡), is defined as the deviation of 𝑖(𝑡) from 𝑖(𝑡),
given as:

△𝑖(𝑡) = 𝑖(𝑡) − 𝑖(𝑡). (10)

4.2. Reputation model

Reputation-based strategies have played an important role in mak-
ing service providers constantly provide high-quality services. For ex-
ample, the reputation usually represents the accountability for main-
taining service levels and can thus affect offloading decisions to a great
extent in VFC. A typical description of reputation is that it represents
an opinion that people have towards someone or something based on
the observed behaviors or displayed character. In this paper, we need
to think about what the opinion about a fog vehicle is like. Generally
speaking, a computing service is usually provisioned on demand by
a fog vehicle in VFC, and thus the opinion about the fog vehicle
from the outside is typically built upon its performance during service
provisioning. Particularly, if a service request is served better than what
it has been expected (e.g., in terms of response latency), it will bring
more value or utility to the requestors and even irrelevant ones who
will in turn have a better opinion about the fog vehicle. Therefore, we
can actually use utility differences to indicate the opinion about the fog
vehicle. Then, we give the following definitions in what follows.

Definition 4 (Impression). The impression 𝐼𝑀𝑃𝑖(𝑡), which denotes the
opinion of the IoT device that sends (𝑡) towards the fog vehicle 𝑉𝑖 that
ndertakes (𝑡), is equal to the utility difference, given as:

𝑀𝑃𝑖(𝑡) = △𝑖(𝑡). (11)

Given the above definition, several interesting observations can be
ade as follows. First, 𝐼𝑀𝑃𝑖(𝑡) is a real number ranging from −1 to
. Second, 𝐼𝑀𝑃𝑖(𝑡) will increase if the quality of delivered service
ecomes higher, and 𝐼𝑀𝑃𝑖(𝑡) will decrease if the quality of delivered
ervice becomes lower. Third, 𝐼𝑀𝑃𝑖(𝑡) is 0 if the current utility value
quals the average one.

efinition 5 (Service Offloading Decision). Service offloading in this pa-
er refers to the allocation of service requests in VFC by the local server.
et 𝜑𝑡

𝑖 be a binary variable to indicate whether the service request in
ime slot 𝑡 is allocated to fog vehicle 𝑉𝑖, 𝑖 ∈ {0,… , 𝑚− 1}. 𝜑𝑡

𝑖 = 1, if the
request is distributed to 𝑉𝑖; and 0, otherwise. Define 𝝋𝑖 = {𝜑0

𝑖 ,… , 𝜑𝑇−1
𝑖 }

s the offloading decisions of 𝑉𝑖 for all the service requests along the
imeline  . Define 𝝋 = {𝝋0,… ,𝝋𝑚−1} as the offloading decisions of all

the vehicles for the service requests along the timeline  .

It shall be noted that a fog vehicle may enter or leave the serving
area of the local server in the middle of the optimization period, owing

to its high mobility. For instance, one fog node 𝑉𝑗 enters the area
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d
n

after the time slot 𝑘. In this case, for the sake of easy expression and
iscussion, we assume that the binary variables of this vehicle for these
onexistent time slots still exist, i.e., {𝜑0

𝑗 ,… , 𝜑𝑘
𝑗 }, and just let them

equal zero instead.

Definition 6 (Single Reputation). The single reputation of a fog vehicle
𝑉𝑗 , denoted by 𝑅𝑗 (𝑡), is an individual impression of the current IoT
device sending the service request in time slot 𝑡:

𝑅𝑗 (𝑡) = 𝜑𝑡
𝑗 ⋅ 𝐼𝑀𝑃𝑗 (𝑡). (12)

Based on the above definition, it is obvious that for an arbitrary
time slot, there is only one nonzero value of the single reputation, since
we have assumed that there is only one service request within each
time slot. Particularly, 𝑅𝑗 (𝑡) ranges from −1 to 1. The case 𝑅𝑗 (𝑡) < 0
indicates that the current service provisioning is worse and deviates a
lot from the expected utility. Each time the fog node serves the service
request, the single reputation should be updated. In addition, we have
the following definition.

Definition 7 (Current Reputation). The current reputation of a fog
vehicle 𝑉𝑗 in time slot 𝑡, denoted by 𝑗 (𝑡), is an overall reputation
that comprehensively evaluates the performance when 𝑉𝑗 provision
computing services so far, and it is iteratively defined as:

𝑗 (𝑡) = 𝑗 (𝑡 − 1) + 𝛽𝑡 ⋅ 𝑅𝑗 (𝑡), (13)

where 𝛽𝑡 (0 < 𝛽𝑡 < 1) is the weight attached to the impression of the
IoT devices sending the service request in time slot 𝑡 on the fog vehicle
𝑉𝑗 .

Considering the fact that one fog node in VFC may serve the service
requests multiple times, and at the same time, one IoT device may send
service requests multiple times in the optimization period, the above
weights 𝛽𝑡(𝑡 ∈ {0,… , 𝑇 − 1}) can be leveraged for multiple purposes.
First, if one service request allocated to 𝑉𝑗 is not urgent enough in
terms of response latency, the priority level of the service request is
supposed to be relatively low; on the other hand, if one service request
allocated to 𝑉𝑗 is very urgent from the perspective of IoT device, then
the value earned by serving it is supposed to be more than serving
other requests which are not as urgent as it. The local server, depending
upon different situations, can achieve the above purpose by adjusting
the corresponding weight 𝛽𝑡. Second, if the IoT device sending service
request (𝑡) is malicious, the local server can reduce the value earned
by serving (𝑡), e.g., by means of lowering the weight, although the
identification of malicious IoT devices is beyond the scope of this paper.
Last but not least, from the perspective of fog vehicles, they may show
different preferences towards the service requests in the optimization
period, and we can also adjust the weights for this purpose. It shall be
noted that all the impressions can hypothetically have the same weight,
since it is not our focus in this paper.

Eq. (13) can also be regarded as the update of the reputation value.
Usually, there are two ways to update the reputation values of fog
vehicles. One is that the reputation values of all the fog vehicles remain
unchanged during the optimization period and are updated only at
the end of the optimization period. Such an update avoids frequent
interactions between the local server and fog vehicles, thus reducing
the great pressure on the front-haul links between them. However,
this way cannot prevent selfish vehicles from delivering low-quality
computing services. In this paper, we tend to distribute the service
requests to the fog vehicles based on their reputation values which will
be elaborated on later. Assume that one fog vehicle 𝑉𝑗 which has the
highest reputation value gets access to the serving area of the local
server, and 𝑉𝑗 wants to pursue more profits in the incoming optimiza-
tion period by delivering low-quality services. Since the service requests
are distributed based on their reputations and the reputation values
remain unchanged during the timeline, 𝑉𝑗 with the highest reputation
6

value can easily be assigned with more requests than other fog vehicles.
Unfortunately, there are no efficient countermeasures to cope with this
unfair request distribution, let alone the measures adopted to prevent
this selfish 𝑉𝑗 .

The other way is to update the reputation values for all the fog
vehicles every time the service request (𝑡) is served. Although this way
undoubtedly incurs frequent interactions between the local server and
vehicle fogs, it can prevent the fog vehicle say 𝑉𝑗 from delivering low-
quality services. For instance, 𝑅𝑗 (𝑡) will gradually become smaller with
the increasing number of time slots, since 𝑅𝑗 (𝑡) has been nonpositive
along the time slots. The decreasing reputation value will hinder 𝑅𝑗 (𝑡)
from obtaining more service requests. Based on this analysis, we adopt
the second way to update the reputation values for all the fog vehicles
in the optimization period.

In the meanwhile, the local server needs to write the reputation
back to the cloud center based on the following two cases. One is
that fog vehicle 𝑉𝑗 leaves the serving area of the local server in the
middle of the optimization period. In this case, the local server writes
back the updated reputation value immediately to the cloud center for
global synchronization, such that another local server can download
it when 𝑉𝑗 gets access to its serving area. The other case is that the
optimization period is over. In this case, the local server also writes
back the updated reputation values immediately to the cloud center for
global synchronization. For those vehicles which still want to stay and
make a contribution, they still need to download their own reputation
values again either from the local server or the cloud center.

5. Problem formulation

The main goal of the reputation-based service provisioning in VFC is
to prevent fog vehicles from delivering low-quality computing services,
when the vehicles are serving the requests. In the meanwhile, the con-
straints should be considered such as the energy consumption and the
processing frequencies. Intuitively, the fog vehicle with a large value
of current reputation can, as always, deliver high-quality computing
services. Therefore, we strive to maximize the reputation value of each
fog vehicle along the time slots. Specifically, the optimization problem
in this paper can be formulated as follows:

() max
𝝋

𝑚−1
∑

𝑖=0

𝑇−1
∑

𝑡=0
𝑖(𝑡)

s.t.
𝑚−1
∑

𝑖=0
𝜑𝑡
𝑖 ≤ 1 ∀𝑡 ∈ {0,… , 𝑇 − 1} (14)

𝑒𝑖(𝑡) ≤ 𝑒𝑖,𝑚𝑎𝑥 ∀𝑖 ∈ {0,… , 𝑚 − 1} ∀𝑡 ∈ {0,… , 𝑇 − 1} (15)

𝑓𝑖,𝑚𝑖𝑛 ≤ 𝑓𝑖(𝑡) ≤ 𝑓𝑖,𝑚𝑎𝑥 ∀𝑖 ∈ {0,… , 𝑚 − 1}∀𝑡 ∈ {0,… , 𝑇 − 1} (16)

𝜑𝑡
𝑖 ∈ {0, 1} ∀𝑖 ∈ {0,… , 𝑚 − 1} ∀𝑡 ∈ {0,… , 𝑇 − 1} (17)

where the constraint (14) guarantees that a service request from any
time slot should be served by at most one fog vehicle. An extreme case
is that none of the fog vehicles are qualified for the service request,
e.g., lack of enough computational resources. In such a case, the local
server will undertake the computation of the service. Although the fog
vehicles are encouraged to deliver high-quality services, we allow for
the case that the fog vehicles reserve the computational resources and
energy supply for an emergency. We can achieve this goal by using the
constraints (16) and (17).

Exhaustive search over the potential solution space is prohibitively
costly, since it takes the exponential time to determine the best al-
location scheme for the service requests in the entire optimization
period. Even worse, to optimally solve problem  requires complete
information including future information about service requests, which
can be only realized in an off-line way. However, it does not suit our

scenario in this paper, since the service requests arrive sequentially,
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and they are supposed to be handled right upon its arrival, instead of
being handled in batches. Meanwhile, it is pretty hard to predict service
requests in the future time slots, which indeed necessitates an online
approach to solve the optimization problem.

We notice that the above problem  is equal to the following
problem  after a straightforward transformation:

() max
𝝋

𝑇−1
∑

𝑡=0

𝑚−1
∑

𝑖=0
𝑖(𝑡). (18)

Note that we do not list the constraints any longer since they are the
same as the problem . This problem indicates that we can optimize
the reputation values of all the fog vehicles within each time slot at
the beginning, and then we maximize these values along the time slots.
On one hand, we have transformed this optimization problem spanning
the entire optimization period into a series of per-slot deterministic op-
timization subproblems, such that the service request can be allocated
in a slot-by-slot way. On the other hand, this problem can be solved by
the greedy approach. The locally optimal solutions can constitute the
globally optimal solution in this problem, which can be easily proven
by reductio. Furthermore, it seems easy to find the optimal solution to
the above problem with the time complexity of 𝑂(𝑇𝑀).

However, this problem becomes very complicated if we take into
account the selfishness of vehicles, since we do not know, a priori,
whether the fog vehicle will deliver a high-quality service if the service
request is distributed to it. Accordingly, there is a great deal of uncer-
tainty during service provisioning. To tackle this issue, we put forward
a two-phase-based service request allocation scheme within each time,
aiming to answer the following two questions: (1) which fog vehicle is
the most qualified for the service request among all the fog nodes; (2)
How many computational resources are allocated to the service request
for the chosen fog node?

5.1. Fog node selection

The goal of this paper is to encourage fog vehicles to always deliver
high-quality computing services, so the determination of fog nodes
should display the advantages of those vehicles which deliver high-
quality services as consistently claimed. Thus, we tend to designate the
fog node with the highest reputation value to respond to the service
request. One may argue that it may not be fair enough, since the
service requests arriving in sequence in the optimization period may
be allocated to the same fog node with the highest reputation value,
thus dampening the enthusiasm of other vehicles willing to contribute
computational resources. We should admit that such an extreme case
indeed exists. For instance, if one fog vehicle has the highest reputation
value and much more computational resources than other fog nodes,
this fog node may earn more service requests.

However, the proposed reputation-based service provisioning has
taken into account the fairness issue to a great extent, based on the fol-
lowing reasons. First, the utility attached to the fog vehicle is updated
each time the fog node finishes serving the service request. Meanwhile,
the reputation based on the utility value is recorded per time slot. If
a fog vehicle with high original reputation value has been delivering
low-quality computing services in the past 𝐾 time slots, its reputation
will increasingly decline. On the other hand, if a fog vehicle with low
original reputation value has been delivering high-quality computing
services in the past 𝐾 time slots, its reputation will increasingly rise.
Second, the optimization period is short enough so that the reputation
values of the fog vehicles can be updated timely. In this context, each
fog vehicle has an opportunity to respond to the service request. Last
but not least, in response to the issue of all the service requests that
are allocated to the same fog node, we admit such an extreme case,
but there is not too much to worry about. Each service request has an
expected response delay. If all the services are allocated to the same
7

fog node, the response latency will increase for some service requests,
Algorithm 1: Procedure for Fog Node Determination and
Resource Distribution (PDD)

Input:  , 𝐾, 𝑉 , 𝜗, 𝜍, 𝑡, 𝑚, 𝛿, 𝑩𝒅𝒗, 𝑷𝒅𝒗, 𝑯𝒅𝒗, 𝜷
Output: The reputation sum of all the fog nodes

1 Gather status information from fog vehicles;
2 Download reputation values from cloud center;
3 Sort fog nodes in descending order of reputation values;
4 Initialize a list  to store the already sorted fog nodes;
5 𝑆𝑢𝑚 = 0;
6 for each time slot 𝑡 in  do
7 Get the fog vehicle 𝑉𝑖 from the list  in sequence;
8 Calculate 𝑓 ∗

𝑖 (𝑡) using Eq. (20);
9 if 𝑓 ∗

𝑖 (𝑡) > 𝑓𝑖,𝑚𝑎𝑥 then
// 𝑉𝑖 is not qualified

10 Repeat steps 6-7;
11 else
12 Calculate 𝑒∗𝑖 (𝑡) based on Eq. (6);
13 if 𝑒∗𝑖 (𝑡) > 𝑒𝑖,𝑚𝑎𝑥 then

// 𝑉𝑖 is not qualified
14 Repeat steps 6-7;
15 else
16 Disseminate the beacon information to 𝑉𝑖;
17 Designate 𝑉𝑖 in response to (𝑡);
18 Supervise the process of serving the requests;
19 Calculate and update its reputation value 𝑖;
20 end
21 if 𝑉𝑗 leave area then
22 Update the reputation of 𝑉𝑗 , i.e., 𝑗 ;
23 Write 𝑗 back to the cloud center;
24 end
25 end
26 Record the service offloading decision on 𝑡;
27 Form per-slot offloading decisions {𝜑𝑡

0,⋯ , 𝜑𝑡
𝑚−1} ;

28 𝑆 = 0;
29 for each fog vehicle 𝑉𝑖 in  do
30 Calculate 𝑖(𝑡) based on Eq. (13);
31 𝑆+ = 𝑖(𝑡);
32 end
33 𝑆𝑢𝑚+ = 𝑆;
34 end
35 Return 𝑆𝑢𝑚;

owing to the increasing queueing delay and the uneven computational
resources distribution. Thus, the utility value of the vehicle may decline
due to the constraint violation (see Eq. (8)), which eventually leads to
the decline of the reputation. As a result, the above situation will give
other vehicles opportunities.

5.2. Computational resources distribution

When the fog vehicle that serves the service request is determined,
another issue comes naturally, i.e., how many computational resources
are supposed to be distributed to the service request such that a good
reputation can be maintained as always but there are no more costs
incurred by service provisioning such as the energy consumption.

Note that the utility value of one fog node only depends upon its
response delay and the utility value will not increase anymore as long
as the response delay is shorter than the expected response delay. In
other words, it is meaningless to shorten the response delay after the
real response delay reaches the expected response delay. We can thus
calculate the critical value of the amount of computational resources
when the response delay is equal to the expected response delay.
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Table 2
Parameter settings

Parameter Value Parameter Value

𝑇 [100, 300] 𝑚 [20, 30]
𝐾 [1, 100] 𝛿 [1, 5]
𝑓𝑖,𝑚𝑖𝑛 [1000, 1500] 𝑓𝑖,𝑚𝑎𝑥 [2000, 2500]
(𝑡) [1, 50]  (𝑡) [40, 70]
(𝑡) [0, 1] 𝑖 [0, 1]
𝑖,𝑚𝑎𝑥 [0, 1] 𝛽𝑡 [0, 1]

Combining Eqs. (7) and (8), it can be inferred that this critical value
for the computational resources is:

𝑓 ∗
𝑖 (𝑡) = 𝜆𝑖(𝑡) (𝑡) +

𝑟(𝑡) (𝑡)
𝑟(𝑡)(𝑡) − (𝑡)

, (19)

which indicates that the best result can be achieved when the pro-
cessing frequency of the fog vehicle equals 𝑓 ∗

𝑖 (𝑡) and there are no
more energy consumption incurred for extra computational resources
distribution. Accordingly, the procedure for fog node determination
and computing resource distribution, denoted by PDD, is shown in Alg.
1. Before the optimization period begins, the algorithm PDD should
conduct some initializations. For instance, the local server needs to
gather the information on the fog vehicles dwelling in its serving
area. Such information usually includes the amount of computational
resources, the destination, the dwelling time and even the reputation
values, provided that these vehicles have obtained their reputation
somehow. Then the local server downloads the reputation values of
these vehicles from the authorized cloud center. It shall be noted that,
the local server can check whether the two kinds of reputation values
are equal, so as to tag those potentially selfish vehicles. For instance,
if the reputation value gathered from one vehicle (e.g., 𝑉𝑖) is higher
than that from the cloud center, the local server can consider 𝑉𝑖 as
a potentially selfish vehicle. The local server sorts the vehicles in
descending order of reputation values and then stores them by a list
 for subsequent operations.

For the service request in each time slot 𝑡, the local server gets
the first fog vehicle (e.g., 𝑉0) in  and checks whether it is qualified
for the request by the following several validations. First, the local
server calculates the critical value of the processing frequency 𝑓 ∗

0 (𝑡)
based on Eq. (19). If this critical value is larger than the threshold
of the processing frequency (i.e., 𝑓0,𝑚𝑎𝑥), we regard this vehicle as
n unqualified fog node for the request. Otherwise, given 𝑓 ∗

0 (𝑡), we
alculate 𝑒∗0(𝑡) based on Eq. (6) to check whether the critical energy
onsumption exceeds the threshold of energy consumption (i.e., 𝑒0,𝑚𝑎𝑥).
f 𝑒∗0(𝑡) > 𝑒0,𝑚𝑎𝑥, this fog vehicle is still considered to be an unqualified
og node. In this case, the local server will try another fog vehicle by
etting the vehicle just behind 𝑉0 in  and repeat the above validations.

The fog vehicle passing the validation process will be noticed by the
ocal server, e.g., by beacon packet dissemination (line 15). This vehicle
ill serve the request by allocating the computational resources to it
nder the supervision of the local server. After completing the service
equest, its reputation is updated and recorded on the local server.
n the meanwhile, if one vehicle, say 𝑉𝑗 , leaves the serving area, the
ocal server will update the reputation and write it back to the cloud
enter. Actually, this procedure can be adopted to solve the problem
. In particular, the local server records the service offloading decision

n each time slot 𝜑𝑡
𝑖(𝑖 ∈ {0,… , 𝑚 − 1}) and calculates the sum of the

eputation values of all the fog nodes within this time slot (lines 28–32).
hen, the total reputation of all the fog nodes in the entire optimization
eriod can be obtained (line 33).

. Simulation evaluation

In this section, we validate the proposed reputation-based service
rovisioning scheme via extensive simulation under different scenarios.
8

.1. Experimental settings

For the main parameters involved in the simulation, we initialize
hem as follows. The number of fog vehicles varies from 20 to 30, and
he number of time slots ranges from 100 to 300. Each vehicle is as-
igned with an initial reputation value ranging from 0 to 1. Specifically,
hese parameters are listed in Table 2. All the simulation is run on a
otebook with a 1.8 GHz Intel(R) Core(TM) i5-8250U CPU, 8 GB of
AM, Microsoft Windows 10 Operating System, Python 3.7.

Our simulation includes two parts. On one hand, we will validate
he efficiency and effectiveness of our approach in terms of the effects
f the involved parameters upon the performance, given different
cenarios. Such parameters usually include the number of fog vehicles,
he slope of the utility function and so on. On the other hand, we will
ompare our approach with the following two approaches:

• Task-based Experience Reputation (TER) [1]: This approach as-
signs different tasks with different weights to indicate their emer-
gency as well as importance. The reputation is calculated using a
weighted mean of previous reputation values.

• Iterative Reputation Management (IRM) [27]: This approach it-
eratively manages the reputation for a vehicle, which takes into
consideration the accumulated reputation at each iteration by a
constant ratio.

.2. Parameters evaluation

The first set of experiments is conducted to validate the efficiency
nd effectiveness of the proposed reputation-based service approach.
he simulation results are shown in Fig. 3. The influence of the number
f vehicles on the performance is depicted in Fig. 3(a). It is obvious
hat the number of vehicles affects the performance of PDD greatly in
erms of the accumulated reputation. Particularly, given the number
f service requests, the accumulated reputation values for all the fog
ehicles will become larger generally. For instance, when the number
f fog vehicles is 30, the overall reputation values are much better than
n the two cases where the number of fog vehicles is 20 and 25.

It is interesting that the performance of the case when the number
f fog vehicles is 20 is better than the case when the number of fog
ehicles is 25 most of the time. It is mainly due to the fact that all the
ata including the service requests and fog vehicles in the simulation
s generated randomly. Although the service requests are the same,
he fog vehicles are all different in the three cases. As a result, the
bove situation may occur in the simulation. On another hand, as far
s one case (e.g., 𝑚 = 20, 25, or 30) is concerned, the reputation values

may decrease as the number of time slots increases. For instance, the
reputation values decrease when the number of time slots is 20 for
the case with 𝑚 = 20 and 25 for the case with 𝑚 = 30. Recall that
our purpose is to prevent the fog vehicles from delivering low-quality
services by distributing the service requests based on the reputation
values of fog vehicles. If selfish vehicles deliver low-quality services,
the reputation will decline as the number of time slots increases. Such
punishment will hinder the fog vehicles from obtaining more service
requests.

We investigate the influence of the slopes defined in Eq. (8) on
the performance of the proposed strategy. The simulation results are
shown in Fig. 3(b). Based on the definition of the utility function for
a fog vehicle, the larger the slope, the faster the utility value declines.
As a result, it is understandable that the performance of the proposed
strategy is better than others when the corresponding slope is smaller
than others, which can be easily observed from the figure. Meanwhile,
we can also find that the accumulated reputation values fluctuate a
lot. For instance, when the number of time slots increases from 55
to 62, the accumulated values decrease sharply for all the four cases.
Such a fluctuation has the same reason as shown in Fig. 3(a). The fog
vehicles assigned with service requests will be punished if they deliver
poor-quality services along the time slots.
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Fig. 3. The validation of the influence of involved parameters upon the performance of the approach.
Next, we investigate the relationships between the utility values
and the reputation values of the fog vehicles. The results are shown
in Fig. 3(c). Specifically, we have taken one from thirty vehicles as the
observation object. Several conclusions can be drawn from this figure.
First, the reputation of one fog vehicle goes up and down, depending
on its performance in each time slot. Second, a sharp rise or decline
in the utility values in the current time slot does not bring about a
similar fluctuation in the reputation values in the current time slot.
The reason is that the definition of reputation is based on the utility
difference (see Definition 3), which adopts the expected utility (i.e., the
average utility value of the fog vehicle coming from the last 𝐾 time
slots) to prevent a sudden rise or decline in the reputation value. This
countermeasure can efficiently handle the situation where a fog node
continuously delivering poor-quality computing services wants to rise
its reputation rapidly by delivering high-quality computing services
several times.

We have conducted another set of experiments to validate the
relationships between the reputations and the quality of delivered
computing services. The simulation results are shown in Fig. 3(d). In the
simulation, we assume that one vehicle with a good reputation will pro-
vide high-quality services along the time slots with the probabilities of
30%, 60%, and 90%, respectively. All the settings are the same except
for the probability of provisioning high-quality computing services.
Obviously, the higher the probability that the fog vehicle provisions
high-quality services, the larger the reputation, and vice versa.

6.3. Performance comparison

We first evaluate our approach compared to the approach proposed
in [1]. Herein, we call the approach TER directly for the sake of
9

Fig. 4. Performance comparison with TER w.r.t. reputation.

easy discussion and reference. As mentioned at the beginning, TER
incorporates the emergency and importance into the reputation of the
tasks, e.g., by assigning them with different weights. The reputation
is a weighted mean of previous reputation values. Actually, we also
consider the emergency and importance of the tasks in our reputation
model by using the weights 𝛽𝑡, (𝑡 ∈ {0,… , 𝑇 − 1}). Furthermore,
we adopt utility difference-based impressions to define the reputation
instead of a simple weighted mean of previous reputation values. The
simulation results are shown in Figs. 4 and 5, respectively.

Fig. 4 indicates that our reputation values are generally higher than
TER along the time slots. The following reason can account for this
result. The definition of reputation in this paper is relatively smooth



Journal of Systems Architecture 131 (2022) 102735C. Tang and H. Wu

a
v
f
p
s
r
c
i
v

p
r

a
a
o
A
p
a

f
i
l
v
t
r
d

Fig. 5. Performance comparison with TER w.r.t. the long-term average response delay.

nd steady compared to TER. As illustrated above, it can prevent selfish
ehicles which continuously deliver poor-quality computing services
rom rising their reputation rapidly by delivering high-quality com-
uting services several times. On the other hand, it can also prevent
ome vehicles with good reputations from lowering their reputation
apidly by delivering poor-quality computing services several times. In
ontrast, TER is unable to achieve such a purpose. Hence, our approach
s better than TER with regards to (w.r.t.) the achieved reputation
alues.

In addition, we have evaluated how they respectively function in
reventing selfish vehicles from delivering low-quality services. The
esults are shown in Fig. 5, where the 𝑦-coordinate represents the long-

term average response delay. In this simulation, we vary the number
of time slots from 100 to 300, which means that there are hundreds
of service requests waiting to be handled. From the figure, we can
observe that our approach is much better than TER in terms of the
long-term average response delay. In other words, our reputation-based
service provisioning can better prevent selfish vehicles and encourage
them to deliver the claimed computing service so as to maintain a good
reputation.

Furthermore, we have conducted another set of experiments to
evaluate our approach compared to the approach proposed in [27].
Similarly, we call the approach IRM directly for the sake of easy
discussion and reference. IRM iteratively updates the reputation for a
vehicle, which considers not only the accumulated reputation but also
the impression from other vehicles. To suit our scenario, we need to
tailor the reputation update as follows.

𝑗 (𝑡) = 𝑗 (𝑡 − 1) + 𝑅𝑗 (𝑡)𝜌𝑗 (𝑡)𝑥𝑗 (𝑡), (20)

where 𝜌𝑗 (𝑡) is the validated result of vehicle 𝑉𝑗 in time slot 𝑡, and 𝑥𝑗 (𝑡)
denotes the trustworthiness of the local server towards the fog vehicle
𝑉𝑗 and the trustworthiness can be regarded as a probability ranging
from 0 to 1. 𝜌𝑗 (𝑡) is a binary variable. As mentioned earlier, the local
server will check the two reputation values of which one is downloaded
from the cloud center, and the other comes from the vehicle during the
beacon packet dissemination. 𝜌𝑗 (𝑡) = 1, if the two values equal; and 0,
otherwise.

The simulation results are shown in Figs. 6 and 7, respectively.
The evaluation is similar to the evaluation of TER. Note that we
have compared our approach with TER and IRM, separately in the
simulation, because during the comparison between TER and PDD, we
have assigned different weights to the impression of the IoT devices
sending the service request in each time slot, and for the comparison
between IRM and PDD, all the weights are assumed to be the same.
From Fig. 6, we can observe that there are no obvious relationships
between IRM and PDD w.r.t. the reputation values. The two different
ways to update the reputation make their reputation values respectively
10

fluctuate a lot. Furthermore, the reputation values of TER sometimes d
Fig. 6. Performance comparison with IRM w.r.t. reputation.

Fig. 7. Performance comparison with IRM w.r.t. the long-term average response delay.

Fig. 8. Performance comparison with selfish vehicle delivering poor-quality services.

re larger than those of PDD, and sometimes are not. However, as far
s the long-term average response delay is concerned, our approach is
bviously better than IRM, which can be easily observed from Fig. 7.
s the data on service requests is generated randomly in each optimize
eriod, the resulting reputation values often go up and down, which is
cceptable in our opinion.

We have conducted the last set of experiments to evaluate the per-
ormance of our approach in comparison with TER and IRM. The goal
s to check their performance in preventing fog vehicles from delivering
ow-quality services. In particular, we still choose one from thirty fog
ehicles as the observation object. Along the time slots, the probability
hat this fog vehicle delivers low-quality services increasingly rises in a
andom way. Intuitively, the higher the probability that the fog vehicle
elivers low-quality services, the lower the reputation values. However,

ue to the difference in reputation updates, the reputation values
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cannot be compared directly. We then evaluate the number of times
that this fog vehicle serves the service requests in each optimization
period. Generally, the selfish vehicle will obtain gradually reduced
service requests as time goes by. The corresponding simulation results
are shown in Fig. 8, where the 𝑦-coordinate represents the number of
times for the fog vehicle serving the service requests. The results have
validated our expectations. Moreover, our approach can achieve better
performance than the other two approaches in terms of the decline.

7. Conclusion

Trustworthiness has attracted extensive attention in SIoV, and many
reputation-based approaches are applied to solving trustworthiness-
related issues. Nevertheless, existing works seldom adopt reputation-
based mechanisms to handle the trustworthiness related issues that
arise in VFC. The fog vehicles in VFC may pursue improper revenues by
delivering poor-quality computing services. Unfortunately, most of the
existing works just assume that vehicles are unselfish and deliver their
computing services as claimed. Such an assumption does not always
hold in reality. Considering the selfishness of vehicles, a reputation-
based service provisioning scheme is proposed to prevent fog vehicles
from delivering low-quality computing services. In the meanwhile, a
reputation management scheme is adopted, which consists of decen-
tralized reputation updating and global reputation synchronization in
VFC. We have formulated the optimization problem to maximize the
accumulated reputation of all the serving fog nodes in the optimiza-
tion period. We have also carried out extensive simulation and the
results reveal that our approach outperforms other existing approaches.
For future work, more efficient strategies are required for improving
the fairness and enthusiasm of newly registered fog vehicles, e.g., by
avoiding the selection of the same fog node in consecutive time slots.
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