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Abstract—With the rapid development of Internet of Things
(IoT) and next-generation communication technologies, resource-
constrained mobile devices (MDs) fail to meet the demand of
resource-hungry and compute-intensive applications. To cope
with this challenge, with the assistance of mobile-edge comput-
ing (MEC), offloading complex tasks from MDs to edge cloud
servers (CSs) or central CSs can reduce the computational bur-
den of devices and improve the efficiency of task processing.
However, it is difficult to obtain optimal offloading decisions
by conventional heuristic optimization methods, because the
decision-making problem is usually NP-hard. In addition, there
are shortcomings in using intelligent decision-making methods,
e.g., lack of training samples and poor ability of migration
under different MEC environments. To this end, we propose
a novel offloading algorithm named meta reinforcement-deep
reinforcement learning-based offloading, consisting of a meta-
reinforcement learning (meta-RL) model, which improves the
migration ability of the whole model, and a deep reinforcement
learning (DRL) model, which combines multiple parallel deep
neural networks (DNNs) to learn from historical task offloading
scenarios. Simulation results demonstrate that our approach can
effectively and efficiently generate near-optimal offloading deci-
sions in IoT environments with edge and cloud collaboration,
which further improves the computational performance and has
strong portability when making offloading decisions.

Index Terms—Deep neural network (DNN), Internet of
Everything, mobile-edge computing (MEC), reinforcement learn-
ing, task offloading.

I. INTRODUCTION

W ITH the proliferation of various mobile devices (MDs),
more and more resource-hungry applications, e.g., face

recognition, autonomous driving, and augmented reality, have
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become an indispensable part of life. However, MDs, such
as smartphones, tablet computers, and unmanned aerial vehi-
cles (UAVs), usually have limited computing resources and
constrained battery life, and thus the speed of processing
compute-intensive tasks is insufficient to meet the delay and
energy requirements of various Internet of Things (IoT) appli-
cations. In order to reduce service delay and save energy
consumption, MDs often closely rely on the central cloud
server (CS) to compute tasks in their daily operations. By
offloading tasks from a local MD to the CS, the waiting time
can be shortened and the battery life of the MD can also be
extended. Despite the strong and scalable computing capacities
of the cloud, it involves a large amount of data transmis-
sion when offloading computing tasks from MDs to the CS.
In the case of insufficient bandwidth or network fluctuations,
task offloading often brings high time costs. Meanwhile, with
the increase of the number of MDs or tasks, the comput-
ing and communication delays also increase. Therefore, cloud
computing cannot conform to the practical requirements for
delay-sensitive tasks [1].

Benefiting from IoT and edge computing technologies,
offloading compute-intensive tasks from MDs to the edge
server (ES) at the edge of the network for execution has grad-
ually matured. In this case, the remote cloud is no longer the
only place for task offloading and application placement [2].
Edge computing can make full use of the hardware resources
of the ES and alleviate the computing burden of the CS.
Compared with the central CS, ES has relatively low comput-
ing and storage capabilities, and the integration degree of the
heat dissipation and transfer equipment is lower than that of
the CS. Resulting from that, the energy consumption of the ES
is higher than that of the CS. Nonetheless, ESs are much closer
to MDs, with low latency and more stable networks, which can
greatly reduce the task offloading delay caused by the network
and is suitable for latency-sensitive IoT applications.

In the practical application scenarios of mobile-edge com-
puting (MEC) and mobile cloud computing (MCC), on the one
hand, always offloading all tasks to the ES for execution is not
advisable due to limited computing capacities of distributed
ES; on the other hand, due to the high latency and insuffi-
cient bandwidth, offloading all tasks to the CS is not always
beneficial [3], [4]. In addition, considering the heterogeneous
resources of the MDs, ESs, and CSs, it is necessary for us to
dynamically provide the optimal offloading decision for each
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task according to different offloading scenarios. We intend
to fully utilize all computing resources as well as obtain the
maximum benefits. Moreover, the overhead time required for
offloading decision making and the level of energy consump-
tion also severely affect the real-world application deployment
in edge computing environments. However, the total number of
offloading decisions increases exponentially with the number
of users and the number of tasks. Although this challenge can
be solved well with the conventional optimization method for
small-scale offloading scenarios, it will involve large amounts
of calculation when the offloading scenario is complicated [5].

In recent few years, with the rapid development of arti-
ficial intelligence (AI), intelligent decision-making methods
have become increasingly more popular [6]–[8]. Deep learning
achieves high classifying accuracy when dealing with conven-
tional classification problems. The offloading decision problem
can be treated as a classification problem, in which the final
decision can be regarded as a problem of classifying the tasks
into three parts, namely, the local computing model, edge
computing model, and cloud computing model, respectively.
Through training the neural network, deep reinforcement
learning (DRL) algorithms can quickly make offloading deci-
sions in a specific edge/cloud computing environment [9].
However, in real-world IoT application scenarios, the num-
ber of users, the number of tasks, and the network conditions
change frequently and dynamically. Thus, it is necessary to
collect new training samples to retrain the neural network and
make it suitable for the new offloading environment, which
means that its migration ability is greatly limited. Instead,
meta-reinforcement learning (meta-RL) can take advantage of
the accumulated training experience to guide the new training
process, so as to accelerate the completion of new training
tasks [10]. Through the combination of DRL and meta-RL,
we can both improve the portability of the model and reduce
the total cost of the system.

Inspired by the above facts, this article designs a novel
meta reinforcement-DRL-based offloading (MR-DRO) algo-
rithm, where a meta-RL algorithm is adopted to give proper
initial parameters for fast training and a DRL algorithm is
applied to generate near-optimal offloading decisions. The
main contributions of this article can be summarized as
follows.

1) Considering the offloading performance in terms of
response time and energy consumption during the
offloading process, a system model is built in heteroge-
neous edge/cloud computing environments with multiple
mobile terminal users, different volumes of data, and
different scales of task workloads. To this end, we
formalize the offloading decision-making issue as an
optimization problem and attempt to solve it in an
intelligent and effective way.

2) We design a novel offloading framework composed of
a meta-RL model and a DRL model. For the former,
we adopt the Reptile algorithm to train several neu-
ral networks, by which we can avoid the second-order
gradient calculation process, thereby reducing the cost
of decision making. Using the initial parameters gen-
erated by the meta-RL model, we can greatly improve

the initial accuracy of the decision-making model and
increase the algorithm portability. For the latter, we use
multiple parallel deep neural networks (DNNs) to deter-
mine when and where each task should be offloaded,
which is achieved by the cycle of generating labeled
samples and updating the parameters of DNNs.

3) We conduct comprehensive experiments in real-world
MEC environments to evaluate the proposed MR-
DRO approach, which achieves superior offloading
performance when compared with other offloading-
decision schemes. Moreover, it can make the DNNs
reach a state of convergence and significantly improve
the offloading accuracy, while being able to adapt fast
to new scenarios.

The remainder of this article is organized as follows. In
Section II, we discuss the related works. Section III first
develops the system model and then formulates the offloading-
decision problem. Section IV presents the details of the
proposed algorithm. Performance evaluation of MR-DRO is
discussed in Section V. In Section VI, we conclude this article
and point out several potential directions.

II. RELATED WORK

In recent years, a large number of offloading-decision
schemes have been proposed to maximize the offloading
performance in heterogeneous MEC and MCC environments,
which are mainly based on conventional offloading-decision
approaches and intelligent offloading-decision approaches as
listed in Table I.

A. Conventional Offloading-Decision Approaches

There are several studies dealing with the offloading
problem in the environment with poor network stability.
eTime [11] was a Lyapunov optimization-based method, which
can preload data when the network connection is poor, and
give priority to offloading delay-sensitive tasks in the case
of limited bandwidth. Thus, it can be applied to most appli-
cations while saving 25%–30% of energy consumption by
simulating actual offloading scenes. Li et al. [12] adopted the
Lyapunov optimization method to establish a queueing model
to simulate the offloading process and minimize the queue
length, so as to achieve a relatively low overall consumption of
offloading decisions. Haber et al. [13] transformed the original
decision-making issue into a nonconvex programming mathe-
matical problem by establishing an appropriate task offloading
mathematical model and then converted it into a series of
convex problems through a continuous convex approxima-
tion programming method. To achieve energy-efficient task
assignment when combing MEC offloading and Device-to-
Device (D2D) offloading, Yu et al. [14] proposed TA-MCTS,
a Monte Carlo tree search-based approach for solving the
optimal offloading-decision problem.

The computing tasks for specific IoT applications in a
heterogeneous MEC/MCC environment can also be viewed
as a workflow, so that offloading decisions can be made by
using graph theory, game theory, and genetic algorithm (GA).

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 07,2023 at 05:34:09 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: MR-DRO: FAST AND EFFICIENT TASK OFFLOADING ALGORITHM 3167

TABLE I
QUALITATIVE COMPARISON OF THE CURRENT LITERATURE

Wu et al. [15] transformed the offloading environment into
a weighted graph model and proposed the MCOP algorithm
based on the graph theory. Using this algorithm, they suc-
cessfully divided the task into the local part and the edge
part. Zhang and Wen [16] subdivided the tasks in MDs
and transformed the subdivided tasks into topological mod-
els in accordance with the logical relationship, and provided
offloading decisions, respectively, for scenes without offload-
ing restrictions and general offloading scenarios. Haghighi and
Moayedian [17] took time delay and energy consumption fac-
tors into consideration and proposed the LARAC algorithm
to find the shortest path in the graph-based model, by which
they find the near-optimal solution of the task offloading
decisions. Xu et al. [18] comprehensively considered the exe-
cution time and energy consumption for IoT devices in the
scene combining MEC and MCC. They represented the over-
all offloading scheme through an ordered array and iterate
the possible offloading solutions through nondominated sorting
GA III (NSGA-III), thus obtaining the near-optimal solution.
Li et al. [19] innovated on the basis of the Stalberg game
model and designed F-SGA and C-SGA algorithms specifi-
cally for delay-sensitive and compute-intensive applications,
respectively. When the model reaches the game equilibrium
point, the approximate optimal solution of the offloading
decision can be obtained.

The Markov decision process (MDP) is also a theoretical
tool widely used for offloading decision making. In the MEC
scenario, Alasmari et al. [20] proposed the offloading scheme
by applying the MDP, which improved the decision-making
level by more than 17.47%. Terefe et al. [21] proposed the
EMOP algorithm on the basis of MDP, and used discrete-
time Markov chains to represent the wireless channel of MDs.
This algorithm can solve the offloading decision problem
when there are multiple edge clouds that can be used for
offloading. In the MCC scenario, Wu and Wolter [22] estab-
lished a queueing model for the decision-making problem.
They represented the model delay by 2-D Markov chain and
generated the offloading decision by an M/G/1-FCFS queue
model.

Relying on a variety of conventional optimization methods,
we can generate proper offloading decisions, however, these
methods usually involve a large number of matrix operations
and gradient operations. It is known that the offloading-
decision problem is NP-hard, thereby brute force algorithms
are unsuitable for such problem, especially when the scale
of the problem is large, the time delay and energy consump-
tion caused by decision making will become unacceptable.
Therefore, we need to design an efficient offloading-decision
algorithm to replace conventional heuristic algorithms. It has
recently become one of the main research directions to pro-
pose an algorithm that can give offloading decisions in an
intelligent manner.

B. Intelligent Offloading-Decision Approaches

Due to the numerous advantages of deep learning, e.g.,
immediacy and portability, it has broad application prospects
in the field of edge computing. Therefore, many studies have
tried to integrate AI methods into MEC and MCC to make
offloading decisions [30].

Li et al. [23] used the deep learning method to tackle the
offloading-decision issue. They trained the DNN according
to the historical offloading decision data before making deci-
sions and also verified through examples that the offloading
decisions given by deep learning are better than conventional
optimization methods. Kang et al. [24] used eight different
mobile intelligent applications to verify the reliability of the
deep learning approach and proved that this scheme reduces
59.5% of energy consumption. In addition, Dab et al. [25]
proposed the QL-JTAR algorithm based on Q-learning. This
algorithm comprehensively considered the resource alloca-
tion problem and task offloading decision problem in edge
computing and proved that the offloading decisions obtained
through the algorithm have high accuracy. Yu et al. [26]
trained the neural network through deep imitation learning
and made decisions in MEC and MCC scenarios, thereby
improving the training speed of the model and accuracy of the
decision.
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Due to the particularity of task offloading in heteroge-
neous computing environments, the samples used for training
DNNs are always difficult to obtain, especially for large-
scale offloading-decision problems. To tackle this challenge,
Huang et al. [27] proposed a DDLO algorithm based on DRL,
through multiple parallel DNNs to train the model and update
the training data set. This algorithm can improve the precision
of the data set and update the parameters of DNNs simultane-
ously, thereby reducing the dependence on training samples.
Wu et al. [5] proposed a DDTO algorithm in a heterogeneous
MEC and MCC environment, where ES and CS can collabo-
rate in computing and proved that the error of the offloading
decision made by this algorithm can be controlled within 10%.

Although DNN can quickly generate offloading decisions,
when the number of users or tasks changes, the number of
nodes in the input layer and output layer of DNNs often can-
not be applied to the new environment so that DNNs are
required to be retrained. To tackle the aforementioned chal-
lenges, Qu et al. [28] proposed DMRO, a task offloading
algorithm based on deep meta-RL. When faced with a new
offloading environment, DMRO can generate appropriate ini-
tial parameters of DNNs, so as to significantly accelerate the
subsequent training speed and improve the portability of the
model. Wang et al. [29] proposed the MRLCO algorithm on
the basis of meta-RL, which reduces the amount of calculation
caused by the second-order gradient in model-agnostic meta-
learning (MAML) without significantly reducing the accuracy
of offloading decisions.

Most of the aforementioned work attempted to reduce the
system latency or energy consumption in MEC/MCC environ-
ments while neglecting the fast adaptability of task offloading
models. In this article, we concentrate on enhancing the robust-
ness and portability of the model, enabling edge computing
technology to be better applied in real life. We design an
efficient intelligent decision-making approach to generate a
near-optimal offloading decision with a small amount of cal-
culation. It serves as an approximation algorithm, improves
the speed of decision making, as well as reduces the waiting
time of MDs. Moreover, we can quickly and intelligently pro-
vide near-optimal offloading decisions when facing different
MEC scenarios.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first build the system model composed
of the local computing model, edge computing model, and
cloud computing model. Then, we formulate the task offload-
ing decision-making problem as an optimization problem.
For convenience, the major notations used in this article are
summarized in Table II.

A. System Model

As depicted in Fig. 1, we consider a heterogeneous collab-
orative edge/cloud computing environment, which integrates
MDs for local computing, ES for edge computing, and CS for
cloud computing. Without loss of generality, we denote the
set of MDs as N = {1, 2, . . . , N}, assuming that there are
N mobile users and the set of tasks as M = {1, 2, . . . , M},

TABLE II
IMPORTANT NOTATIONS USED IN THIS ARTICLE

Fig. 1. System model of task offloading in a heterogeneous edge/cloud
computing environment.

assuming that each MD has M tasks to be offloaded. Each
user may have multiple tasks, and each task can choose to be
executed locally or to be offloaded, either to the ES or the
CS for computing. The data size of the task to be offloaded
is often different, we assume that wnm is the amount of data
to be offloaded for tasknm, i.e., the mth task of the nth MD.

To clearly represent the offloading decision for each task, we
set a pair of indicators, namely, x(1)

nm ∈ {0, 1} and x(2)
nm ∈ {0, 1}.

For any tasknm, x(1)
nm is the indicator that decides whether to

offload or not, which is denoted as

x(1)
nm =

{
1, if tasknm is processed locally on MD
0, if tasknm is offloaded to the ES/CS

(1)

where x(1)
nm = 1 if tasknm is not offloaded and only executed

locally on the MD; otherwise, x(1)
nm = 0, if tasknm is offloaded

to the server.
In the same way, x(2)

nm decides where to offload, that is, either
to the ES or the CS, which is denoted as

x(2)
nm =

{
1, if tasknm is offloaded to the ES
0, if tasknm is offloaded to the CS

(2)
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where x(2)
nm = 1 only if tasknm will be offloaded to the ES;

otherwise, x(2)
nm = 0 only if it is offloaded to the CS.

Both response time and energy consumption are taken into
consideration during the offloading process with the combina-
tion of MEC and MCC. When a task is selected either to run
on an MD, offloaded to the ES or offloaded to the CS, the
offloading performance in terms of response time and energy
consumption corresponding to the aforementioned offloading
decisions is different. We will elaborate on the local computing
model, edge computing model, and cloud computing model,
respectively.

1) Local Computing Model: Once tasknm is chosen to be
executed locally on the MD, we have x(1)

nm = 1.
The response time required for calculating tasknm locally on

the MD can be described as

T local
nm = σwnm

fl
(3)

where fl is denoted as the computational capacity (i.e., CPU
cycles per second) of user n. It is assumed that the CPU needs
to run σ instructions to handle per unit of the task. Because
the number of instructions that a task needs to process will
not change whether it is in the MD, the ES, or the CS, the
coefficient σ also holds for the other two offloading cases.

It is easy to know that the energy required for computing
tasknm on the MD is calculated by

Elocal
nm = σεlwnm (4)

where we assume that each MD needs the average energy εl

to process an instruction.
Besides, the total response time and total energy consump-

tion by the nth user to perform on the MD can be calculated
as follows, respectively:

T local
n =

M∑
m=1

[
x(1)

nm · T local
nm

]
(5)

Elocal
n =

M∑
m=1

[
x(1)

nm · Elocal
nm

]
. (6)

2) Edge Computing Model: Once tasknm is chosen to be
offloaded to the ES, that is, x(1)

nm = 0 and x(2)
nm = 1. The task

transmission time for tasknm can be expressed as

T tran
nm = wnm

bn
(7)

where bn is the bandwidth between the nth MD and the ES.
When the task is offloaded to the ES or the CS, the offloaded

program and data do not need to be returned to the MDs
in the downlink, only the results are required. Thus, the
response time and energy consumption in the downlink are
much smaller than that of the uplink [31]. For simplicity, the
response time and energy consumption in the downlink can
be negligible. Therefore, the response time taken for tasknm

mainly includes the data transmission time and task execution
time, which can be calculated by

Tedge
nm = σwnm

fe
+ T tran

nm (8)

where fe is denoted as the computational capacity (i.e., CPU
cycles per second) of the ES.

The energy consumption when tasknm is offloaded to the ES
can be expressed as

Eedge
nm = σεewnm + etwnm (9)

where the energy consumed to transmit data of a unit size is
et and the average energy required by the ES to process an
instruction is εe.

As a consequence, the overall response time and energy
consumed by the nth user on offloading tasks to the ES can
be expressed as follows, respectively:

Tedge
n =

M∑
m=1

[(
1 − x(1)

nm

)
· x(2)

nm · Tenm

]
(10)

Eedge
n =

M∑
m=1

[(
1 − x(1)

nm

)
· x(2)

nm · Eedge
nm

]
. (11)

3) Cloud Computing Model: Once tasknm is selected to be
offloaded to the CS, that is x(1)

nm = 0 and x(2)
nm = 0. Similarly,

the response time and energy consumption when tasknm is
offloaded to the CS can be expressed as

Tcloud
nm = σwnm

fc
+ wnm

bn
(12)

Ecloud
nm = σεcwnm + etwnm (13)

where fc denotes the computational capacity (i.e., CPU cycles
per second) of the CS and εe denotes the average energy
required by the CS to process an instruction.

Generally speaking, due to the elasticity of computing
resources, CS has the strongest computational capacity, fol-
lowed by ES, and MD is the weakest because of its constrained
size. Therefore, we have fc > fe > fl. In addition, due to
differences in CPU architecture and cooling systems, the com-
putational costs of EC and CS are much lower than that of
MDs. What is more, due to the higher integration of central
cloud equipment, its cost is even lower than that of edge cloud.
Thus, we generally have εl > εe > εc.

Let the total response time and total energy consumption of
the nth user on offloading tasks to the CS be denoted as Tcn

and Ecn, respectively, which can be expressed as

Tcloud
n =

M∑
m=1

[(
1 − x(1)

nm

)
·
(

1 − x(2)
nm

)
· Tcloud

nm

]
(14)

Ecloud
n =

M∑
m=1

[(
1 − x(1)

nm

)
·
(

1 − x(2)
nm

)
· Ecloud

nm

]
. (15)

B. Problem Formulation

Since the MDs do not affect the process of data transmission
while computing, and the computing of the ES and the CS can
also be carried out simultaneously, the overall response time
taken by each user is the maximum of each MD, which can
be expressed as

T total =
N∑

n=1

max
{

T local
n , Tedge

n , Tcloud
n

}
. (16)
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In addition, the overall energy consumption of the user is
the sum of the energy consumed to process each task, that is

Etotal =
N∑

n=1

(
Elocal

n + Eedge
n + Ecloud

n

)

=
N∑

n=1

M∑
m=1

[(
x(1)

nmElocal
nm +

(
1 − x(1)

nm

)
x(2)

nmEedge
nm

+
(

1 − x(1)
nm

)(
1 − x(2)

nm

)
Ecloud

nm

)]
. (17)

According to the above definitions, for any tasknm, the
weighted response time and energy consumption during the
offloading process are closely related to the amount of data and
the choice of offloading decisions, which can be formulated as

S(W, X) = αEtotal + (1 − α)T total (18)

where W = {wnm|n ∈ N ; m ∈ M}, X = {x(1)
nm, x(2)

nm|n ∈
N ; m ∈ M}, and α ∈ [0, 1] is a weighting coefficient to
balance the importance of response time and energy con-
sumption. For instance, when α > 0.5, it indicates that
energy consumption is more important than response time.
Therefore, the optimal offloading decision-making problem
can be transformed into an optimization problem P1

(P1) min
X

: S(W, X) = αEtotal + (1 − α)T total (19)

s.t. : x(1)
nm, x(2)

nm ∈ {0, 1} (20)

where the optimization problem P1 is a high-dimensional
integer programming problem. It is easy to know that the
number of possible offloading decisions is 3N∗N . When the
number of MDs and the number of tasks increase, the feasi-
ble offloading decision state space grows exponentially, and
as a result, heuristic decision algorithms will inevitably run
slowly. Although the conventional optimization methods can
theoretically obtain the globally optimal solution for the task
offloading decision problem, it is difficult for them to provide
the optimal offloading decision in a short time. In order to
break the curse of high dimensionality and solve the problem
of P1 efficiently, we develop a deep-learning-based approach
for finding the optimal offloading decisions.

IV. MR-DRO ALGORITHM

In order to quickly and flexibly find the optimal offloading
decision from a dynamic IoT environment, we design a novel
MR-DRO algorithm, which aggregates the rapid environment
learning ability of meta-RL, and the perception and decision-
making ability of DRL.

A. MR-DRO Framework

Accordingly, the overall framework of the proposed MR-
DRO algorithm can be divided into two parts, namely, the
meta-RL model and the DRL model, as shown in Fig. 2.

Before making the offloading decision, MDs first pro-
vide information about tasks. At the same time, MDs collect
offloading environment information to guide the decision-
making process.

Fig. 2. Framework of the proposed MR-DRO algorithm.

Although the meta-RL model is not responsible for the
decision-making process, it can generate appropriate initial
training parameters in a relatively short time according to
the existing training experience, thereby shortening the time
required for training the DNN. In this framework, the meta-RL
model reads the offloading environment information pro-
vided by MDs, determines the input layer, output layer, and
other structures of DNNs, and gives the initial parameters of
DNNs in the DRL model. Once the offloading environment
information changes, e.g., network conditions, edge comput-
ing resources, and cloud computing resources, the meta-RL
model can quickly provide appropriate initial training param-
eters and accelerate the training process of the DRL model.
Therefore, the rationality of using meta-RL is to improve the
generalization ability of the model.

In the case when the training samples are insufficient, DRL
has a good performance in the application of multiclassifica-
tion problems. In this framework, the DRL model reads the
task information, initializes several parallel DNNs with the
initial parameters provided by the meta-RL model, and then
transforms the unsupervised learning process into a supervised
learning process through the cyclic process of training and
updating the data set. By doing this, we can improve the accu-
racy of the data set and update the parameters of DNNs and
further provide a more accurate offloading decision. The spe-
cific algorithm flow and framework of the meta-RL model
and DRL model will be further elaborated in the following
sections.

B. Meta-RL Model

Different from the mainstream conventional machine learn-
ing algorithms, e.g., federated learning and reinforcement
learning, the metadata set used by meta-RL is a series of
metadata, which is also known as training tasks. Each train-
ing task contains the training set, test set, and training results
during training. By learning a large number of training tasks,
the learning ability of meta reinforcement neural network is
continuously improved, so that when facing new tasks, it can
complete the learning process faster and increase the training
speed.
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Fig. 3. Procedure of the meta-RL model.

Various types of meta-RL algorithms have been proposed,
e.g., MAML, Reptile, and LSTM-based meta-learning
algorithms. Although using MAML to train a meta-RL
network can effectively reduce the training steps of a decision
model, it involves the calculation of the second-order gradient.
For large-scale issues, e.g., offloading decisions in heteroge-
neous edge/cloud computing environments, it will bring more
computational costs, which severely affects the portability of
the overall model and the level of offloading decision mak-
ing. On the contrary, by increasing the training steps, the
Reptile algorithm omits the process of calculating the second-
order gradient and significantly reduces the training cost of
the model. To the best of our knowledge, MR-DRO is the
first work to formally adopt the Reptile algorithm for making
offloading decisions in heterogeneous edge/cloud computing
environments.

The specific process of the meta-RL model is shown
in Fig. 3. First, according to the offloading environmental
information provided by mobile terminal users, the neural
network structure of the input and output layers of the meta-
RL model can be determined. The weight parameters β0 are
randomly initialized and copied to record the starting point of
training β∗

0 . Then, we randomly select p pieces of metadata
from the metadata set to form the training set and the new
weight parameters β1 are obtained after the training set is dis-
turbed. We further calculate the difference β0 − β1 from that.
Then, taking the difference value as the descending direction,
the weight of neural network β∗

1 for the learning rate Mlr can
be updated as follows:

β∗
1 = β∗

0 + Mlr
(
β1 − β∗

0

)
. (21)

Finally, repeat the above operations until the number of
steps is reached. The parameters β∗

n obtained from the train-
ing can be used as the initial parameters ϕ∗

n of the DNN. We

Algorithm 1 Meta-RL-Based Algorithm
Input: Metadata
Output: Initial parameter ϕ

1: for i = 1, 2, 3, · · · , K do
2: Initialize the ith DNN with random parameter βi

0
3: Replicate the parameter as β∗

0
4: for j = 1, 2, 3, · · · , n do
5: Randomly choose a batch of tasks
6: Train the ith DNN and update the parameter βi

j−1 as βi
j

7: Calculate the meta parameter β∗
j

8: end for
9: Store β∗

n as initial parameter ϕ∗
i

10: end for
11: return Initial DNNs parameter ϕ

repeat the Reptile process K times according to the number
of parallel DNNs in the DRL model.

The algorithmic process of the proposed meta-RL algorithm
is as described in Algorithm 1. First, we use the offloading
environment information collected by MDs to decide the struc-
ture of each DNN. We randomly initialize the DNN (line 2).
The DNN was trained for n steps using metadata, which is
generated by a greedy algorithm (line 6). After training, we
store the parameters of DNN as the initial parameters of the
DRL model (line 9). Then, we repeat the whole process for
K times to generate K different initial parameters.

C. DRL Model

Due to the particularity of edge computing and cloud com-
puting, the training samples are generally rare or insufficient,
which makes it difficult to apply the conventional machine
learning algorithms. The DRL model can better solve the
problem of data shortage for training, so it has become a
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Fig. 4. Procedure of the DRL model.

common method in the field of edge computing. The procedure
of the DRL model is demonstrated in Fig. 4.

1) Decision Generation: The DRL model contains K par-
allel DNNs as the core, the input of each DNN is the size
information about the tasks and the output is the offloading
decision of each task. We use a pair of decision indicators
{x(1)

nm, x(2)
nm} to represent the offloading scheme of tasknm. When

initializing the model, DNN parameters � = {ϕ1, ϕ2, . . . , ϕk}
are first initialized according to the initialization parameter
set �∗ = {ϕ∗

1 , ϕ∗
2 , . . . , ϕ∗

n } provided by the meta-RL model.
These K DNNs have the same number of layers, nodes, and
hyperparameter settings. However, due to the different initial-
ization parameters, the weight parameters of each DNN are
also different. Therefore, when faced with the same input, the
outputs of these K DNNs are also different.

A group of task information W to be offloaded is generated
randomly, and the size of each task should conform to the size
distribution of tasks in real-world IoT environments. The task
information of this group is input into K parallel DNNs for
calculation, so that the K DNNs give their respective outputs,
that is, K possible offloading schemes {X1, X2, . . . , XK} are
obtained. The offloading performance in terms of response
time and energy consumption of each offloading scheme can
be calculated by substituting each offloading scheme Xi into
the cost function S(W, X). We compare the cost of all schemes
and choose the offloading scheme X∗ with the least total cost
as the optimal one corresponding to this group of tasks.

Because the DNN has not been trained after initialization,
there is still a certain gap between the decision given in the
above way and the globally optimal decision. However, this
decision is the one with the best performance among the
K group decisions generated by the DNN. Thus, it can be
known theoretically that if the sample composed of the task
information and decisions of this group is used to train the

other DNN groups, the updated weights should have a positive
effect on reducing the total cost of the decision. Therefore,
task information W, decision information X∗, and their corre-
sponding total cost S∗ are stored in the data set. Then, we set
the number of samples in the data set and repeat the above
process. Multiple groups of samples are randomly generated
and stored in the data set until the upper limit of the data set is
reached, which can be used as the training samples for initial
training.

2) Model Training: After the data set is generated, K par-
allel DNNS are trained. Since all the DNNs share the same
data set, Q samples are randomly selected from the data set
as the training set during the training process of each neural
network, and the order of the training set is disturbed to train
the DNN.

To determine the reward value of the DRL model, we input
the task information of the training set into K DNNs and gen-
erate offloading decisions for each group of tasks. Then, we
can derive the cost of these decisions with the help of the cost
function S(W, X). Then, the reward value can be calculated
through the difference between the newly derived cost and the
cost in the training set.

Since the output of DNNs is not always an integer, and the
decision indicator is a parameter with a value of 0 or 1, the
mean square error (MSE) is adopted to define the distance
between the output of DNNs and the offloading scheme. The
MSE formula can be expressed as

MSE = 1

N

N∑
t=1

||logitst − outputst)||2. (22)

For the results output from the output layers of DNNs,
we take the offloading scheme closest to it as the offload-
ing scheme of its output. Because each decision parameter
can only take a value of 0 or 1, it is easy to know the output
of each output layer node through the definition of MSE. If
outputs∗ > 1/2, then logits∗ = 1, if outputs∗ < 1/2, then
logits∗ = 0.

We adopt the cross-entropy expression as the loss function
of the neural network. According to the loss function, the gap
between decisions generated by DNNs and decisions given
by the data can be calculated. We can use it to update the
parameters of DNNs. The cross-entropy is minimized by the
method based on gradient descent, which can be specifically
expressed as

L(ϕi) = −XT log f ϕi
(W) − (1 − X)T log

(
1 − fϕi(W)

)
(23)

where ϕi is the parameter of the ith DNN, and fϕi is its
parameter expression. After training the DNNs in this way,
the decision-making level is improved. In addition, the model
can generate new samples according to the sample generation
method described in the previous part, and update part of the
old samples in the original data set with the new samples to
obtain a more accurate data set. Using this method, we can
continuously improve the accuracy of the data set and improve
the decision-making level of the DNNs.

The algorithmic process of the proposed DRL algorithm [5]
is as described in Algorithm 2. First, we initialize K DNNs
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Algorithm 2 DRL-Based Dynamic Offloading Algorithm
Input: Workloads W
Output: Optimal offloading decisions

1: Initialization: Initialize K DNNs with the parameter set �;
Empty database

2: for j = 1, 2, 3, · · · , N do
3: Randomly generate a group of task information Wi
4: for i = 1, 2, 3, · · · , K do
5: Replicate the information Wi to the ith DNN
6: Generate the ith offloading decision candidate Xi from the

ith DNN
7: end for
8: Select offloading decision X∗

i by minimizing S(Wi, Xi)
9: Calculate S(Wi, X∗

i ) as S∗
10: if database is not full then
11: Store (Wi, X∗

i , S∗) into database
12: else
13: Discard the oldest sample and save the new one
14: Randomly choose K batches of samples from database
15: Train each DNN using a selected batch
16: end if
17: end for
18: for i = 1, 2, 3, · · · , K do
19: Replicate the information W to the ith DNN
20: Generate the ith offloading decision candidate Xi from the ith

DNN
21: end for
22: Select offloading decision X∗

i by minimizing S(W, Xi)
23: return Optimal offloading decisions X∗

i

with the parameter set generated by the meta-RL model
(line 1). We train the model for N steps. During each step, if
the database is not full, we store the newly generated sample
as train data (line 10). If the database is full, we train each
DNN with a batch of samples randomly selected from the
database. Then, we use the new sample to replace the oldest
sample to increase the accuracy of the database (line 12). After
the model is trained, we replicate the workload to each DNN
and generate several offloading-decision candidates (line 20).
Then, we output the decision with the best performance as
the final decision. If the workload is changed, we do not need
to train the whole model again. It can still solve the problem
properly.

D. Testing

First, to verify that K parallel DNNs in the DRL model will
converge after finite training steps, we need to prove that the
decision level of each DNN basically remains unchanged. We
define Q1 as the convergence rate of the model, which can be
expressed as

Q1 = 1

q

q∑
j=1

min
(

Sj, S∗
j

)

max
(

Sj, S∗
j

) (24)

where q is the number of samples contained in the data
set acquired for training each DNN, S∗

j is the total cost
of the offloading scheme recorded in the jth sample, and
Sj is the new total cost of the optimal offloading decision
obtained from the model. When the decision level of the
DRL model is basically unchanged, the total cost before and

after training should be basically the same. In other words,
if ([min(Sj, S∗

j )]/[max(Sj, S∗
j )]) is closer to 1, we can say

that the model converges much better. Thus, the convergence
performance of the model can be known by the values of Q1
during each training.

In addition, the convergence of the model does not guarantee
its decision-making accuracy. The model itself may converge
to a locally optimal solution in the case when the weight
parameters remain unchanged. In order to intuitively measure
the gap between the offloading decision given by the model
and the globally optimal offloading decision, we randomly
generate task groups and calculate the corresponding globally
optimal offloading decision of each task group by means of
traversal. Then, the minimum total cost is calculated, and the
r groups of samples from a new data set called the standard
set, which is used to test the offloading decision level of the
model. We define Q2 as the accuracy rate of the model, which
is derived as

Q2 = 1

r

r∑
t=1

Soptimal
t

Stest
t

(25)

where Soptimal
t and Stest

t are the total costs of the globally
optimal offloading decision of the tth group of tasks, and the
offloading decision given by the model, respectively. It is easy
to know that Stest

t ≥ Soptimal
t . If the offloading decision given by

the model is closer to the globally optimal offloading decision,
then Q2 is closer to 1. Therefore, when the model is trained
to convergence, the offloading decision accuracy of the model
can be known only by calculating the value of Q2.

Moreover, the decision making is also related to the hyper-
parameters of the model itself, e.g., the number of parallel
DNNs and the learning rate of the model. In addition, the size
of the data set also affects the convergence of the model.

V. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of the proposed
MR-DRO algorithm through numerical simulations under dif-
ferent edge computing scenarios. Besides, we also specifically
compare the proposed scheme with several different offloading
strategies.

A. Parameter Settings

Considering a heterogeneous edge/cloud environment con-
sisting of three MDs, one ES, and one CS, where each MD has
three tasks. We assume that the size of each task is randomly
distributed between 10 and 30 MB. Additionally, we assume
that the CPU needs to execute 1000 instructions when cal-
culating each unit of the task, the CPUs in MDs, ES, and
CS consume 3.0, 1.5, and 1.0 mJ to run each instruction.
Also, we set the energy consumed to transmit a unit of data
is 0.1 mJ. Referring to the computing capacities in the actual
situation, we set the clock frequencies of MDs, ES, and CS
as fl = 100 MHz, fe = 600 MHz, and fc = 1000 MHz,
respectively. Besides, we set the weighting parameter α = 0.5,
which means that the response time is as important as energy
consumption. Through pretraining and comparison of exist-
ing research results, we set each DNN in the DRL model
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TABLE III
EVALUATION PARAMETER

Fig. 5. Impact of the number of DNNs.

to include two hidden layers. The details of our parameter
settings are shown in Table III.

B. Convergence Performance

In this part, the convergence performance of MR-DRO is
first illustrated. We will separately analyze the impact of dif-
ferent numbers of DNNs, sizes of the database, and learning
rates on convergence performance.

1) Impact of Number of DNNs: We adjust the number of
DNNs K from 1 to 10 and train each model for 20 000 steps.
During the training of each neural network, we randomly select
128 samples from the data set as the training set. As shown
in Fig. 5, it can be seen that when K = 1, the model cannot
converge through the training process since its Q1 value does
not converge to 1 as the training steps increases. As the num-
ber of DNNs increases, the convergence performance of our
model will be improved. Considering the energy consump-
tion and response time spent during the training model, we
choose N = 8 as a compromise between total consumption
and convergence performance.

2) Impact of Learning Rate: The learning rate is also
an essential hyperparameter that affects the decision-making
model. If the learning rate is too large, the neural network will
get more exploration results and it is more difficult to reach the
convergence, so that the optimal solution cannot be accurately
obtained. On the contrary, when the learning rate is too small,
the convergence speed will be slowed down to a certain extent

Fig. 6. Impact of the learning rate.

Fig. 7. Impact of the size of database.

and the neural network may treat the local optimal solution as
the globally optimal solution, that is, it is easier to fall into
the local optimal. From Fig. 6, we can find that the model
achieves the best performance when the learning rate is 0.01.

3) Impact of Size of Database: The size of the database
also affects the performance of the model. When the size of
the database is larger, the old samples in the database cannot be
replaced with newly generated and more accurate samples in
time; on the contrary, when the sale of the database is smaller,
the DNN cannot be trained well. As depicted in Fig. 7, we test
different sizes of database and find out that the model achieves
the best performance when it equals 1400. In addition, it can
be seen that MR-MRO improves the convergence speed even
when the database is small in scale.

C. Accuracy Performance

Similar to the model convergence rate, the model accuracy
rate is also a critical indicator for measuring the offloading
ability of the algorithm. When the model converges, it can
only indicate that the parameters of the model have reached a
relatively stable state after training. Even if the training step
length is extended, the offloading decision will not change
greatly. However, the decision may not be the globally optimal
solution for the offloading scheme. As a result, we need to
calculate the value of Q2 to accurately represent the specific
decision-making level of the algorithm.
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Fig. 8. Impact of the number of DNNs on Q2.

Fig. 9. Impact of the learning rate on Q2.

To calculate the value of Q2, we randomly generate 512
groups of tasks and calculate the globally optimal offloading
decision for each sample through the cost function S(W, X).
Then we get a test data set, which is known as the standard
set. When the model reaches convergence after 20 000 steps
of training, we input the sample of each group of tasks into
our model, and generate the offloading decision, respectively.
Using the optimal offloading decisions and the offloading
decisions generated by our algorithm, we calculate the value
of Q2. By comparing the changes of Q2 value under different
variables, the following conclusions can be drawn.

1) Impact of Number of DNNs: As shown in Fig. 8, when
the number of DNNs increases, the accuracy of the model will
also increase. When K > 7, the accuracy of the model reaches
the highest point, and its Q2 value basically remains at 0.94,
which means that the error between it and the globally optimal
solution is about 5%.

2) Impact of Learning Rate: It can be seen from Fig. 9 that
when the learning rate is 0.1, the model accuracy is relatively
low, whose Q2 value is less than 0.8. In particular, when the
learning rate is 0.01, the accuracy of the model is significantly
improved. In addition, considering that a low learning rate will
reduce the training speed of DNNS and cause unnecessary
costs, the optimal learning rate is chosen as 0.01.

3) Impact of Size of Database: It can be seen from Fig. 10
that the size of the database has a relatively small impact on the
model. When the size of the database is between 500 and 4800,
the accuracy of the model is higher than 0.9. In particular,

Fig. 10. Impact of the size of database on Q2.

Fig. 11. Initial accuracy under different learning rates.

when the number of samples is 1000–1400, the model has the
best accuracy performance.

D. Meta-RL Performance

In this section, we specifically discuss the performance of
meta-RL models. First, we generate a metadata set based on a
greedy algorithm. The metadata set contains 10 000 metadata,
where 50 metadata are randomly selected as the training set
for each step of training. We set the default training step length
to 2000. Then, we use the same method to generate a standard
set, which is composed of 512 groups of samples. After setting
the learning rate of meta-RL to different values, we test the
initial accuracy Q2 of the DRL model initialized by meta-RL
without training. As depicted in Fig. 11, when the learning
rate is set to 0.01–0.05, the initial accuracy performance is
the best.

In the above experiment, we set the learning rate to 0.01,
and only change the number of DNNs in the model. Before
performing the meta-RL algorithm, we first randomly initialize
the neural network parameters and check the value of Q2 as
the initial training accuracy. After that, every 500 steps of
training, we test the value of Q2 of the model parameters.

Since the initialization is random and the training samples
are randomly selected, the accuracy of the model will fluctuate
when the training steps are not enough. Therefore, we take the
average of the accuracy of multiple tests as the final result. As
shown in Fig. 12, when the meta-RL model is not trained, the
accuracy of the randomly initialized model is low, especially
when the number of DNNs is small, the accuracy is even as
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Fig. 12. Impact of the number of DNNs.

Fig. 13. Comparison with different initialization methods.

low as about 20%. Using a few hundred steps of meta-RL, we
can greatly improve the initial decision accuracy of the model
to more than 50% and speed up the training process of the
DRL model to a large extent.

After that, we initialize the DRL model through the meta-
RL model and random initialization, respectively. Then, we
do the subsequent training steps, and after each step of train-
ing, we test the value of Q2. It can be observed from Fig. 13
that when the decision-making model does not go through the
meta-RL model, random initialization will lead to low ini-
tial accuracy, thereby more rounds of training are required.
After meta-RL, the initial parameters provided by it are used
to initialize the DRL model, and its initial accuracy is greatly
improved. Therefore, the steps of subsequent training can
be greatly reduced and the portability of the model can be
improved. At the same time, by separately calculating the
time used by the meta-RL model and the DRL model, it can
be seen that the training process of the meta-RL model is
extremely short. Therefore, the meta-RL model will not bring
high training costs to the whole system.

E. Performance Comparison

1) Local-Only No Offloading Scheme: In this method, each
mobile user chooses to execute its task locally on
the MD.

TABLE IV
COMPARISON OF DIFFERENT SCHEMES

2) ES-Only Full Offloading Scheme: In this method, all
computing tasks are fully offloaded to the ES for
execution.

3) CS-Only Full Offloading Scheme: In this method, all
computing tasks are fully offloaded to the CS for
execution.

4) Local and ES Partial Offloading Scheme: In this method,
some tasks are processed locally on the MDs, while
some of them are offloaded to the ES for execution.

5) Local and CS Partial Offloading Scheme: In this method,
some tasks are processed locally on the MDs, while
some of them are offloaded to the CS for execution.

6) Genetic Partial Offloading Scheme [18]: In this method,
a GA is adopted for finding near-optimal offloading
decisions over the MDs, the ES, and the CS.

7) MR-DRO Partial Offloading Scheme: In this method,
we apply the proposed MR-DRO algorithm to gener-
ate near-optimal offloading decisions over the MDs, the
ES, and the CS.

8) Exhaustive Search Scheme: We exhaustively search the
optimal one among all feasible offloading decisions over
the MDs, the ES, and the CS.

Based on the above discussion, we set the number of DNNs
as 8, the size of the database as 1400, and the learning rate
as 0.01. In the meanwhile, in order to intuitively express the
practical significance of this method, we calculate the globally
optimal offloading decision for each group of samples under
several offloading schemes. Then, we calculate the total con-
sumption caused by each offloading scheme, by which we can
derive the value of Q2.

As depicted in Table IV, the proposed MR-DRO scheme out-
performs other offloading-decision approaches significantly.
For example, the Q2 value of the Local-only scheme is only
about 0.14 since it has to process a large number of compute-
intensive tasks locally on MDs, while the Q2 value of the
MR-DRO scheme approaches one. This is because unlike
the Local-only, ES-only, and CS-only schemes, the MR-DRO
scheme dynamically offloads tasks according to the heteroge-
neous edge/cloud computing environment. Compared to the
exhaustive search scheme, the designed MR-DRO scheme
is able to obtain sufficiently accurate for maximizing the
offloading performance, without a huge computation cost.
Compared to the Local-only scheme, our scheme reduces the
total consumption by 85.1%. Also, this method can reduce the
total consumption by 22% on average compared with other
methods.
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Fig. 14. Comparison with several offloading schemes under different
weighting parameters.

Furthermore, in order to verify the performance of the
proposed MR-DRO algorithm, we use a GA to generate
offloading decisions in the same offloading scenario. The GA
algorithm generally involves multiple steps, such as encod-
ing, fitness functions, initialization and selection, crossover
and mutation, and local search, which will affect the effi-
ciency of problem solving [32]. From Table IV and Fig. 14, the
simulation results demonstrate that our MR-DRO algorithm is
more reliable and achieves superior performance under dif-
ferent weighting parameters. In addition, the computational
complexity of GA varies with model complexity, which is not
suitable for large-scale edge/cloud computing scenarios.

In order to further ensure the decision-making level of our
algorithm, we adjust the weighting parameter α. As shown
in Fig. 14, regardless of the different importance of response
time and energy consumption that mobile users are concerned
about, the MR-DRO scheme can always achieve the best
offloading performance in terms of response time and energy
consumption. Therefore, it can achieve near-optimal offload-
ing decisions in edge and cloud computing heterogeneous
environments.

VI. CONCLUSION AND FUTURE WORK

In this article, we have proposed the MR-DRO algorithm to
obtain near-optimal offloading decisions in a heterogeneous
edge/cloud computing environment. The MR-DRO frame-
work includes a parameter-initialing model based on meta-RL,
and a decision-making model based on DRL. The former
generates the initial parameters for training, improves the
accuracy of the decision-making model, and greatly increases
the portability of the model. It improves the performance of
the algorithm when handling sophisticated offloading scenar-
ios by adopting the Reptile algorithm. The latter one applies
multiple parallel DNNs to determine when and where each
task should be offloaded, and the offloading performance in
terms of response time and energy consumption is significantly
improved compared with many baseline methods.

Even though this study only considered a simple offloading
scenario with only one ES and one CS, MR-DRO can be easily
expanded and generates offloading decisions for complicated

real-world scenarios with multiple ESs or multiple clouds. In
the meantime, when the total bandwidth is fixed and allocat-
able, the optimal bandwidth allocation problem can also be
treated as a convex problem and solved easily [33]. In future
work, we intend to conduct preliminary meta-reinforcement
on the network parameters of DNNs in a variety of ways
under various constraints and feed the meta-RL model directly
into the decision generation model to further improve the
portability of the model.
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