
IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 9, SEPTEMBER 2020 8099

Collaborate Edge and Cloud Computing With
Distributed Deep Learning for Smart City

Internet of Things
Huaming Wu , Member, IEEE, Ziru Zhang, Chang Guan,

Katinka Wolter , Associate Member, IEEE, and Minxian Xu, Member, IEEE

Abstract—City Internet-of-Things (IoT) applications are
becoming increasingly complicated and thus require large
amounts of computational resources and strict latency require-
ments. Mobile cloud computing (MCC) is an effective way to
alleviate the limitation of computation capacity by offloading
complex tasks from mobile devices (MDs) to central clouds.
Besides, mobile-edge computing (MEC) is a promising tech-
nology to reduce latency during data transmission and save
energy by providing services in a timely manner. However, it
is still difficult to solve the task offloading challenges in het-
erogeneous cloud computing environments, where edge clouds
and central clouds work collaboratively to satisfy the require-
ments of city IoT applications. In this article, we consider the
heterogeneity of edge and central cloud servers in the offloading
destination selection. To jointly optimize the system utility and
the bandwidth allocation for each MD, we establish a hybrid
offloading model, including the collaboration of MCC and MEC.
A distributed deep learning-driven task offloading (DDTO) algo-
rithm is proposed to generate near-optimal offloading decisions
over the MDs, edge cloud server, and central cloud server.
Experimental results demonstrate the accuracy of the DDTO
algorithm, which can effectively and efficiently generate near-
optimal offloading decisions in the edge and cloud computing
environments. Furthermore, it achieves high performance and
greatly reduces the computational complexity when compared
with other offloading schemes that neglect the collaboration of
heterogeneous clouds. More precisely, the DDTO scheme can
improve computational performance by 63%, compared with the
local-only scheme.

Index Terms—City Internet of Things (IoT), distributed deep
learning, mobile cloud computing (MCC), mobile-edge computing
(MEC), task offloading.
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I. INTRODUCTION

W ITH the fast development of mobile networks and the
widespread application of city Internet of Things (IoT)

in various fields (e.g., smart transportation, smart home, and
smart manufacturing), the demand for mobile devices (MDs)
is increasing drastically. However, MDs, such as smartphones,
tablet computers, unmanned aerial vehicles (UAVs), and wear-
able devices, are usually constrained by limited resources,
e.g., CPU computing power, storage space, energy capacity,
and environmental awareness. Complex computing tasks, e.g.,
optical character recognition (OCR), face recognition (FR),
and augmented reality (AR), are inefficient to be handled
locally. Furthermore, a diversity of city IoT applications, such
as delay-sensitive and delay-tolerant applications can cause a
variety of different computation and communication costs.

To alleviate the limitations of mobile computation capac-
ity, one effective way is to offload complex compute tasks
from the MDs to a central cloud. By taking advantage of
the rich virtual resources and the fast processing speed of the
cloud servers, we can lower the pressure on MDs in handling
tasks locally. Considerable attention has been paid to mobile
cloud computing (MCC), which has emerged as a solution to
offload task workloads to computation-rich cloud data cen-
ters. However, due to the limitations of the centralized service
mode and access bandwidth, this approach still faces many
challenges, such as high latency, low bandwidth, and network
congestion.

Always offloading the tasks to the central cloud server,
however, is not suitable, especially for those tasks that are
data concentrated and latency sensitive [1]. Recently, mobile-
edge computing (MEC) has emerged as a novel computing
paradigm that harnesses computing resources in the prox-
imity of IoT devices. It has attracted extensive interest [2].
In MEC, IoT devices are connected to edge servers instead
of directly to cloud servers. Around 29 billion IoT devices
are estimated to be connected to the Internet by 2022 [3].
Due to their proximity to mobile users, the communication
cost for task offloading will become very small, which can
greatly reduce the latency of network operations and service
delivery, and further meet the requirements of the ultrahigh
bandwidth and ultralow latency of future networks [4], [5].
However, the computing power of edge cloud servers is rela-
tively low and cannot efficiently satisfy the requirements of the
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city IoT applications while central cloud servers have sufficient
computing power.

To better serve IoT users with diverse requirements, het-
erogeneous clouds composed of edge clouds and central
clouds should be jointly exploited to meet stringent delay
requirements. This will make task execution faster, cheaper,
and more stable. However, if all computing tasks are only
offloaded to the edge or central cloud server, the wireless
link between the IoT devices and the MCC or MEC servers
can be congested and the latency of the computation can
be unacceptable. In fact, MCC and MEC can cooperate in
terms of computing, storage, and communication facilities
since they are complementary to each other. To reduce the
overall cost of delay and energy consumption, how to make
real-time offloading decisions becomes the most significant
challenge.

Due to the rapid changes in channel conditions, the number
of users and other system parameters, offloading decisions and
resource allocation need to be completed within a few millisec-
onds. In practical scenarios, however, large-scale offloading
decision making is often involved since the total number of
possible decisions increases exponentially with the number of
users and tasks, and it is very difficult to enumerate all possi-
ble decisions. Conventional task offloading techniques usually
apply some heuristic algorithms, which involve difficult to
solve and complex problems that require a large amount of
computation, and additional computation is also needed to
execute the offloading decisions. In addition, the best solution
can usually not be calculated in the face of complex work-
flows with correlations and only local optimal solutions can
be given. Considering the absence of the optimal decisions
for each task workload of the users, deep learning becomes a
promising method due to its ability to provide solutions based
on labeled data. Deep learning-driven approaches can facilitate
offloading decision making, dynamic resource allocation, and
content caching as they benefit from the growth in volumes of
communication and computation for emerging city IoT appli-
cations. However, how to customize deep learning techniques
for task offloading in IoT is still unknown.

To minimize the weighted sum of the task completion delay
and energy consumption while maintaining the Quality of
Service (QoS) for MDs, more intelligent technologies and
effective parallel algorithms are required to address such
complicated offloading scenarios limited by high dimension-
ality. In this article, the motivation of designing a distributed
deep learning-driven task offloading (DDTO) algorithm is to
find a way to proceed with optimal learning in the MEC
and MCC heterogeneous environments and to further solve
computationally expensive problems in offloading decision
making. Considering the characteristics of the abundant com-
puting resources in MCC and the low transmission delay in
MEC comprehensively, we integrate MCC and MEC for task
offloading.

The contributions of this article can be summarized as
follows.

1) We formalize the MCC and MEC hybrid task placement
problem as a multiobjective optimization problem. To
jointly minimize the system utility and the bandwidth

allocation for each MD, we propose an effective and
efficient offloading framework with intelligent decision-
making capabilities.

2) We design a DDTO algorithm, where multiple parallel
deep neural networks (DNNs) are adopted to effectively
and efficiently generate offloading decisions over the
MDs, edge cloud server, and central cloud server.

3) We conduct experiments in distinct situations to evaluate
the effectiveness of DDTO. When compared with sev-
eral offloading schemes without the cooperation of MEC
and MCC, our proposed DDTO algorithm can achieve
superior performance.

The remainder of this article is organized as follows. In
Section II, we review the related work. The system model
and problem formulation are described in Section III. The
proposed algorithm based on deep learning to generate the
optimal binary offloading decisions is presented in Section IV.
The numerical and comparison results are shown in Section V.
Finally, this article is concluded in Section VI.

II. RELATED WORK

MCC and MEC have become important solutions to sat-
isfy the requirements of applications running on IoT devices,
especially for latency-sensitive applications and those running
on energy-constrained IoT devices. A significant number of
offloading decision schemes in MCC and MEC are provided
in the literature, which can be classified as follows.

A. Markov-Based Offloading Decisions

The Markov decision process is a well-known discrete-time
mathematical framework applied for modeling decision mak-
ing with uncertainty. It models a system based on Markov
chains during the time which experiences the transition from
one state to another according to certain probabilistic rules.

Numerous stochastic offloading schemes via modeling the
task offloading procedure as Markov decision processes have
been proposed in the literature to help them in making bet-
ter offloading decisions [6]. Several queueing models were
applied in [7] and [8] to mitigate the weighted sum of power
usage and performance expressed in different metrics. Various
offloading decision policies have been taken into account,
where arriving tasks are either processed locally in the MDs
or offloaded to the remote cloud via a WLAN or cellular
network. Moreover, a Markov-based offloading strategy was
developed, which solved the problem of where to offload
the tasks based on an M/G/1-FCFS queue model [7]. The
offloading approach proposed in [8] supports two delayed
offloading policies, a partial offloading model where jobs can
leave the slow offloading to be executed locally, and a full
offloading model, where jobs can be offloaded directly via
the cellular network. Alasmari et al. [6] proposed a mobile-
edge offloading method based on a Markov decision process
to generate offloading decisions, which used a numbering
scheme (1, 2, and 3) to denote executing the tasks in local
devices, at the edge and cloud, respectively. Considering the
clock frequency configuration, transmission power allocation,
channel rate scheduling, and offloading strategy selection, a
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distributed algorithm was derived in [11], where an M/M/n
queue model was also used to optimize the offloading decision.

B. Graph-Based Offloading Decisions

It is important to note that city IoT applications can be
viewed as heterogeneous workflows with a different number
of tasks and data flows. To make offloading decisions based
on optimizing the response time or energy consumption, many
research efforts have been devoted to computation partitioning
in mobile computing. Automatic application partitioning has
attracted more and more attention.

The offloading operation can be modeled via a cost
graph, where finding the optimal solution for offloading is
equivalent to finding the constrained shortest path in this
graph [12], [32], [33]. Zhang and Wen [15] modeled a mobile
application as a general topology, which consists of a set of
fine-grained tasks. Each task within the application can be
either executed on the MD or on the cloud. By using arbitrary
topographical consumption graphs, Wu et al. [16] proposed
a graph-cut-based partitioning algorithm, which determines
whether the parts of the tasks run locally or offload to the
cloud server. The decision engine in this proposal is placed at
the MD aiming at finding a group of tasks for offloading, by
which the execution time of a mobile application and energy
consumption of an MD are reduced.

Preferably, the graph partitioning between IoT devices and
cloud/edge servers should be dynamic and the offloading deci-
sions should be made adaptively at runtime. However, only
homogeneous resources are considered in these studies, and
unlike them, we consider the edge and cloud computing to be
heterogeneous environments to support the IoT applications
running on diverse devices in a better manner.

C. Optimization-Based Offloading Decisions

A diversity of platforms and algorithms have been proposed
to solve the problems of offloading binary decisions for MCC
and MEC.

An offloading platform named MAPCloud was proposed
in [17], which consists of a local cloud and a common cloud.
MAPCloud determined the optimal location of tasks accord-
ing to multiple QoS factors of users. El Haber et al. [18]
proposed a successive convex approximation method, which
approximately optimizes the computational cost and figures
out the energy-efficient task offloading strategy mathemat-
ically. A computational offloading algorithm based on the
NSGA-III is presented in [20], where big data methods have
been used for IoT-enabled cloud-edge computing. In addi-
tion, computation offloading game theory has been discussed
in [21], which proposed C-SGA and F-SGA algorithms to
solve the problem.

Energy-efficient task offloading algorithms in MEC or MCC
based on the Lyapunov optimization theory have been widely
investigated [22], [23]. The authors derived adaptive offload-
ing decision algorithms when taking advantage of Lyapunov
optimization techniques. The algorithm determined when and
on which network, and where to perform each application task
(i.e., IoT device, edge server, or cloud server) such that the

overall energy consumption is minimized while guaranteeing
the average queue length.

Many optimization-based algorithms, e.g., traversal or linear
programming, can only obtain results after multiple iterations,
which often involve too many complex calculation operations,
e.g., matrix inversion and singular value decomposition, result-
ing in high running time cost in offloading decision making.
Moreover, these optimization methods that only take advan-
tage of MEC or MCC struggle to balance the complexity and
optimality. Thus, it is necessary to develop an algorithm that
can be used for real-time offloading decisions with MEC and
MCC collaboration.

D. Deep Learning-Based Offloading Decisions

Deep learning is very promising for solving complicated
real-world scenarios, e.g., Internet of Vehicles (IoV) [29],
UAVs [30], and industrial IoT [31]. Recently, deep learning-
driven offloading schemes play an increasingly important role
in dealing with task offloading decisions for MEC and/or
MCC, i.e., intelligent offloading [27].

A model-free reinforcement learning offloading mechanism
was proposed in [25], which uses a gaming framework and
reaches 87.87% payoff compared to the optimal condition.
In order to solve the offloading decision problem in the
MEC environment, a distributed deep learning-based offload-
ing algorithm has been proposed in [26], where parallel
computing is utilized to speed up the computation. Apart
from that, Min et al. [28] proposed a reinforcement learning-
based solution to solve the task offload decision of IoT
devices with energy-harvesting functions, which enables IoT
devices to optimize the offloading strategy without know-
ing the MEC model, energy consumption model, and delay
model.

Many existing deep learning-based offloading schemes,
however, optimize all system parameters simultaneously,
which will eventually identify infeasible solutions as the
optimal offloading decision. Moreover, the heterogeneity of the
servers is still ignored in the selection of the offloading des-
tination and the definition of the convergence in these works
is not clear. Inspired by recent advantages of deep learning
in handling offloading decision problems with large search
spaces, we take advantage of parallel computing of DNNs,
meanwhile, the convergence of the deep learning-based deci-
sion algorithm is clearly defined and improved. In addition,
the heterogeneity of servers and devices is also considered
in the MEC and MCC environments. Once the IoT envi-
ronment changes, the use of deep learning methods requires
new labeled data, and the offloading decision for complex
tasks required by different services should have long-term pro-
gramming and continuous learning capabilities to meet the
requirements of city IoT applications.

E. Qualitative Comparison

As listed in Table I, we identify and compare key elements
of related work with ours in terms of their offloading modes,
architectural properties, and decision objectives. To summa-
rize, the literature above only concentrates on local devices
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TABLE I
COMPARISON OF DIFFERENT OFFLOADING DECISION SCHEMES

TABLE II
COMPARISON OF MCC AND MEC [36]

and edge clouds or ignores the possibly high dimensions of
the problem.

In fact, there can be multiple offloading destinations and
targets for task placement [34]. Due to the different speeds
of heterogeneous cloud servers, offloading the same applica-
tion to different places may complete a different amount of
computation within the same time interval. It may incur dif-
ferent communication costs due to the specific connectivity
and cloud availability [35].

As shown in Table II, compared to cloud servers, edge
servers are closer to the MDs and thus have lower latency.
However, the edge server has low computing power as com-
pared to the cloud server, which has relatively sufficient
computing power [36]. Therefore, MEC can be treated as an
extension of the traditional MCC, but not an alternative to
MCC.

Few recent studies have focused on identifying and address-
ing important challenges of task offloading in heterogeneous
edge and cloud computing environments, where edge clouds
and central clouds work collaboratively to satisfy the city IoT
application requirements. Here, we consider the heterogeneity
of different edge and cloud servers in the offloading destination
selection. To jointly optimize the system utility and the band-
width allocation for each MD, we establish a hybrid offloading
model with the collaboration of MCC and MEC. In addition, a
distributed deep learning-driven algorithm is proposed to gen-
erate optimal offloading decisions for heterogeneous clouds.
To the best of our knowledge, this article is the first that adopts
deep learning with the collaboration of MCC and MEC for
heterogeneous servers.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we consider a framework of hybrid task
offloading with heterogeneous clouds, in which MDs can exe-
cute their workflows locally or completely/partially offload
them to the central cloud and/or to the edge cloud for
execution.

A. System Model

Fig. 1 presents an overview of our system model. We con-
sider one edge cloud, one central cloud, and multiple MDs,
where each MD can choose to offload its computation tasks
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Fig. 1. System model of task offloading with heterogeneous clouds,

either to the edge cloud server or to the central cloud server.
We aim at effectively integrating heterogeneous computing
resources in the MEC and MCC collaborative computing envi-
ronment, where the edge cloud and the central cloud can
be interconnected. The mobile application is divided into
multiple tasks by the application partitioning algorithm. The
tasks can then be offloaded to cloud servers. Offloading is
performed according to the complexity of the tasks and the
present network environment, i.e., offloading the compute-
intensive task to the central cloud server and offloading the
data-intensive task to the edge cloud server, thereby alleviat-
ing the difficulties of load bottlenecks, delays, and ensuring
fault tolerance.

The system model consists of one central cloud server, one
edge cloud server, one wireless access point (AP), multiple
MDs, denoted by a set N = {1, 2, . . . ,N}, and some
independent computational tasks, denoted by a set M =
{1, 2, . . . ,M}. We denote the size of the mth task of the nth
MD by w(n,m) since each MD has several tasks to cope with.
In addition, each MD can either execute their tasks locally or
offload them to the cloud servers for further execution. Once
the decision is taken that a task will be offloaded to the cloud
server, it can be offloaded either to the central cloud server
or to the edge cloud server. We define two binary variables
named x1

(n,m) and x2
(n,m) to represent the offloading decisions.

On the one hand, x1
(n,m) ∈ {0, 1} stands for the offloading

decision for the mth task, which is measured as

x1
(n,m) =

{
1, if task is executed on the nth MD
0, if task is offloaded to the cloud server

(1)

where x1
(n,m) = 1 denotes the mth task is processed locally on

the nth MD, and x1
(n,m) = 0 indicates the mth task is offloaded

to the cloud server.
On the other hand, once the mth task is decided to be

offloaded to the cloud server, we further define x2
(n,m) ∈ {0, 1}

to represent the offloading destination selection for the mth
task, which is measured as

x2
(n,m) =

{
1, if offloaded to edge cloud & x1

(n,m) = 0
0, if offloaded to central cloud & x1

(n,m) = 0
(2)

where x2
(n,m) = 1 indicates that the mth task is offloaded to the

edge cloud server, and x2
(n,m) = 0 denotes that the mth task is

offloaded to the central cloud server.
For convenience, all parameters used in this article are listed

in Table III. The detailed operations of local computing, edge
cloud computing, and central cloud computing models are
illustrated as follows, respectively.

1) Local Computing Model: We first introduce the local
computing model when the MDs decide to execute their tasks
locally. Due to limited resources such as battery capacity, MDs
can only perform fundamental tasks.

Let c(n,m) denote the total CPU cycles of computing the
mth task of the nth MD. Considering that the CPU cycles are
proportional to the workloads, which is given by

c(n,m) = δw(n,m) (3)

where δ denotes the positive coefficient of proportionality.
The energy used while executing the mth task at the nth

local device can be expressed as

El(n,m) = θlc(n,m) = θlδw(n,m) (4)

where θl denotes the energy consumption on the local device
per unit of workloads.

The execution time of the local device can be calculated as

Tl(n,m) = c(n,m)
fl

= δw(n,m)
fl

(5)

where fl denotes the task processing rate of the MDs.
Therefore, the total computation time of the nth MD can be

derived as

Tl(n) =
M∑

m=1

x1
(n,m)Tl(n,m). (6)

2) Edge Cloud Computing Model: Edge cloud servers are
close to the MDs and communicate with them via different
wireless communication technologies, such as Bluetooth or
WiFi. Edge cloud servers provide a low-latency computing
service to MDs because they form a local area network (LAN)
with the MDs.

The transmission time for offloading the workload to the
edge cloud server via the AP can be given by

Tt(n,m) = w(n,m)
bn

(7)

where bn denotes the bandwidth of the nth MD.
The energy consumption for the transmission can be

expressed as
Et(n,m) = σw(n,m) (8)

where σ denotes the positive coefficient of proportionality.
After transmitting the tasks to the edge cloud, they will be

executed by the edge cloud server. The completion delay of
the whole progress can be formulated as

Te(n,m) = Tt(n,m) + c(n,m)
fe

(9)

where fe indicates the task processing rate of the edge cloud
server. Then, the total time delay of the nth MD can be
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TABLE III
SUMMARY OF NOTATIONS

formulated as

Te(n) =
M∑

m=1

(
1 − x1

(n,m)

)
x2
(n,m)Te(n,m). (10)

The energy consumption during all steps can be com-
puted as

Ee(n,m) = Et(n,m) + θec(n,m) (11)

where θe denotes the energy consumption per unit of workload
at the edge cloud server.

3) Central Cloud Computing Model: Central cloud servers
can provide the most powerful computing capacity and can
be a private cloud or public cloud offered by cloud service
providers.

Similarly to the edge cloud computing model, we assume
that the transmission time and the energy consumption from
the local device to the central cloud server are approxi-
mately equal to Tt(n,m) and Et(n,m), respectively. Then, the total
execution time and the energy consumption can be given by

Tc(n,m) = Tt(n,m) + c(n,m)
fc

(12)

Ec(n,m) = Et(n,m) + θcc(n,m) (13)

where θc denotes the energy consumption per unit of workload
of the central cloud. fc denotes the task processing rate of the
central cloud server.

In general, the computing power of MDs, edge cloud server,
and cloud server satisfy the following: fl < fe < fc, which
means that the central cloud server has the strongest comput-
ing power, followed by the edge cloud server, and then the
MDs [37].

Therefore, the total execution time of the nth MD can be
derived as

Tc(n) =
M∑

m=1

(
1 − x1

(n,m)

)(
1 − x2

(n,m)

)
Tc(n,m). (14)

B. Problem Formulation

In order to minimize both, the execution time of all the
tasks and the energy consumption of MDs, we introduce a
function Q(w, x, b), which is the weighted sum of the exe-
cution time and the energy consumption. The weighted sum
is related to the workload, the offloading decision, and the
bandwidth allocated to the task.

The total energy consumption consumed in the whole hybrid
offloading model can be expressed by

E =
N∑

n=1

M∑
m=1

[
x1
(n,m)El(n,m) +

(
1 − x1

(n,m)

)

×
(

x2
(n,m)Ee(n,m) +

(
1 − x2

(n,m)

)
Ec(n,m)

)]
. (15)

Meanwhile, the total execution time required to execute all
the tasks can be given by

T =
N∑

n=1

max
{
Tl(n,m),Te(n,m),Tc(n,m)

}
. (16)

Then, the function Q(w, x, b) can be calculated as

Q(w, x, b) = ψ × E + (1 − ψ)× T (17)

where w = {w(n,m)|n ∈ N ,m ∈ M}, b = {bn|n ∈ N },
and x = {x1

(n,m), x2
(n,m)|n ∈ N ,m ∈ M}. The parameter ψ

with 0 ≤ ψ ≤ 1 is a weighting parameter that represents
the relative significance of the energy consumption and the
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execution time, by which the weighted cost model can be
adjusted according to the users’ requirements. To focus more
on improving the performance, ψ should be less than 0.5; to
focus more on reducing the energy consumption, ψ should be
greater than 0.5. We only consider the execution time in the
case ψ = 0, and we only consider the energy consumption at
MDs when ψ = 1.

Next, we formulate an optimization problem (P) to mini-
mize Q(w, x, b) by jointly optimizing offloading decisions and
bandwidth allocation, which is expressed as

(P): Q(w) = min
x,b

Q(w, x, b) (18a)

s.t.: bn ≥ 0 ∀n ∈ N (18b)
N∑

n=1

bn ≤ B (18c)

x1
(n,m), x2

(n,m) ∈ {0, 1} (18d)

where B denotes the total available bandwidth of N users.
The constraint in (18b) indicates that the allocation of the
bandwidth should not be negative. In addition, the sum of
bn cannot exceed the maximum bandwidth B, which is given
in (18c). The binary offloading decisions x1

(n,m) and x2
(n,m) are

defined in (1) and (2), respectively. Studies on efficiently solv-
ing the bandwidth allocation problem have been shown in [38]
and [39], where the bandwidth allocation is a convex problem
that can be solved by an optimizer. Here, we just consider the
given workloads w and the offloading decision x to optimize
the function Q(w, x).

This is a mixed-integer programming (MIP) problem with
high-dimensional state space. In order to tackle such a complex
problem, one needs to find an optimal offloading decision in
MEC and MCC heterogeneous environments. In this problem,
there are a total of 3NM possible offloading decisions to
select from. Due to the exponentially large search space, the
optimization problem is difficult to be solved in conventional
ways such as with heuristic search algorithms. To solve the
problem (P) in an effective and efficient way, we will, in
the next section, introduce a deep learning-driven algorithm
to generate offloading decisions.

IV. DDTO ALGORITHM

In this section, we propose a DDTO algorithm for the MCC
and MEC hybrid offloading model, which is based on multiple
parallel DNNs. The architecture of the DDTO algorithm is as
depicted in Fig. 2.

When all users’ task workloads are given by w =
[w(1,1),w(1,2), . . . ,w(N,M)], our target is to figure out the
optimal offloading decision x = [x1

(1,1), x2
(1,2), x1

(1,2), . . . ,

x1
(N,M), x2

(N,M)]. We assume that all users have the same number
of tasks because the application can be divided into multiple
tasks and the workloads of extra tasks can be treated as
zeros. Furthermore, since we cannot get the optimal deci-
sions directly, it is an unsupervised learning problem that is
difficult to solve. Therefore, we propose a method to obtain
the offloading decisions and turn it into a supervised learning
problem.

Fig. 2. Procedure of the DDTO algorithm.

We regard the workloads w as the input to the neural
networks and the optimal offloading decisions x as our output.
Importantly, we store w, the best decisions x, and the mini-
mum value of the function Q(w, x) into a database together.
We then use these labeled data to train our multiple paral-
lel DNNs and generate new data to replace the old data in
the database. Thus, we can update the database and train the
DNNs to solve the NP-hard problem well.

A. Offloading Decision Generation

In this section, we propose a method to obtain the approx-
imate optimal offloading decisions. The mean-square-error
(MSE) function is applied to obtain the optimal offloading
decision by minimizing the loss function in deep learning.
The MSE function is formulated by

MSE = 1

n

n∑
t=1

∣∣logitst − outputst

∣∣2 (19)

where logits and outputs denote the label and the predicted
value, respectively. As each element of the decision is binary,
the logits can only be 0 or 1. It is straight forward to prove that
if the output is larger than 1/2, the logits will be 1, otherwise
0. In this way, the MSE function is minimized, which means
the precision of the model is the highest.

As depicted in Fig. 3, the generation process of the offload-
ing decisions can be expressed as follows: when the inputs
w are given, we first use the DNNs to get the outputs. Then,
we use the method described above to generate the offload-
ing decision as our logits. This is how we create the labeled
database and then the problem can be solved by deep learning.
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Fig. 3. Process of generating the offloading decisions.

B. Training

We decide to train S parallel DNNs to solve the optimization
problem. Each of the DNNs consists of one input layer, two
hidden layers, and one output layer.

Once the best offloading decision x∗ is obtained, we save
the workloads w, the best offloading decision x∗, and the value
of the function Q(w, x∗) together in a database. The size of
the database is limited and can be set to an arbitrary value.
The database works in a round-robin fashion, i.e., when the
database is full, the oldest data will be abandoned and new
data will replace the old one. In addition, the labeled data
from the structure can be used to train all DNNs. One issue
we considered here is that it will take too long if all DNNs
are trained by all labeled data from the database. Therefore,
relay technology is used in this part [40]. More specifically,
the database is shared by all DNNs and each of them can
extract a batch of data randomly from the database to train
the neural network. As the database is constantly updated and
the newly generated data will be more precise than the older
one, the efficiency will be improved by this database.

This is a classification problem, we determine to perform
the cross-entropy as the loss function, which is given by

L(λk) = −xT log fλk(w)− (1 − x)T log
(
1 − fλk(w)

)
(20)

where λk is the parameter value of the DNN. We employ the
gradient descent method to minimize the cross-entropy loss,
and then update the parameters of all DNNs.

C. Testing

We generate offloading decisions as our logits and update
the database structure continuously, thus we define the conver-
gence as the process of approaching toward a defined value,
i.e., the extremum. More specifically, we denote the minimum
value of the function Q(w, x) during the process of generating
offloading decisions as Q1. When we randomly select a batch
of data from the database and repeat the previous procedure,
we obtain another optimal value of Q(w, x), denoted as Q2.
Then, the ratio R1 can be formulated as

R1 = min(Q1,Q2)

max(Q1,Q2)
(21)

Algorithm 1: DDTO Algorithm
Input: Workloads w of local MDs
Output: Optimal offloading decisions

1 Initialization:
2 Initialize S DNNs with random parameter λj

3 Empty the database
4 for i = 1, 2, . . . ,N do
5 Replicate ith offloading decision candidate xi from

the ith DNN
6 Select the optimal offloading decision x∗ by

minimizing Q(w, x) and calculate Q(w, x∗) as Q∗
7 if database is not full then
8 Store (wi, x∗,Q∗) into the database
9 else

10 Discard the oldest data and save the new one
11 end
12 end
13 for j = 1, 2, . . . , S do
14 Randomly choose a batch of data from database
15 Train the DNNs and update the parameter λj

16 end

where the ratio R1 can be interpreted as the convergence of
the DDTO algorithm.

We cannot treat the extremum as the true minimum or max-
imum value, so we decide to enumerate all cases to find the
true minimum value of Q(w, x) expressed as Q∗

1 and compare
the result with our optimal value Q∗

2. We find Q∗
1 by using

a time-consuming greedy algorithm, where we enumerate all
offloading decision combinations and identify the true optimal
one. Then, we compute a ratio of the minimum value to the
optimal value. We defined it as R2, which can be given by

R2 = Q∗
1

Q∗
2

(22)

where 0 < R2 ≤ 1 indicates how close the solution found
by our algorithm comes to the true optimal solution achieved
by the greedy algorithm. When R2 = 1, it means that we
have found the true optimal solution and we call it relative
optimality.

The whole progress of the DDTO algorithm for the MCC
and MEC hybrid offloading model is displayed in Algorithm 1.
The database structure is initially empty and multiple DNNs
are initialized with random parameter values λk. The proposed
DDTO framework learns from the past offloading experi-
ences in MEC and MCC heterogeneous environments and
then automatically adjusts the parameters to generate near-
optimal offloading decisions. In this way, it eliminates the
need for solving complex MIP problems and then avoids
the curse of dimensionality with a high-dimensional search
space. The DDTO algorithm only needs to choose from a few
candidate offloading decisions each time and thus the com-
putational complexity will not increase dramatically with the
growth in the numbers of users and tasks. Good convergence
performance can be achieved because of the high diversity in
the generated offloading decisions.
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TABLE IV
EVALUATION PARAMETERS

V. PERFORMANCE EVALUATION

In this section, we demonstrate the experimental results of
our proposed DDTO algorithm for solving the problem (P) and
evaluate the performance of different offloading strategies.

A. Parameter Setting

In our experiments, the proposed DDTO algorithm and other
offloading decision algorithms are implemented and evalu-
ated in Python using the ML library Tensorflow. An edge and
cloud computing heterogeneous environment is built. We set
the number of users or MDs N = 3, and each of them has
M = 3 independent computation tasks at the same time.

Apart from that, we set the parameter θc = 1, the central
cloud energy consumption per unit of workloads, since the
energy consumption at the central cloud server is the lowest.
Then, we set the edge cloud energy consumption per unit of
workloads θe = 1.5 J/MB and the local energy consumption
per unit of workloads θl = 3 J/MB, respectively [41].

There are two kinds of energy profilers that can be used
to estimate the energy consumption of MDs, namely, software
and hardware monitors. Although the measurement results pro-
vided by the former are not as accurate as those provided by
the latter, they are more convenient to use and the result is
still reasonable [16]. Similarly, we set the task processing rate
fl = 1 and the processing rates of the edge cloud server and the
central cloud server are fe = 800 MHz and fc = 1200 MHz,
respectively. The parameters satisfy: fl < fe < fc. In addition,
we suppose that the input workloads of all tasks are randomly
distributed between 0 and 30 MB. In all simulations, the set
value of the bandwidth limit bn of each user is 50 Mb/s. The
weighting parameter ψ is set to 0.5, indicating that our focus
is on both, balancing performance and reducing power con-
sumption. We train DNNs using batches of size 500 of the
labeled data from the database. The summary of our evalu-
ation parameters and their respective values are presented in
Table IV.

B. Convergence Performance

We demonstrate the convergence of the DDTO algorithm in
distinct situations, where it converges to the optimal solution
under a wide range of parameter settings. The convergence
performance of the DDTO algorithm is analyzed on the basis
of the number of DNNs, the size of the database, and the
learning rate, respectively.

We observe from Fig. 4(a) that R1 converges to 1 as the
learning step increases when S ≥ 2. According to the definition
of R1, when S = 1, the neural network cannot be trained very
well and the result will not converge. However, when S ≥ 2, the
convergence performs very well after 10 000 learning steps. It
illustrates that as the number of DNNs increases, the function
of the DDTO algorithm will be improved. However, the com-
putation time will also increase. Therefore, we set the number
of DNNs to S = 6 as a compromise between the best configu-
rations to optimize the time consumption of running the code
and the performance of the convergence.

As depicted in Fig. 4(b), the ratio R1 increases with the
learning step. Importantly, when the size of the database equals
1400, the convergence performs best. This is because the
data will be updated at a low rate when the size of the
database is too large. Meanwhile, the data that are randomly
selected from the database will not be acceptable when it is
too small. Therefore, the size of the database has a consider-
able influence on the gain ratio because it alters the speed of
updates.

As shown in Fig. 4(c), the best performance is achieved
when α0 = 0.01. We analyze that when α0 is too small, the
convergence rate is low. Simultaneously, when α0 is too large,
it will converge to another extremum, thus the ratio R1 will be
very low. Therefore, the learning rate α0 also has an influence
on the convergence.

C. Performance of the Relative Optimality R2

We demonstrate that the relative optimality, the ratio R2, is
affected by the number of DNNs, the learning rate, and the
size of the database, respectively.

Fig. 5(a) depicts the impact of the number of DNNs on
the relative optimality R2. It can be seen that the value of
R2 is increasing when the DNN number increases and the
value of R2 reaches its maximum value approximately when
the number of DNNs is larger than 5. We selected S = 6
before, thus the figure indicates that this was a good choice.

Fig. 5(b) shows the performance of the relative optimality
R2 under different sizes of the database. The value of R2 is
fluctuating when the size is increasing. It is visible that when
the size of the database reaches 1400, R2 gets the vertex, which
is greater than 0.925. We previously chose 1400 as the size
of the database, and this figure supports this selection.

Fig. 5(c) shows the performance of the relative optimal-
ity R2 with different learning rates. The value of R2 is up to
maximum when the learning rate is 0.01. It indicates that the
previous choice is the optimal one since when the learning
rate is larger or smaller, R2 is decreasing.

Fig. 5(a)–(c) demonstrates that the former selection of the
DNN number, the size of the database, and the learning rate
are all reasonable. In addition, the value of R2 exceeds 0.92
under our choice.

D. Comparison Analysis

To gain some insights and analyze the efficiency of
the proposed DDTO algorithm, the following state-of-the-art
offloading decision methods are implemented for comparisons.
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Fig. 4. Impact of the (a) number of DNNs, (b) size of the database, and (c) learning rate on R1.

Fig. 5. Impact of the (a) number of DNNs, (b) size of the database, and (c) learning rate on R2.

1) Local-Only Scheme (i.e., Zero Offloading Scheme): In
this method, all tasks of workflows are executed locally
on their respective MDs, and hence, no parallel execu-
tion of tasks can be performed for workflows. Here, the
offloading decisions x1

(n,m) will be 1. The results of this
method can be used as a benchmark to analyze the gain
of different types of task offloading techniques.

2) Edge-Only Scheme (i.e., Edge Cloud-Only Offloading
Scheme): In this method, all tasks of workflows are fully
offloaded to the edge cloud server for execution [42].
The offloading decisions x1

(n,m) and x2
(n,m) will be 0

and 1, respectively.
3) Central-Only Scheme (i.e., Central Cloud-Only

Offloading Scheme:) In this method, all tasks of work-
flows are fully offloaded to the central cloud server for
further processing [23]. The offloading decisions x1

(n,m)
and x2

(n,m) will be 0 and 0, respectively.
4) Local and Central Scheme (i.e., Local Execution and

Central Cloud Partial Offloading Scheme): In this
method, some tasks of workflows are processed locally
on the MDs, while some of them are offloaded to the
central cloud server for further processing [26].

5) Our Algorithm (i.e., Proposed DDTO Scheme:) In this
method, we adopt the proposed DDTO algorithm to gen-
erate optimal offloading decisions over the MDs, the
edge cloud server, and the central cloud server.

The comparison of the results of different offloading
schemes is shown in Fig. 6. It can be seen that the optimal
decisions of the proposed DDTO algorithm perform very well
since the relative optimality, the ratio R2, of the DDTO scheme
exceeds 0.93, which is much higher than for any of the other
four schemes. For example, the R2-value of the local-only
scheme is only about 0.3, and the local and central scheme

Fig. 6. Comparison with several offloading schemes.

is approximately 0.75. This is because unlike the edge-only
and the central-only schemes, the DDTO scheme dynamically
offloads tasks according to the heterogeneous computing envi-
ronment, such as task workloads, communication data, and
network conditions. Especially when the network bandwidth
is very low, offloading tasks to the edge/cloud server may
not be beneficial. Therefore, the proposed DDTO scheme can
achieve near-optimal offloading decisions in edge and cloud
computing heterogeneous environments.

VI. CONCLUSION

In contrast to conventional distributed deep learning
approaches, we have proposed a DDTO algorithm with het-
erogeneous clouds, i.e., the central cloud and the edge cloud,
which optimizes the weighted sum of the energy consump-
tion and the execution time in the MCC and MEC hybrid
offloading model. This is achieved by generating and storing
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the offloading decisions with the workloads and system con-
sumption together in a database and then training and updating
multiple parallel DNNs with a batch of labeled data.

The DDTO algorithm determines whether a task should be
executed at a local device or whether it should be offloaded
to the clouds, and if it should be offloaded to the clouds the
algorithm determines, whether to offload the task to the central
cloud or to the edge cloud. The numerical results demonstrate
the accuracy of the DDTO algorithm and in comparison with
several previously known schemes, our results are significantly
better. In future studies, we will consider more factors in the
hybrid offloading model to further improve the capability of
our algorithm in handling realistic mobile offloading scenar-
ios. Moreover, we will build a platform that can evaluate the
performance of the DDTO algorithm during the actual task
offloading progress.

Offloading decisions in MEC and MCC are becoming more
intelligent with the emergence of innovative technologies and
paradigms, such as fog-aided wireless networks, blockchain,
and artificial intelligence [43], [44]. To meet more stringent
requirements for security and environmental adaptability, we
plan to use the blockchain and metalearning techniques for
intelligent offloading in the future.

In view of the single point of failure, data privacy and secu-
rity problems faced by the current centralized IoT systems,
we will develop a blockchain-based decentralized offload-
ing scheme, to address the challenge of data loss or privacy
disclosure that may occur in the process of task offload-
ing, effectively promote data intelligence across devices, and
ensure data integrity. When the environment of the IoT system
changes, such as the performance of the edge server or the
bandwidth, deep learning-based methods have to train from
scratch. To solve the problem of poor portability, we also
introduce metalearning to ensure that the offloading decision
model can quickly adapt to the new environment by learn-
ing the initial parameters of the neural network in a different
environment.
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