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Abstract—Mobile offloading migrates heavy computation from
mobile devices to cloud servers using one or more communication
network channels. Communication interfaces vary in speed, energy
consumption and degree of availability. We assume two interfaces:
WiFi, which is fast with low energy demand but not always present
and cellular, which is slightly slower has higher energy consumption
but is present at all times. We study two different communication
strategies: one that selects the best available interface for each
transmitted packet and the other multiplexes data across available
communication channels. Since the latter may experience inter-
rupts in the WiFi connection packets can be delayed. We call it
interrupted strategy as opposed to the uninterrupted strategy that
transmits packets only over currently available networks.

Two key concerns of mobile offloading are the energy use of
the mobile terminal and the response time experienced by the
user of the mobile device. In this context, we investigate three
different metrics that express the energy-performance tradeoff,
the known Energy-Response time Weighted Sum (EWRS), the
Energy-Response time Product (ERP) and the Energy-Response
time Weighted Product (ERWP) metric.

We apply the metrics to the two different offloading strategies
and find that the conclusions drawn from the analysis depend on
the considered metric. In particular, while an additive metric is
not normalised, which implies that the term using smaller scale
is always favoured, the ERWP metric, which is new in this paper,
allows to assign importance to both aspects without being misled by
different scales. It combines the advantages of an additive metric
and a product.

The interrupted strategy can save energy especially if the focus
in the tradeoff metric lies on the energy aspect. In general one can
say that the uninterrupted strategy is faster, while the interrupted
strategy uses less energy. A fast connection improves the response
time much more than the fast repair of a failed connection. In
conclusion, a short down-time of the transmission channel can
mostly be tolerated.

Index Terms—Energy-Performance Tradeoff, Queuing Model,
Offloading, Heterogeneous Networks, Mobile Cloud Computing

I. INTRODUCTION

Mobile cloud computing aims at combining the strength of
cloud computing with the convenience of mobile terminals.
However, limited radio resources or limitations of other com-
munication channels as well as lack of sufficient battery power
may significantly impede the improvement of service quality [1]
anticipated by using cloud services. Nonetheless computation
offloading, which migrates computation-intensive tasks from
mobile devices to a remote cloud infrastructure via a network,
is a popular approach to alleviate the shortcomings of resource-
constrained mobile devices. Since offloading an application to
the cloud is not always possible or effective, the decision as to
whether to execute a program locally or to offload it requires
careful consideration of the nature of the computation and the
communication channels available.

Mobile devices are often equipped with multiple wireless
interfaces (e.g. cellular and WiFi) for data transfer, with different
availabilities, delays and energy costs. Response time and energy
consumption are two primary concerns for mobile systems that
must be considered when making offloading decisions. However,
different applications usually give different relative importance
to both factors. For delay-tolerant applications (e.g. iCloud,
Dropbox, RSS feeds and participatory sensing), response time
is less critical and optimising energy usage is more relevant.
Some information is not time-critical and its submission to
the server may be delayed until the device enters an energy-
efficient network. For delay-sensitive applications (e.g. speed
chess game, face recognition, video conferencing and vehicular
communications), fast response time is of primary concern while
energy consumption is less important. The offloading scheme in
which cloud services are accessible with short network latency
(e.g. WiFi network) can serve in a better way. Therefore, there
exists a fundamental tradeoff between energy consumption and
response time in the expected usability of applications [2].

Recently, several researchers have worked on optimising the
tradeoff between energy consumption and response time. In [3]
and [4], the energy-delay tradeoff has been studied by deciding
whether or not and by means of which communication interface
to offload a whole application. Instead, an application can consist
of several components, or jobs, that are treated separately, and
thus offloading decisions should be made for every component.
Accordingly, a queueing model has been proposed in [5] to
capture the tradeoff between the energy consumption and the
response time for mobile cloud offloading based on an additive
energy-performance metric, where static and dynamic offloading
polices were analysed.

Seamless offloading operation by switching between several
transmission technologies has been proposed in [6]. In addition,
this work examined the tradeoff between energy consumption
for WiFi search and transmission rate when the WiFi network
was intermittently available. A stochastic model for that scenario
has been developed in [7] using various performance metrics
and also intermittently available access links. Energy-efficient
delayed network selection has been suggested in [2] and [8] to
optimise the tradeoff between energy usage and delay in data
transmission by intentionally deferring data transmission until
the device meets an energy-efficient network.

The main contributions of this paper are as follows:
• We propose two strategies for mobile cloud offloading

and analyse them by means of analytic queueing models:
the uninterrupted offloading strategy and the interrupted
offloading strategy. The uninterrupted strategy uses WiFi
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(which we assume to have the best transmission characteris-
tics) whenever possible, but switches to a cellular interface
if no WiFi connection exists [9]. The interrupted strategy
assigns jobs upon arrival to one of two parallel interfaces
with different characteristics which are modelled as two
parallel queues1 (e.g. cellular or WiFi transmission). Data
transmission of the WiFi queue can be interrupted for short
periods when the connection is lost.

• The models are compared using several metrics. We apply
the previously studied Energy-Response time Weighted
Sum (ERWS) and compare it with the Energy-Response
time Product (ERP). After discussing advantages and disad-
vantages of both metrics we introduce the Energy-Response
time Weighted Product (ERWP), which combines the ad-
vantages of both previously studied metrics.

The remainder of this paper is organised as follows. In Section
II, we introduce the offloading system and the queueing model
for offloading as well as the three considered metrics. In Section
III, we analyse the uninterrupted offloading strategy based on the
ERWP metric. The interrupted offloading strategy is proposed
and analysed in Section IV. Section V evaluates metrics and
models using numerical examples. Section VI concludes.

II. SYSTEM OVERVIEW

In this section, we first introduce the overall offloading system,
and then focus on its submodules: local execution and remote ex-
ecution, respectively. Finally, we combine them by using metrics
to capture the tradeoff between the mean energy consumption
and mean response time.

A. The Offloading System

We model mobile offloading as a queueing system as depicted
in Fig. 1. The mobile device, the cloud and the wireless networks
are represented as queueing nodes to capture the resource con-
tention and delay on the system. The mobile device executes
an application with different types of jobs that can be classified
into the following two classes. Each time a job is executed, a
decision must be taken into which class it belongs:

• Unoffloadable: some jobs should be unconditionally pro-
cessed locally on the mobile device, either because trans-
ferring the relevant information would take more time and
energy or because these tasks must access local devices
(camera, sensors, user interface, etc.) [10]. Local processing
consumes battery power of the mobile device but there are
no communication costs or delays.

• Offloadable: some jobs are flexible tasks that can be pro-
cessed either locally on the mobile device, or remotely in a
cloud infrastructure through computation offloading. Many
tasks fall into this category, and the offloading decision
depends on whether the communication costs outweigh the
difference between local and remote costs [11].

We do not need to take offloading decisions for unoffloadable
jobs. However, as for offloadable ones, the mobile device should
judiciously make decisions that optimise the response time
energy tradeoff expressed in one of the metrics defined at the
end of this section.

1For simplicity we will call the two considered networks WiFi and cellular,
but this could be any other technology with equivalent characteristics.
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Figure 1. A queueing system for mobile cloud offloading

As indicated in Fig. 1, job arrivals at the mobile device are
assumed to follow a Poisson process with an average arrival
rate of � + �0, where � and �0 are the rates of offloadable
and unoffloadable jobs, respectively. The arrival rate is based on
the behavior of the application. The unoffloadable jobs with an
arrival rate �0 are unconditionally executed locally. As for the
offloadable ones, these arrive at rate �, and the mobile device
chooses to offload each job with a probability 0  ⇡  1. As in
[12], jobs are offloaded to the cloud following a Poisson process
with an average rate of �

c

= ⇡ ·�, the offloading rate. Similarly,
jobs that are proceed locally instead of being offloaded follow a
Poisson process with rate �

m

= (1� ⇡) · �.
There are several ways to offload computation to the cloud,

e.g. via a cellular connection (e.g. 2G, 3G and 4G), which
is assumed to be the costly connection, or via intermittently
available WiFi. We assume that the cellular interface can provide
ubiquitous coverage for mobile devices in a wide area, but has
lower data transmission rate and consumes more transmission
energy than the WiFi interface. In many cases these assumptions
are realistic. The mobile device, the cellular and WiFi connec-
tions are modelled as M/M/1-FCFS queues. The remote cloud
is modelled as an M/M/1 queue, i.e. as a delay center [13].
We denote 1/µ

m

and 1/µ
c

the expected execution time of jobs
on the mobile device and the cloud, respectively. The expected
rates to transfer data to the cloud over the cellular network and
WiFi are µ1 and µ2, respectively.

Two dispatchers are needed: ↵1 is used to allocate the offload-
able jobs either to the cloud or to the mobile device, while ↵2

is used to offload the jobs either via a cellular connection or a
WiFi network to the cloud. It should be noted that when ⇡ = 0,
all offloadable jobs are processed locally, when ⇡ = 1, they are
all offloaded to the cloud. The total cost, in terms of energy or
response time for processing all offloadable jobs, is composed
of the remote cost (sending some jobs to the cloud and waiting
for the cloud to complete them), and the local cost (processing
the rest jobs locally on the mobile device).

Our objective is to minimise the mean energy consumption
and the mean response time. Since only one option exists for the
jobs that cannot be offloaded (as they will always be processed
locally) our attention is focused on on the offloadable jobs, where
the right decision must be taken whether or not to offload and
which interface to use for offloading. The key elements for the
considered offloading system are as shown inside the blue block
(local execution) and the red block (remote execution), which
are analysed separately in the following subsections.
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B. Local Execution

As shown inside the blue dotted block in Fig. 1, there are
two kinds of jobs (offloadable and unoffloadable) arriving to
the processor of the mobile device. We adopt the preemptive
scheduling policy here. That is, from the perspective of an
offloadable job, the unoffloadable jobs do not exist, since service
to the unoffloadable jobs is immediately interrupted upon the
arrival of an offloadable job. To the offloadable jobs, the system
behaves like an M/M/1 queue with arrival rate �

m

and service
rate µ

m

.
The workload, or utilisation, i.e. the fraction of time when the

server is busy, is denoted as: ⇢
m

= �
m

/µ
m

. The mean number
of jobs in an M/M/1 queue is given by:

E[N
m

] =
⇢
m

1� ⇢
m

. (1)

By Little’s Law we obtain the mean response time as:

E[T
m

] =
1

�
m

E[N
m

]. (2)

We assume the mobile device consumes energy only when
there are jobs in the system and that the mobile device operates
at a constant power p

m

whenever it is busy [14]. Since P
m

=
�
m

E
m

is the consumed power, the mean energy consumption
E[E

m

] can be more conveniently expressed as:

E[E
m

] =
1

�
m

· E[P
m

] =
1

�
m

· p
m

Pr{N
m

> 0}

=
1

�
m

· p
m

⇢
m

, (3)

where Pr denotes the probability operation.

C. Remote Execution

As shown inside the red dotted block in Fig. 1, the remote
execution includes the transmission model and the cloud model.
To facilitate the analysis of the mobile cloud offloading system,
we assume that a cellular network is available to mobile users all
the time while the availability of a WiFi network depends on the
location. That is, mobile users move in and out of a WiFi cov-
erage area. We model this time variation of the WiFi connection
state by the ON-OFF alternating renewal process

⇣

T (j)
ON , T (j)

OFF

⌘

,
j � 1, as shown in Fig. 2. The ON periods represent the presence
of the WiFi connectivity, while the OFF periods represent the
interruption of the WiFi connectivity. During the latter periods
data is either not transmitted (because the interface is idle) or
it is transmitted only through the cellular network. The duration
of each ON period T (j)

ON or OFF period T (j)
OFF, is assumed to be

an exponentially distributed random variable and independent of
the duration of other ON or OFF periods [9].

ON

OFF
WiFi

Idle/ 
Cellular

TON TOFF
Figure 2. The WiFi network availability model

Accordingly, we build two different offloading strategies:
• Uninterrupted Offloading Strategy: we employ a single

queue with two states to offload jobs to the cloud server.

When there is a WiFi connection available, all jobs are sent
over the WiFi network; otherwise, they are sent over the
cellular interface as the cellular network is always available
[15]. Therefore, the process of offloading jobs to the cloud
cannot be interrupted.

• Interrupted Offloading Strategy: we assign jobs upon
arrival to one of two parallel queues which describe cellular
or WiFi transmission [5]. Offloading is interrupted during
the periods when WiFi is disconnected. It is a dispatching
problem where incoming jobs are splitted on arrival for
service by two servers and join before departure. Only
when all the jobs are transmitted and have rejoined can
the cloud processing start.

We have two states (for the uninterrupted offloading strategy)
or two parallel queues (for the interrupted offloading strategy).
Upon arrival of a job an assignment decision is made and the
job is placed into the corresponding queue (state).

A key assumption in our work is that each server (state)
operates at a constant power p

i

(i 2 {1, 2}) whenever it is
busy. We use e

i

2 {0, 1} to indicate whether Server (State) i is
available or not. If e

i

= 1, Server (State) i is available, otherwise
it is unavailable. Since P

i

= �
i

E
i

is the consumed power, further
by Little’s Law, E[N

i

] = �
i

E[T
i

], the mean energy consumption
and mean response time due to offloading can be calculated as
follows, respectively.

E[E
o

] =
1

�
c

2
X

i=1

�
i

E[E
i

] =
1

�
c

2
X

i=1

E[P
i

]

=
1

�
c

n

2
X

i=1

p
i

Pr{N
i

> 0, e
i

= 1}
o

, (4)

E[T
o

] =
1

�
c

2
X

i=1

�
i

E[T
i

] + E[T
c

]

=
1

�
c

n

2
X

i=1

E[N
i

] + E[N
c

]
o

, (5)

where �
i

is the mean rate of jobs arriving to Queue (State) i;
E[E

i

] and E[T
i

] are the mean energy consumption and mean
response time in Queue (State) i, respectively, and E[T

c

] is the
expected execution time in the cloud server.

Since the probability that the corresponding server (state) is
busy is equal to the load [14], we have Pr{N

i

> 0|e
i

= 1} = ⇢
i

when the server (state) is always available. Further, we have:

Pr{N
i

> 0, e
i

= 1} = Pr{N
i

> 0|e
i

= 1} · Pr{e
i

= 1}
= ⇢

i

· Pr{e
i

= 1}. (6)

D. Metrics
The general cost metric includes energy consumption related

costs in addition to the usual performance metrics such as the
response time. The response time is the time between the arrival
of a job until it completes service and departs. The energy
consumption is the energy spent on the mobile device in that
period. We use queueing theory to model the offloading systems
according to different response time energy metrics. We study
the tradeoff between the mean energy consumption and mean
response time, which is a non-trivial multi-objective optimization
problem and define three different metrics in the following
subsections.
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1) ERWS: The Energy-Response time Weighted Sum
(ERWS) is a metric to capture energy-performance tradeoffs and
to compare different policies. It is defined by setting the cost
function as the weighted sum of both average values, i.e. the
ERWS metric:

ERWS = !E[E ] + (1� !)E[T ], (7)

where E[E ] and E[T ] are the mean energy consumption and
mean response time, respectively. ! (ranging between 0 and 1)
is a weighting parameter that indicates the relative significance
between the energy consumption and response time for the
mobile device. Large ! favors energy consumption while small !
favors response time. In some special cases performance can be
traded for power consumption and vice versa [16], therefore we
can use the ! parameter to express such special cases preferences
for different applications.

For Eq. (7), the mean time and energy are additive terms over
time; therefore the ERWS metric has the advantage of being
analytically tractable and can be optimized via Markov Decision
Processes [17]. From the view of minimization, this metric
allows comparing arbitrary offloading policies to the optimal
offloading policy in our work. However, it has the disadvantage
of a linear combination of two metrics on different scales.

2) ERP: The Energy-Response time Product (ERP) metric
is widely accepted as a suitable metric to capture energy-
performance tradeoffs. It is defined as:

ERP = E[E ] · E[T ]. (8)

Minimizing ERP can be seen as maximizing the ‘performance-
per-joule’, with performance being defined as the inverse of mean
response time [17].

The energy response time product does not suffer from com-
parison of different scales. While the ERWS metric implies that
a reduction in mean response time from 1000 sec to 999 sec is
of the same value as a reduction from 2 sec to 1 sec, the ERP
metric implies that a reduction in mean response time from 2 sec
to 1 sec is much better than a reduction from 1000 sec to 999
sec, which is indeed a more realistic view on the actual system
[17]. However, since ERP is the product of two expectations, it
is a difficult metric to address analytically.

3) ERWP: To overcome the disadvantages mentioned above,
we propose a new metric named Energy-Response time Weighted
Product (ERWP), which combines the strengths of ERWS and
ERP. It is defined as:

ERWP = E[E ]! · E[T ]1�!. (9)

We can rewrite Eq. (9) as:

ERWP = e!·ln(E[E])+(1�w)·ln(E[T ]). (10)

Therefore, it inherits the characteristics of the ERWS metric
that assigns different importance weights to energy and time,
and has the advantage of being analytically tractable since the
logarithmic expectation is additive over time.

Meanwhile, when ! = 0.5, the mean energy consumption and
mean response time have equal importance:

ERWP =
p

E[E ] · E[T ], (11)

which indicates that ERWP metric has the advantage of the
ERP metric in being sensitive to difference of the scales of the
component metrics.

To the best of our knowledge the ERWP metric has not been
treated analytically before.

Based on the above analysis in the local execution and the
remote execution for the offloadable jobs, we can derive the
ERWP metric from Eq. (9) after combining the results in Eqs.
(2)–(5), which is expressed by:

ERWP =
n

⇡E[E
o

] + (1� ⇡)E[E
m

]
o

!

·
n

⇡E[T
o

] + (1� ⇡)E[T
m

]
o1�!

=
1

�

n

N

X

i=1

E[P
i

] + E[P
m

]
o

!

·
n

N

X

i=1

E[N
i

] + E[N
c

] + E[N
m

]
o1�!

. (12)

Similarly, we can derive the ERWS metric from Eq. (7) and ERP
metric from Eq. (8) for the offloadable jobs.

III. UNINTERRUPTED OFFLOADING STRATEGY

In this section, we analyse the uninterrupted offloading strat-
egy for remote execution. We formulate the queueing model
based on the WiFi availability model, and then we use queueing
analysis to derive the ERWP metric.

A. Problem Formulation

Figure 3 depicts an uninterrupted offloading strategy based
on the WiFi network’s availability model. The total cost for
offloading a job is composed of the cost for sending the job to
the cloud and idly waiting for the cloud to complete the job. We
propose a Markov modulated queue for uplink transmission. A
single-server queuing system that oscillates between two feasible
states is denoted by fON and fOFF. The persistence of the system
at any state is governed by a random mechanism: if the system
functions at state fON it tends ‘to jump’ to the other state with
Poisson intensity ⇠ and if the system functions at state fOFF it
tends ‘to jump’ to the other state with Poisson intensity ⌘ [18].

µ( f )

WiFiCellular

Cloud

µc

η

ξ

λ( f )

Transmission

fOFF fON

Figure 3. Uninterrupted offloading strategy with cellular and WiFi networks

From Fig. 3, the jobs are offloaded either via a cellular
connection or a WiFi network to the cloud. We assume that
the mean job size is E[X], the transmission speed of the cellular
network is s1 with service rate µ1 = s1/E[X], and its operating
power is p1 when serving jobs and zero whenever idle. Similarly,
WiFi runs at speed s2, with service rate µ2 = s2/E[X], and its
operating power is p2. We assume that jobs arrive according to
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a Poisson process with rate �(f), and the modulating process
f 2 {fON, fOFF} determines the transition rates.

�(f) =

⇢

�1, if f = fOFF
�2, if f = fON

andµ(f) =
⇢

µ1, if f = fOFF
µ2, if f = fON

.

(13)
The original offloading jobs arrive at the system according to

a Poisson process with rate �
c

, since the modulating process has
two states, which results in independent Poisson processes with
rate �

i

(i 2 {1, 2}), we have �1 + �2 = �
c

.
It is well-known from the literature [19] that a product-form

for the tandem queues between the modulated (the exponential
queue) and the modulating processes exists if and only if the
following condition holds:

9⇢ 2 R+ s.t. 8f 2 {fON, fOFF},
�(f)

µ(f)
= ⇢. (14)

Then by substituting Eq. (13) into Eq. (14), we have:

�1

µ1
=

�2

µ2
. (15)

This is the case where the traffic intensities ⇢1 and ⇢2 are equal,
though arrival intensities and service capacities need not be
equal. Now this transition from one state to the second state
will carry no influence on the random variable ‘number of jobs
present in the queue’, since the traffic intensity �

i

/µ
i

(= ⇢) has
not changed [20].

Figure 3 demonstrates that the uninterrupted offloading strat-
egy is a conditional product-form model consisting of a tandem
between a transmission queue (with two alternating states of
cellular and WiFi) and an exponential queue representing the
cloud. The former queue alternates its service by means of
mutual resets according to the availability of WiFi, which is
governed by an interrupted Poisson Process (IPP) with exponen-
tially distributed ON-OFF periods. We model the intermittent
availability of WiFi hotspots as a FCFS queue with occasional
server break-down [7]. The queue works in mutual exclusive
states and the reset occurs when the WiFi period alternates,
either from ON-state to OFF-state or from OFF-state to ON-
state. When WiFi becomes unavailable, the cellular network
starts transmitting, otherwise when the WiFi connection becomes
available, jobs are served only by the WiFi network. Specifically,
offloading is not interrupted in this model, either in ON-state
where the WiFi network is processing the existing jobs, or in the
OFF-state during which the job is serving by the cellular network
(the cellular connectivity is assumed to be always available). We
assume that the sojourn time in a hotspot and the time to move
from one hotspot to another are exponentially distributed with
parameters ⇠ (failure rate), and ⌘ (recovery rate), respectively.

Since there is no waiting time before entering service, the
M/M/1 queue of the cloud is occasionally referred to as a
delay (sometimes pure delay) station, the probability distribution
of the delay being that of the service time. Thus, the expected
execution time taken in the cloud server can be calculated as
E[T

c

] = 1/µ
c

. Since the application jobs are remotely executed
in the cloud server rather than in the mobile device and we
are only concerned with the energy consumption of the mobile
device, we do not need to concern ourselves with calculating the
energy consumption of the cloud server.

B. Metric-Based Analysis

We use queueing analysis to derive formulas for the average
number of jobs in the M/M/1 queue. Given the previously
stated assumptions, the uninterrupted offloading strategy can be
modelled with a 2D Markov chain, as shown in Fig. 4.

2, 0 2, 1 2, n-1 2, n 2, n+1

1, 0 1, 1 1, n-1 1, n 1, n+1

η η η η ηξ ξ ξ ξ ξ

λ1 λ1 λ1 λ1

λ2

µ1 µ1 µ1 µ1

µ2 µ2 µ2 µ2

λ2 λ2λ2

Figure 4. 2D Markov chain for the uninterrupted offloading strategy

The states with cellular network are denoted {1, n}, and the
states with WiFi connectivity are denoted {2, n}. n corresponds
to the number of jobs in the system (queuing and in service).
Writing the balance equations for this chain gives:

⇡1,0(�1 + ⌘) = ⇡1,1µ1 + ⇡2,0⇠ (16a)
⇡2,0(�2 + ⇠) = ⇡2,1µ2 + ⇡1,0⌘ (16b)

⇡1,n(�1 + ⌘ + µ1) = ⇡1,n�1�1 + ⇡1,n+1µ1 + ⇡2,n⇠ (n > 0) (16c)
⇡2,n(�2 + ⇠ + µ2) = ⇡2,n�1�2 + ⇡2,n+1µ2 + ⇡1,n⌘ (n > 0) (16d)

The steady-state probability of finding the offloading system
in some region with WiFi unavailability (with only cellular
access) is ⇡1 = E[TOFF]

E[TON]+E[TOFF]
= ⇠

⌘+⇠

. Similarly, the steady-
state probability for the periods with WiFi availability is ⇡2 =

E[TON]
E[TON]+E[TOFF]

= ⌘

⌘+⇠

.
Let two quantities �⇤ and µ⇤ be defined as:

�⇤ = ⇡1 · �1 + ⇡2 · �2, (17)
µ⇤ = ⇡1 · µ1 + ⇡2 · µ2 . (18)

We define the probability generating functions for both Cel-
lular and WiFi states as:

G
i

(z) =
1
X

n=0

⇡
i,n

zn, |z|  1, 8i = 1, 2. (19)

After some calculation, yield:

(�1+⌘+µ1)G1(z) = �1zG1(z)+⇠G2(z)+
µ1

z
[G1(z)�⇡1,0]+⇡1,0µ1,

(20)
(�2+⇠+µ2)G2(z) = �2zG2(z)+⌘G1(z)+

µ2

z
[G2(z)�⇡2,0]+⇡2,0µ2.

(21)
After solving the Eqs. (20) and (21), we have:

g(z)G1(z) = ⇡2,0⇠µ2z + ⇡1,0µ1

⇥

⇠z + �2z(1� z)� µ2(1� z)
⇤

,

where g(z) = �1�2z3� (⌘�2+ ⇠�1+�1�2+�1µ2+�2µ1)z2+
(⌘µ2 + ⇠µ1 + µ1µ2 + �1µ2 + �2µ1)z � µ1µ2, and it is proven
that g(z) has only one root z0 in the interval (0, 1) [20].

After some algebraic manipulations, we obtain:

⇡1,0 =
⇠(µ⇤ � �⇤)z0

µ1(1� z0)(µ2 � �2z0)
, (22)

⇡2,0 =
⌘(µ⇤ � �⇤)z0

µ2(1� z0)(µ1 � �1z0)
. (23)
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Once the values of ⇡1,0 and ⇡2,0 have been established, the
probability generating functions can be calculated as:

G1(z) =
⇠(µ⇤ � �⇤)z + ⇡1,0µ1(1� z)(�2z � µ2)

g(z)
, (24)

G2(z) =
⌘(µ⇤ � �⇤)z + ⇡2,0µ2(1� z)(�1z � µ1)

g(z)
. (25)

By using E[N
i

] =
P1

n=0 n⇡i,n

= dG
i

(z)/dz|
z=1, we get the

average number of jobs in the system [20]:

E[N ] = E[N1] + E[N2]

=
�⇤

(µ⇤ � �⇤)
+

µ1(µ2 � �2)⇡1,0 + µ2(µ1 � �1)⇡2,0

(⇠ + ⌘)(µ⇤ � �⇤)

� (µ1 � �1)(µ2 � �2)

(⇠ + ⌘)(µ⇤ � �⇤)
, (26)

which contains a root of third order equation, and thus is difficult
to calculate. However, when taking the balance traffic condition
in Eq. (15) into account, it can be further simplified.

In such a situation, let µ1/�1 = µ2/�2 = ✓, and then we
substitute them into ⇡1,0, ⇡2,0 and g(z), it is easy to prove that
⇡1,0/⇡2,0 = ⇡1/⇡2 and g(✓) = 0.

Therefore, we have the decomposition:

g(z) = �1�2(z � ✓)(z2 � kz + ✓), (27)

where k = ⌘/�1+⇠/�2+1+✓. The root of interest z0, which is
located in the interval (0, 1), is equal to z0 = (k�

p
k2 � 4✓)/2.

Finally, we get ⇡
i,0 = ⇡

i

· (1 � 1/✓) (8i = 1, 2), then ⇢ =
1 � (⇡1,0 + ⇡2,0) = �⇤/µ⇤. By using induction, it is easy to
prove ⇡

i,n

= ⇡
i

· (1� ⇢)⇢n [20].
Therefore, the partial generating functions are derived as:

G
i

(z) = ⇡
i

(1�⇢)
1
X

n=0

(z⇢)n = ⇡
i

· µ
⇤ � �⇤

µ⇤ � �⇤z
, 8i = 1, 2, (28)

and then by using E[N
i

] =
P1

n=0 n⇡i,n

= dG
i

(z)/dz|
z=1, we

obtain:

E[N1] = ⇡1 ·
�⇤

µ⇤ � �⇤ , (29)

E[N2] = ⇡2 ·
�⇤

µ⇤ � �⇤ . (30)

The mean number of jobs in cloud queue is calculated as:

E[N
c

] =
�
c

µ
c

. (31)

Since Pr{e
i

= 1} = ⇡
i

, according to Eq. (6), we have:

Pr{N
i

> 0, e
i

= 1} = ⇢
i

· ⇡
i

, 8i = 1, 2. (32)

Further, by substituting Eqs. (29)–(32) into Eq. (12), we can
formulate the explicit expressions of the ERWP metric for the
uninterrupted offloading strategy.

IV. INTERRUPTED OFFLOADING STRATEGY

In this section, we discuss the interrupted offloading strategy
for remote execution. First, we formulate the queueing model
with cellular and WiFi networks, and then we use queueing
analysis to derive the ERWP metric based on an M/M/1 queue
and an M/M/1 queue with intermittent server availability.

A. Problem Formulation

The interface selection problem in offloading systems is mod-
elled as the decision to which queue an arriving job should be
assigned. In this decision the offloading dispatcher takes both
performance and energy costs into account. This seems natural
for heterogeneous servers where a job needs a different amount
of energy and time to be served by different servers. For example,
whereas assigning each job to a low power server would be
beneficial from the energy consumption perspective at low loads,
such a strategy may end up in difficulties at higher loads as
the response time increases rapidly [21]. Indeed, the energy-
performance tradeoff takes on different explicit expressions
under different offloading strategies.

As shown in Fig. 5, we consider a queuing model that consists
of two parallel queues of cellular and WiFi with work conserving
queuing disciplines. �1 and �2 are the mean rates of jobs into
Queue 1 and Queue 2. Since the original offloading jobs arrive
at the system according to a Poisson process with rate �

c

, one
strategy would be random assignment into Queue i (i 2 {1, 2}),
which results in independent Poisson processes with rate �

i

, and
we have �1 + �2 = �

c

.

µc

WiFi

Cellular

Cloud

ONOFF
η

ξ

λ1

λ2

s1, p1

s2, p2

TransmittingUnconnected

λc α 2

Figure 5. Interrupted offloading strategy with cellular and WiFi networks

The two queues have the following behavior:

• Queue 1: When a job is offloaded to the cloud via a cellular
network, there is queueing due to the transmission speed of
the cellular link. Costs arise in terms of transmission delays
(queueing and actual transmission time) and transmission
energy consumption. Server 1 is always available since the
cellular connection is always on.

• Queue 2: When a job is offloaded to the cloud via a WiFi
network, there is queueing due to the transmission speed
of the WiFi link. We model the intermittent availability of
hotspots as a FCFS queue with occasional server break-
down. The availability of Server 2 is governed by an IPP
with exponentially distributed ON-OFF periods. Specifi-
cally, the server is either in ON-state processing the existing
jobs, or in OFF-state during which no job receives service.
We can assume that the service station fails from time
to time and resumes its operation after a random time.
When a server recovers, it continues to serve the customer
whose service has been interrupted, i.e. the work already
completed is not lost (cf. data transfers with resume).

Similarly, the cloud queue is a pure delay station at which jobs
spend an exponentially distributed amount of time with mean
equal to 1/µ

c

time units.
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B. Metric-Based Analysis

The Markov chains for the interrupted offloading strategy in
Fig. 5 can be decomposed into two separate chains, as shown in
Fig. 6.

  ON, 0   ON, 1  ON, n-1   ON, n ON, n+1

λ1

µ1 µ1 µ1 µ1

λ1 λ1 λ1

(a) Queue 1

  ON, 0   ON, 1  ON, n-1   ON, n ON, n+1

  OFF, 0   OFF, 1 OFF, n-1  OFF, n OFF, n+1

η η η η ηξ ξ ξ ξ ξ
λ2 λ2 λ2 λ2

µ2 µ2 µ2 µ2

λ2 λ2 λ2 λ2

(b) Queue 2

Figure 6. Markov chains for interrupted offloading strategy with cellular and
WiFi networks

1) Queue 1: the Markov chain is depicted in Fig. 6(a), and
the expected number of jobs can be calculated as:

E[N1] =
⇢1

1� ⇢1
, (33)

where the workload for Queue 1 during the busy period is ⇢1 =
�1/µ1 = �1E[X]/s1.

2) Queue 2: refers to offloading jobs from the mobile device
to the cloud via a WiFi network, which is modelled as an
M/M/1-FCFS queue with intermittently available service. The
Markov chain is depicted in Fig. 6(b), which is equivalent to
assuming that �1 = �2 and µ1 = 0 in Fig. 4.

Writing the balance equations for this chain gives:

⇡OFF,0(�2 + ⌘) = ⇡ON,0⇠ (34a)
⇡ON,0(�2 + ⇠) = ⇡OFF,0⌘ + ⇡ON,1µ2 (34b)
⇡OFF,n(�2 + ⌘) = ⇡OFF,n�1�2 + ⇡ON,n

⇠ (34c)
⇡ON,n

(�2 + ⇠ + µ2) = ⇡ON,n�1�2 + ⇡ON,n+1µ2 + ⇡OFF,n⌘ (34d)

After simple algebraic operations of equations in Eq. (34) yields:

(⇡OFF,n + ⇡ON,n

) · �2 = ⇡ON,n+1µ2 (n = 0, 1, 2, . . . ). (35)

Summation of Eq. (35) over all n, we obtain:

⇡ON,0 = ⇡ON � �2

µ2
, (36)

where ⇡ON,0 = ⇡2,0, ⇡ON = ⇡2 and ⇡OFF = ⇡1.
According to Eqs. (17) and (18), we have �⇤ = �2 and µ⇤ =

⇡2µ2. After substituting the above values in Eq. (26), we derive
the mean number of jobs in Queue 2 as:

E[N2] = E[NOFF] + E[NON]

=
�⇤

(µ⇤ � �⇤)
+

µ2�2⇡2,0 � (��2)(µ2 � �2)

(⇠ + ⌘)(µ⇤ � �⇤)

=
�2

⇡2µ2 � �2
+

⇡1�2µ2

(⇡2µ2 � �2)(⇠ + ⌘)
. (37)

3) Optimization: Since Server 1 is always available, we have
Pr{e1 = 1} = 1 and the fraction of time that Server 2 is
available to process jobs is: Pr{e2 = 1} = ⌘

⇠+⌘

= ⇡2, where as
the recovery rate ⌘ ! 1, the availability of Server 2 tends to
be 1. Then we have:

Pr{N1 > 0, e1 = 1} = ⇢1, (38)

Pr{N2 > 0, e2 = 1} = ⇢2 · ⇡2. (39)

Further, by substituting Eqs. (33), (37)–(39) into Eq. (12),
we can formulate the optimization of the ERWP metric for the
offloading assignment as:

�min
i

= arg min
�i

ERWP. (40)

We seek the arrival rate �min
i

to Queue i such that ERWP is
minimised when both queues are in operation. We can apply
Newton’s method to find �min

i

iteratively [22].
In other words, arriving jobs are assigned to Queue 1 and

Queue 2 according to the optimized objective defined in Eq.
(40), minimizing the ERWP metric.

V. PERFORMANCE EVALUATION

A. A Realistic Offloading Scenario

Different wireless network interfaces vary in many ways,
which we have to capture in simplified form in just few parame-
ters. Cellular networks such as EDGE and 3G, usually have much
higher availability than WiFi, but the transmission rate of WiFi
is higher. Besides, the WiFi interface is more energy-efficient
than the cellular interface [8]. These imply that WiFi is much
faster and more energy-efficient than the cellular interface for
transmitting the same quantity of data. Therefore, we consider
here a simple scenario where the transmission rate of the cellular
network is smaller than that of WiFi, i.e. s1 < s2 and the power
consumption when transmitting jobs via the cellular link is larger
than the WiFi link, i.e. p1 > p2.

Using measurements from real traces in [15], the average data
rates for the cellular network and WiFi are set as s1 = 800 Kbps
and s2 = 2 Mbps, respectively. The mean job size is 125 KB.
According to the power models developed in [23], we set the
power coefficients p1 = 2.5 W, p2 = 0.7 W and p

m

= 2 W,
respectively. Besides, suppose that the total job arrival rate for
offloading is � = 0.6 packet/s, the mobile service rate µ

m

= 2
tasks/s, the cloud service rate µ

c

= 5 tasks/s and both the failure
rate ⇠ and recovery rate ⌘ of Server 2 are equal to 1.

B. Performance Analysis

We first analyse the case when the offloading probability ⇡ =
0.5, indicating that half of the offloadable jobs are offloaded to
the cloud, while the rest are executed on the mobile device.

From Fig. 7, we can observe that the uninterrupted offloading
strategy performs significantly better than the interrupted one
when ! is small, but as ! approaches to 1, the interrupted
strategy performs much better. This means that when considering
energy consumption more important than response time (for
delay-tolerance applications), it is better to use the interrupted
strategy; otherwise when considering response time more impor-
tant (for delay-sensitive applications), the uninterrupted strategy
is much more preferred, which fully uses the unavailable periods
of WiFi by transmitting with a cellular network. Since energy
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Figure 7. Comparison of two offloading strategies under arrival rate �
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Figure 9. Comparison of two offloading strategies under cloud service rate µc

is measured per job, when the weight is on energy consumption
only the metric is for both strategies insensitive to the job arrival
rate. As the arrival rate of the offloadable jobs � increases,
none of the offloading strategies can achieve a low ERWP value.
However, the uninterrupted strategy varies less. The interrupted
strategy is more sensitive to the job arrival rate.

Similar observations can be made from Fig. 8 or sensitivity
to the recovery rate ⌘. The interrupted strategy suffers more
from long repair times than the uninterrupted strategy. This is
reasonable, due to the lower WiFi availability, resulting in most
of the jobs being offloaded through the slower and more energy
consuming cellular network interface. When ! < 0.85, (i.e.
response time is more important) the interrupted strategy also
performs much better as ⌘ increases. The reason is that arriving
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Figure 10. Comparison of two offloading strategies under ! parameter
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Figure 11. Comparison of two offloading strategies under different mobile
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Figure 12. Comparison of of two offloading strategies based on ERWS and
ERWP metrics

jobs to the WiFi queue have a higher probability to be offloaded
to the cloud. However, with more importance being given to the
energy consumption, this strategy performs much worse as ⌘
increases and the down-times become less.

In Fig. 9, it is observed that the faster the cloud serves, the
lower the ERWP value is. The cloud service rate µ

c

has a great
influence on the mean response time since we have to wait for
the cloud service to be finished. But the cloud service rate has
little influence on the energy consumption since the jobs are
processed remotely rather than locally on the mobile device.

Then, we dynamically change the offloading probability ⇡ to
find the optimal offloading decision.

As shown in Fig. 10, when ! is small (! = 0.2), it is not
worth offloading any job in the interrupted strategy, while it
is better to offload half of the offloadable jobs to the cloud
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in the uninterrupted strategy. However, with more focus on
the energy consumption (! approaches to 1), it is better to
offload all the jobs for both strategies; meanwhile the interrupted
offloading strategy obtains lower values for the metrics than the
uninterrupted one.

The ERWP metric can be treated as the ERP metric when we
set the weighting parameter ! = 0.5, i.e. when both the energy
consumption and the response time have the equal importance.
From Fig. 11, it is observed that the uninterrupted strategy should
always be preferred. When the mobile service rate µ

m

is very
small, it is worth offloading all the jobs to the cloud with both
offloading strategies. Since the local execution is very slow it is
beneficial to offload all jobs. However, when µ

m

reaches some
value, it is better not to offload since the cost saved from remote
execution is not enough to cover the extra cost for offloading.

In Fig. 12 we compare the ERWP metric with the ERWS
metric. When the power p2 changes slightly, e.g. from 0.7 W
to 0.8 W, it is difficult to tell the difference between the two
offloading strategies according to the ERWS metric depicted in
Fig. 12(a), while it is very clear to see the difference according to
the ERWP metric shown in Fig. 12(b). It seems that the ERWP
metric is much more sensitive to the large scale and can capture
small changes when the ERWS metric has the disadvantage of
a linear combination of two criteria on different scales.

VI. CONCLUSIONS

In this paper, we have developed two offloading strategies
to leverage the complementary strength of WiFi and cellu-
lar networks. We have formulated queueing models to carry
out optimality analysis of the energy-performance tradeoff for
mobile cloud offloading systems based on the ERWP metric,
which captures both energy and performance metrics and also
intermittently available access links. The ERWP metric combines
the advantages of both an additive metric (ERWS) and a product
metric (ERP), i.e. it not only assigns different importance weights
to energy consumption and response time, but also is insensitive
to criteria on different scales.

We find that for delay-tolerant applications, it is better to use
the interrupted strategy instead of the uninterrupted one, while
for delay-sensitive applications, the uninterrupted strategy shows
very good results and outperforms the interrupted offloading
one by a significant margin. The offloading probability closely
depends on the mobile service rate, the cloud service rate and
the weighting parameter. Slow mobile service rate and fast cloud
service rate will result in more jobs to be offloaded to the cloud.
We can thus judiciously make the offloading decisions of whether
to offload or not and how much to offload that optimise the
ERWP metric.

The proposed queueing model can be used to describe com-
plex and realistic offloading systems. So far, the assumption that
the WiFi data rate and power consumption remain constant in
all the regions within WiFi coverage is somehow unrealistic.
Therefore, it is worth considering scenarios where they might
be different at each connected access point in the future.
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