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a b s t r a c t 

As a powerful tool for machine learning on the graph, network embedding, which projects 

nodes into low-dimensional spaces, has a variety of applications on complex networks. 

Most current methods and models are not suitable for bipartite networks, which have 

two different types of nodes and there are no links between nodes of the same type. Fur- 

thermore, the only existing methods for bipartite network embedding ignore the internal 

mechanism and highly nonlinear structures of links. Therefore, in this paper, we propose 

a new deep learning method to learn the node embedding for bipartite networks based 

on the widely used autoencoder framework. Moreover, we carefully devise a node-level 

triplet including two types of nodes to assign the embedding by integrating the local and 

global structures. Meanwhile, we apply the variational autoencoder (VAE), a deep genera- 

tion model with natural advantages in data generation and reconstruction, to enhance the 

node embedding for the highly nonlinear relationships between nodes and complex fea- 

tures. Experiments on some widely used datasets show the effectiveness of the proposed 

model and corresponding algorithm compared with some baseline network (and bipartite) 

embedding techniques. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Network embedding (NE), which aims to learn the latent representation of nodes that can be used for a variety of

tasks such as link prediction, community detection and node classification in complex networks [1] , has recently become

a popular research problem based on the neural network and deep learning [2,3] . In particular, NE is typically denoted as

a pairwise proximity function that represents each node as a feature vector based on the proximity, the node content or

the label of the network. Based on the diversity of notations, motivations, and conceptual models, many different types of

methods have been proposed for homogeneous NE [4] , such as matrix factorization-based approaches [5,6] , random walk-

based approaches [7,8] and graph convolutional approaches [9,10] . 

A large number of methods and models for homogeneous NE have been developed and have shown good performance

and effectiveness in certain tasks on many networks. However, these methods cannot be well applied to the bipartite net-
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work, which usually consists of two types of nodes and the links exist only between different types, such as the user-item

networks in recommender systems [11,12] and author-venues networks in DBLP [13] . There are two primary reasons why

these methods fail. Firstly, in the homogeneous NE, the node embedding is learned all based on a hypothesis that the rep-

resentations of two nodes should be similar or closer if there is a direct link between them and vice versa, which is not

valid in the bipartite network. Existing links in the bipartite network are usually called distinct relations, which depict the

similarity between two types of nodes, and the proximity among nodes of the same type is called implicit relation, though

there are no direct links in the network we have observed. Secondly, the internal characteristics and mechanisms of the bi-

partite network have not been preserved, such as the power-law degree distribution of nodes based on random walk-based

methods, which has been elaborated in [14] . 

As far as we know, a class of NE methods can be used for bipartite networks, i.e., methods of embedding heterogeneous

information networks (HINs), which usually have more than one type of nodes and links, so the bipartite network can be

as a special case. A typical type of method of NE for HINs is based on meta-path, such as Metapath2Vec++ [15] , which

formalizes meta-path-based random walks to construct the heterogeneous neighborhood of a node and then leverages a

heterogeneous skip-gram model to learn the node embeddings of HIN. However, these methods have two limitations: (1)

the difference between the distinct and implicit relationships with different link semantics in bipartite networks is not

considered; (2) the imbalance problem, i.e., the numbers of two types of nodes in the bipartite network are usually unequal,

or even quite different when applying the methods of NE for HINs, and the similarity between different types of nodes has

a larger proportion, resulting in worse embeddings for applications. 

In addition to traditional methods like singular value decomposition (SVD) and matrix decomposition, which usually have

high computational complexity, BiNE [14] has been recently proposed for NE of the bipartite network. In BiNE, an optimiza-

tion framework is proposed that learns the embedding of nodes based on a well-designed random walk and accounts for

both the explicit and implicit relations. However, this method still faces two shortcomings: (1) the highly nonlinear relation-

ships from the embeddings to links that are ubiquitous in complex networks are neglected; (2) there are many parameters

that need to be adjusted, which weakens the representation result and limits its application. 

Fortunately, a widely used framework, autoencoder (AE), designed to model the nonlinear relationships of data [16,17] ,

has been developed to the NE, such as SDNE [18] , which is a semi-supervised deep learning model capable of capturing the

highly nonlinear structure with multiple layers of nonlinear functions. Furthermore, the SDNE preserves the local network

structure by exploiting the first-order and second-order proximity. However, compared with the AE, the variational autoen-

coder (VAE) [19] has been successfully applied to image modeling and recommender systems. It is also extended to NE in

homogeneous networks, such as DVNE [20] and the deep generative model by exploiting the VAE [21] , analogously, these

methods have the same shortcomings as the methods previously used for the NE in homogeneous networks. Considering

these NE methods based on the AE and VAE, it is necessary to design a new representation learning method for bipartite

network which can model its intrinsic statistical properties. 

To address these challenges, in this paper, we propose a new deep learning method called BiVAE, to learn the embedding

for bipartite networks based on the widely used autoencoder framework. In particular, we develop VAE to enhance the node

embedding for the highly nonlinear relationships between nodes and complex features. To fill in the gap of VAE and NE for

bipartite networks, we carefully devise the triplet of node-level including the two types of nodes to assign the embeddings

by integrating the local and global structure, for one node with the only type of itself in the triple. We use a generic VAE

framework to represent and reconstruct the global structure of the node. For the other two nodes with the same type,

we design a unified VAE framework for parameter sharing. We also propose a mechanism to preserve the local structure

via the distinct relations of the bipartite networks. Compared with the previous NE methods, our proposed method is well

designed based on the inherent properties of bipartite networks. It can effectively deal the links between different types of

nodes, and model the intrinsic similarity between nodes of the same type although no links are observed. In summary, the

contributions of this paper can be summarized as follows: 

• We propose BiVAE, a deep learning framework based on the variational autoencoder for network embedding of bipar-

tite networks, which could model the highly nonlinear relations effectively and integrate the global and local structural

features of the network solidly. 

• A triplet consisting of two nodes of the same type and one node of another type, is proposed to enhance the node

embedding of bipartite networks based on inherent characteristics. 

• Experiments on some widely used datasets show that the effectiveness of the proposed model and corresponding algo-

rithm compared to some state-of-the-art homogeneous and bipartite network embedding techniques. 

The rest of the paper is organized as follows. In Section 2 , we discuss the existing works related to this paper. In

Section 3 , we briefly introduce the bipartite network and its embedding. The proposed model BiVAE is presented in

Section 4 . In Section 5 , we implement our proposed method in experiments and show the comparisons with the baseline

approaches. Section 6 concludes the paper and highlights future work. 

2. Related work 

Complex network analysis has a variety of applications in different fields [22] . Community detection, link prediction and

identifying influential nodes in complex networks are important and difficult tasks [23,24] . Network embedding, projecting
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the topology structure into a lower dimensional continuous space, is an effective dimension reduction [25] framework on

complex networks and has devoted to different network tasks. In this paper, we focus on the representation learning of

bipartite networks based on deep learning. So here we introduce the popular network embedding methods as follows. 

Homogeneous network: Most of the previous embedding methods and models were designed only for homogeneous net-

works with only one type of nodes and edges [26] . These methods usually have two goals, i.e., reconstruction and inference,

so the network structure and its properties should be preserved [1] . As mentioned above, the commonly used models can be

divided into matrix factorization-based, random walk-based, and graph neural network (GNN)-based methods [27] . Lapla-

cian eigenmaps and non-negative matrix factorization are commonly used in network embedding based on the low-rank

approximation [5] , however, these methods usually have high computational complexity. The core idea of the random walk-

based methods is similar to the classic Word2Vector, in which a word (one node in the network) embedding vector should

be able to reconstruct the vectors of its neighborhoods defined by a co-occurrence rate in the documents [28,29] . DeepWalk

[7] and Node2Vec [8] are representative methods that use different random walk strategies. As discussed in the introduction,

the intrinsic challenge of network embedding is to find a mapping function from the original network to the embedding

space, which is usually high nonlinear, so the methods based on GNNs show competitive and preferable performance. Some

representative methods, such as SDNE [18] , SDAE [30] , and SiNE [31] , have been proposed and applied to various tasks. 

Heterogeneous information network (HIN): Due to the heterogeneity of nodes and edges in the HIN, the most important

step is to get the proximity of the same and different types of nodes in HINs. Currently, heterogeneous network represen-

tation learning can be divided into three types: random walk-based methods, network decomposition methods and deep

learning methods. Random walk-based methods usually use meta-paths [32] , a composite relation connecting two objects,

to capture the structure and rich semantic information. Metapath2vec [15] first uses meta-paths to guide random walks over

a HIN, and then feeds the walk sequence to a SkipGram model [28] to obtain node embeddings. HIN2Vec [33] cannot only

learn the representation of nodes but also the vector representation of meta-paths. In addition, JUST [34] uses random walks

with JUmp and STay strategies that do not involve capturing node embeddings of any meta-path. The network decomposi-

tion methods usually decompose heterogeneous networks into several simple networks, perform representation learning on

these networks, respectively, and finally integrate these representations. PTE [35] decomposes the heterogeneous network

into three bipartite networks, and perform representation learning on the decomposed subnetworks based on the skip-gram

model. 

In recent years, some work has begun to use deep learning to model heterogeneous network data. SHINE [36] utilizes

multiple deep autoencoders to extract highly nonlinear user representations from the sentiment network, social network and

profile network, respectively. The three user representations are then fused together through a specific aggregation function

to obtain the final node representation. As a novel and powerful graph representation learning method, GNN has shown ex-

cellent performance in network analysis, which has aroused wide research interest. HAN [37] leverages node-level attention

and semantic-level attention to learn the importance of nodes and meta-paths in a hierarchical manner, respectively, which

enables the learned node embeddings to better capture the complex structure and rich semantic information. 

Bipartite network: As a typical type of heterogeneous information networks, the bipartite networks also have a variety of

applications, such as for recommendation systems. To the best of our knowledge, BiNE [14] and BiNE-IEI [38] are the only

embedding methods for the bipartite network at present. The former learns the node representations for bipartite networks

by purposefully performing biased random walks, which can capture the implicit relations of the networks, and the later

models the nonlinear generation mechanism of links via the autoencoder and decoder models. 

3. Problem and definitions 

In this section, we introduce the bipartite network and its embedding, as a preliminary introduction to the proposed

model later. 

We reiterate that there are two types of nodes in the bipartite network, and the links only exist between different

types of nodes. Therefore, we define a bipartite network as G = (U, V, E) , where U = { u 1 , u 2 , · · · , u n } and V = { v 1 , v 2 , · · · , v m 

}
represent node sets of both two types, respectively, E = { e 1 , e 2 , · · · , e l } denotes the edge set. Here n = | U| , m = | V | and

l = | E| denote the number of nodes of different types and the links of G , respectively, A = { a i } n i =1 
∈ R n ×m is the adjacency

matrix of G and a i = { a i j } m 

j=1 
, where a ij > 0 indicates that there exists a link between nodes u i and v j , and otherwise a i j = 0 .

Bipartite network embedding aims to find a function that converts each node of both two types of the network into a

low-dimensional representation as a vector. 

Before introducing the framework of our model, we first describe some notations used in this paper as Table 1 , and

furthermore, we give formal definitions related to our model as follows. 

Definition 1 (The Set of Valid Triplets). Let M = D ∪ S denote the set of all valid triplets, where D = { (i, j, k ) |∀ v i ∈
, ∀ u j , u k ∈ U, a i j > 0 , a ik = 0 } and S = { (i, j, k ) |∀ u i ∈ U, ∀ v j , v k ∈ V, a i j > 0 , a ik = 0 } . Each triplet of M is composed of two types

of nodes, in which node i is the neighbor of node j but not the neighbor of node k . 

Definition 2 (Local Network Structure). For any pair of nodes (u i , v j ), if they are linked by an observed edge, there exists

local structure between them and can be defined as: { a ij | a ij > 0, ∀ u i ∈ U , ∀ v j ∈ V }, which are usually described by the similarity

between directly connected nodes. 

Definition 3 (Global Network Structure). The global network structure between nodes can be described by the similarity of

their neighborhood structures. For any node u i ∈ U, the set of its neighbors is formulated as Nb u i = { v j |{ a i j > 0 } m 

j=1 
} . Similarly,
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Table 1 

Terms and notations. 

Symbol Definition 

G = (U, V, E) A bipartite network 

U, V The set of nodes of two types in G 

E ⊆U × V The set of links in G 

n, m, l The number of two type nodes and links 

x = { x i } The i th column of A 

y = { y j } The j th row of A 

K The number of layers in BiVAE model 

W k , ˆ W k The k th layer weight matrices 

b k , ˆ b k The k th layer biases 

λ1 , λ2 The balanced parameters 

z i , z j The embedding vectors of nodes u i and v j 

 

 

 

 

 

 

 

the neighbors of any node v j ∈ V is defined as: Nb v j = { u i |{ a i j > 0 } n 
i =1 

} . The global structure between any pair of nodes (u i , v j )

is determined by the similarity of Nb u i and Nb v j . If none of the nodes linked with both u i and v j , there is no global structure

between them. 

Definition 4 (First Order Structure). For each node u i ∈ U or v j ∈ V, we denote its neighbors as the First Order Structure of

the node. 

Definition 5 (Second Order Structure). For the node u i , its neighbors is denoted as the set Nb u i , for each node v j ∈ Nb u i ,

we set a new set U 

′ 
i 

= ∪ Nb v j including the node u i , then, for each u k ∈ U 

′ 
i 
, we set V ′ 

l 
= ∪ Nb u k , so we could denote the Second

Order Structure of node u i as V ′ 
l 
/Nb u i . For each node in V, it has a similar definition. 

4. Proposed model 

In this section, we present our proposed model named BiVAE, as shown in Fig. 1 . In detail, we propose a deep architec-

ture consisting of three parallel deep VAEs that capture the highly nonlinear structure of the bipartite network and embed
Fig. 1. The framework of the proposed BiVAE. For a given bipartite network, V and U represent sets of the two types of nodes, case 1 and case 2 are the 

set of triplets as we have denoted. x and y represent vector representations of the two nodes of type V and U , respectively. For each triplet i, j, k , we take 

the VAE to encode the corresponding nodes and design the parameter sharing for the decoding process on nodes with the same types. 
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nodes as Gaussian distributions to capture the uncertainty [39] . In order to preserve the global structure of the network,

we reconstruct the neighborhood structure of each node by VAEs. Furthermore, we notice the similarity between neighbor

nodes is larger than that between non-neighbor nodes. Therefore, we define a set of all valid triplets to preserve the local

structure of the network while enhancing the effect of network embedding. 

In the following subsections, we will describe the details of our model implementation and the loss functions. Because

three parallel deep VAEs only differ in their inputs, we will focus on illustrating the detailed process when taking x as the

input data. The same process is applied for the other two deep VAEs when taking y as the input data. 

4.1. Encoder 

Given the adjacency matrix A , the high-dimensional vector representations of any node v i of type V and u j of type U are

formalized as x i and y j (the input data) separately, in which x i represents the i th column of A and y j represents the j th row

of A . For a deep VAE, given the input data x i , the output h 

i 
k 

of node i for the k th layer is shown as follows: 

h 

i 
1 = f 1 (W 1 x i + b 1 ) (1)

h 

i 
k = f 1 (W k h 

i 
k −1 + b k ) , k = 2 , · · · , K (2)

where f 1 is the tanh function of each layer. In the last layer of the encoder, we obtain the mean vector μi and the standard

deviation vector σ i of the input data distribution, which can be formulated as follows: 

μi = W μh 

i 
k + b μ (3)

σi = f 2 ((W σ h 

i 
k + b σ ) / 2) + 1 (4)

where W μ and W σ are the weight matrices, b μ and b σ are the bias vectors, and f 2 is the exponential linear unit func-

tion [40] . We use f 2 ((W σ h 

i 
k 

+ b σ ) / 2) + 1 to ensure that σ i is positive definite. Furthermore, we apply the reparameteriza-

tion trick to reparameterize variable z i . The computing process can be presented as follows: 

z i = μi + σi ∗ εi , εi ∼ N (0 , I ) (5)

where the value ε i is sampled form N (0 , I ) and z i ∈ R d . 

4.2. Decoder 

Reversely, the calculation processes in each decoder layer are as follows: 

ˆ h 

i 
K = f 1 ( ˆ W K+1 z i + 

ˆ b K+1 ) (6)

ˆ h 

i 
k = f 1 ( ˆ W k +1 ̂

 h 

i 
k +1 + 

ˆ b k +1 ) , k = K − 1 , · · · , 2 (7)

ˆ x i = f 1 ( ˆ W 1 ̂
 h 1 + 

ˆ b 1 ) (8)

where ˆ x i is the reconstructed data of x i . 

During the encoding and decoding process, we reconstruct the neighborhood structure of node i and preserve the global

structure. In order to enhance the embedding effect, we introduce the constraint of triplets. 

We need to emphasize that, although it seems that the technique used in our paper seems similar to that of DVNE [20] ,

it is fundamentally different from DVNE. In summary, the differences lie in three aspects. First, we are dealing with a very

different issue. DVNE mainly considers the classic complex network, and makes full use of the statistical characteristics of

that. However, our work mainly considers the bipartite network. According to the BiNE [14] , the bipartite network has some

very different statistical characteristics, such as it does not obey the power-law of degree distribution. Second, although we

all use the VAE framework, we have fully considered the characteristics (the bipartite network, which usually consists of

two types of nodes and the links exist only between different types) of the binary network. Third, although we all use Local

Structure and Global Structure in our technique, but they mean different meanings, and we fully consider the characteristics

of the bipartite network. 

4.3. Loss functions 

We try to develop effective loss functions to learn deeply learned feature and improve the embedding effect. 
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4.3.1. Triplet constraint 

Directly connected nodes are closer than that whose links do not exist. We define a set of all triplets M to restrain the

relations between nodes. Meanwhile, we use the 2th Wasserstein distance to measure the similarity between the distri-

bution of two nodes, which can speed up the calculation process and preserve the transitivity of similarity [20] , and the

formula is shown as: 

W 

′ 
2 (p i , p j ) 

2 = W 

′ 
2 (N (μi , �i ) , N (μ j , � j )) 

2 

= ‖ (μi − μ j ) ‖ 

2 

2 
+ ‖ (�1 / 2 

i 
− �1 / 2 

j 
) ‖ 

2 

F 
(9) 

where W 

′ 
2 

denotes the 2th Wasserstein distance, p i = N (μi , �i ) is the low dimensional Gaussian distribution of node i . We

focus on the diagonal covariance matrices, and thus �i � j = � j �i and �i = σ2 
i 

I. 

The relationships between two types of nodes under the constraint of triplets should satisfy the following inequality: 

W 

′ 
2 (p i , p j ) < W 

′ 
2 (p i , p k ) , ∀ (i, j, k ) ∈ M (10) 

The effect of network embedding can be enhanced under the constraint of triplets. 

4.3.2. Loss function of the local structure 

Given a triplet ( i, j, k ) ∈ M , the loss function of the local structure can be formulated as: 

L local = 

∑ 

(i, j,k ) ∈ M 

[ 
E 

′ 
i j 

2 + exp (−E 
′ 
ik ) 

] 
(11) 

The method is based on the energy between two nodes [39] , and we denote the energy between node i and node j as

E 
′ 
i j 

and E 
′ 
i j 

= W 

′ 
2 
(p i , p j ) . 

4.3.3. Loss function of the global structure 

Given a triplet ( i, j, k ) ∈ M , the loss function of the global structure is represented as follows: 

L global = 

∑ 

(i, j,k ) ∈ D 
( ‖ ( x i − ˆ x i ) � g i ‖ 

2 
2 + ‖ (y j − ˆ y j ) � z j ‖ 

2 

2 

+ ‖ (y k − ˆ y k ) � z k ‖ 

2 
2 ) + 

∑ 

(i, j,k ) ∈ S 
( ‖ ( y i − ˆ y i ) � z i ‖ 

2 
2 

+ ‖ (x j − ˆ x j ) � g j ‖ 

2 

2 
+ ‖ (x k − ˆ x k ) � g k ‖ 

2 
2 ) (12) 

where � denotes the Hadamard product. Given a triplet ( i, j, k ) of D , g i = { c i j } n j=1 
, z j = { c ji } m 

i =1 
and z k = { c ki } m 

i =1 
. 

In order to alleviate the sparsity problem of networks, we introduce the hyper-parameter β to impose more penalties on

the reconstruction error of non-zero elements than that of zero elements. For any node v i of type V and u j of type U , if v i 
and u j are not connected c i j = 1 , otherwise c i j = β > 1 . 

4.3.4. Joint loss function 

We incorporate the loss functions of the global and local structures of our proposed model into a joint objective function,

which is defined as follows: 

L = L local + λ1 L global + λ2 L reg (13) 

where L reg is the regularization term to prevent overfitting, which is shown as follows: 

L reg = 

K ∑ 

k =1 

( ‖ W k ‖ 

2 
F + ‖ ̂

 W k ‖ 

2 

F + ‖ b k ‖ 

2 
2 + ‖ ̂

 b k ‖ 

2 

2 ) 

+ ‖ W μ‖ 

2 
F + ‖ W σ‖ 

2 
F + ‖ ̂

 W K+1 ‖ 

2 

F + ‖ b μ‖ 

2 
2 

+ ‖ b σ‖ 

2 
2 + ‖ ̂

 b K+1 ‖ 

2 

2 (14) 

4.4. Training algorithm of BiVAE 

The entire learning procedure of BiVAE is presented in Algorithm 1 . To be specific, Line 1 initializes all weight matrices

and bias vectors; Line 2 uses negative sampling to construct the set of triplets M = D ∪ S; Line 3 − 9 learn the embeddings

and the gradient is calculated using back-propagation and Adadelta algorithm. 

Here we give the procedure of constructing the set of triplets in detail. For a node u i of type U , we randomly sample

two nodes v j and v k of type V , where v j ∈ Nb u i and v k / ∈ Nb u i . Thus we can obtain the set of triplets D . Reversely, given a

node v i of type V , we can construct the corresponding triplet using the same negative sampling method and obtain the set

of triplets S . 
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Algorithm 1 Training algorithm of BiVAE 

Input : Adjacency matrix of the bipartite network A , the set of all valid triplets M, the parameters β , λ1 and λ2 

Output : Network embeddings Z = { z i } n + m 

i =1 
and parameters W = { W 1 , · · · , W K , W μ, W σ } , b = { b 1 , · · · , b K , b μ, b σ } , ˆ W = 

{ ̂  W 1 , · · · , ˆ W K+1 } , and 

ˆ b = { ̂ b 1 , · · · , ̂  b K+1 } 
1: Initialize the parameters: θ = { W , ˆ W , b , ̂  b } 
2: Construct the set of triplets M via negative sampling 

3: for each triplet (i, j, k ) ∈ M do 

4: Feed the vector representations of each node in the triplet into encoders, obtain σ = { σi , σ j , σk } and μ = { μi , μ j , μk } 

5: Sample εi , ε j , and εk from three Gaussian distributions, respectively 

6: Calculate z i , z j and z k w.r.t. Eq. 5 

7: Decode the latent representations z i , z j and z k to obtain the reconstruction data 

8: Based on Eq.~ 13 update θ
9: Until convergence 

10: end for 

11: Obtain the network embeddings Z 

Table 2 

Statistics of the datasets. The | U | , | V | , | E | and Density are denoted as the number 

of left nodes, right nodes, edges, and its density of each bipartite network. 

Metric DBLP VisualizeUs Wikipedia Movielens Wikibooks 

| U | 6001 6009 15000 943 2884 

| V | 1308 3355 3214 1682 27732 

| E | 29256 38780 172426 100000 67613 

Density 0.4% 0.2% 0.4% 6.30% 0.08% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is worth noting that, compared with the VAE framework, our algorithm has the same computational complexity as that

for optimizing the VAE on networks. Although we need to consider all the nodes with different types, the bipartite network

is usually much more sparse for that there are no links between nodes with the same type. Considering the optimization

mechanism of our model, it is based on the negative sampling and stochastic gradient descent, our algorithm does not

increase the computational complexity. Furthermore, as we know, the BiNE [14] takes the random walk mechanism and

usually has higher computational complexity than the AE and VAE framework. 

5. Experiments and analysis 

In this section, we introduce some datasets and baselines that are used in our paper, and then we give experimental

results on different network tasks. 

5.1. Datasets 

In order to evaluate the effectiveness of our proposed framework, we use three benchmark datasets: DBLP, 1 VisualizeUs, 2

Wikipedia, 3 Movielens 4 and Wikibooks. 5 The bipartite network constructed from DBLP dataset is the publish bipartite net-

work, where the links mean the publishing relations between the authors and the venues. The VisualizeUs contains the

bipartite picture tagging network, where the links denote the tagging relations between pictures and tags. The network of

Wikipedia contains the edit relationships between authors and pages. This Movielens network consists of 10 0,0 0 0 usermovie

ratings, an edge between a user and a movie represents a rating of the movie by the user. The Wikibooks is a bipartite edit

network of the French Wikipedia, it contains users and pages from the French Wikipedia, connected by edit events and each

edge represents an edit. We summarize the statistics of these datasets in Table 2 . 

5.2. Baselines 

In terms of link prediction tasks and recommendation tasks, we compare BiVAE with the following three categories of

methods for evaluations: 
1 http://dblp.uni-trier.de/xml 
2 http://konect.uni-koblenz.de/networks/pics _ ti . 
3 http://konect.uni-koblenz.de/networks/wikipedia _ link _ en . 
4 http://konect.uni-koblenz.de/networks/movielens-100k _ rating . 
5 http://konect.uni-koblenz.de/networks/edit-frwikibooks . 

http://konect.uni-koblenz.de/networks/pics_ti
http://konect.uni-koblenz.de/networks/wikipedia_link_en
http://konect.uni-koblenz.de/networks/movielens-100k_rating
http://konect.uni-koblenz.de/networks/edit-frwikibooks
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1) For the evaluations of link prediction tasks, we use our previous proposed methods [41] , including Common Neighbors

(CN), Jaccards Index (JC), Adamic Adar (AA), and Preferential Attachment (PA), which are based on the topological struc-

ture in bipartite networks. 

2) We compare our algorithm for the Top- N item recommendation tasks with the following methods: 

• BPR [42] : Bayesian Personalized Ranking (BPR) is a pairwise ranking approach which is widely used for item recom-

mendation tasks. 

• RankALS [43] : It is a method for personalized ranking by minimizing a ranking objective function rather than the

conventional prediction mean squared error. 

• FISM [44] : It is an item-based method for top- N recommendation tasks and learns the item-item similarity matrices,

which can alleviate the sparsity of the datasets. 

3) Compared to BiVAE, the following methods are based on network embedding and can be applied to the link prediction

and recommendation tasks. 

• DeepWalk [7] : It can learn the representations of nodes by performing the truncated random walks. 

• LINE [45] : This method is designed to preserve the first-order and second-order similarities when the nodes of net-

works are embedded into the low-dimensional space. 

• Node2vec [8] : This method designs a biased random walk strategy to generate the corpus of node sequences. 

• Metapath2vec++ [15] : This is a heterogeneous network embedding method by performing the meta-path-guided ran-

dom walk. 

• BiNE [14] : This is a bipartite network embedding method that can model the explicit and implicit relations. 

5.3. Parameter settings 

We use an encoder and a decoder with a single hidden layer. The dimension of each layer is 512 − 128 − 512 . Besides,

the parameter β of reconstruction error for non-zero elements is set to 5. The balanced hyper-parameters of the overall loss

function is set to λ1 = 20 and λ2 = 0 . 02 , respectively. The gradient is calculated using back-propagation and the parame-

ters are optimized using Adadelta. In addition, the parameters for all the baselines are tuned to be optimal for the model

mentioned in their own papers. 

Furthermore, to analyze the influence of sampling mechanism in the algorithm of our model on different tasks [46,47] ,

we design a new sample method instead of the random sampling on the non-links of the network when training the model.

In detail, it samples the non-links from the Second Order structure of each node based on our Definitions 4 and 5. We set

this as another version of our model BiVAE , called BiVAE+local_ns . We also give its results on different tasks. 

5.4. Link prediction 

In this task, we take each node pair without edges as a negative instance, while the link is treated as a positive instance.

For DBLP, Wikipedia, Movielens and Wikibooks datasets, we randomly sample 60% of the instances as the training samples

and use the left instances as the test samples. After the training, we can obtain the vector representations of the nodes,

and concatenate the representations of two nodes in networks to obtain the vector representation of an edge. Then, the

representation of edges are treated as features and we take whether a node pair has an edge as the ground truth. We use

the area under the ROC curve (AUC-ROC) and the Precision-Recall curve (AUC-PR) as the evaluation metrics [14] . The results

of the link prediction tasks are shown in Table 3 . Note that the symbol “N/A” in Table 3 indicates that the result of the link

prediction task cannot be computed, which is due to some baselines cannot be applied to large-scale networks. From the

results, the main observations and analysis are as follows: 

• Tables 3 and 4 show that the BiVAE and BiVAE+local_ns outperform all baselines based on the network topological

structure in all the datasets. This is because these baselines only consider the local or global network structure. 
Table 3 

Link prediction on DBLP and Wikipedia. 

Performance(%) DBLP Wiki-pedia 

AUC-ROC AUC-PR AUC-ROC AUC-PR 

CN 82.85 N/A 86.85 90.68 

JC 81.05 N/A 63.90 73.04 

AA 82.70 N/A 87.37 91.12 

PA 81.05 N/A 90.71 93.37 

DeepWalk 66.94 71.51 89.71 91.20 

LINE 69.36 73.64 91.62 93.28 

Node2vec 63.24 67.69 89.93 91.23 

Metapath 71.61 66.78 89.56 91.72 

BiNE 84.48 86.21 92.91 94.45 

BiVAE 85.70 86.23 95.22 95.83 

BiVAE + local_ns 85.72 86.39 95.08 95.36 
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Table 4 

Link prediction on Movielens and Wikibooks. 

Performance(%) Movielens Wikibooks 

AUC-ROC AUC-PR AUC-ROC AUC-PR 

CN 50.00 56.00 50.30 54.80 

JC 50.20 56.30 50.20 54.80 

AA 50.10 56.10 50.10 54.90 

PA 50.30 56.30 50.10 54.90 

DeepWalk 76.31 77.34 58.18 61.37 

LINE 76.14 77.33 58.27 61.66 

Node2vec 76.3 77.45 57.87 61.19 

Metapath 81.67 81.65 68.53 71.68 

BiNE 83.17 84.39 61.05 63.49 

BiVAE 85.47 86.01 69.56 73.13 

BiVAE + local_ns 85.34 86.03 69.66 73.85 

Table 5 

Top-10 recommendation on VisualizeUs, DBLP, and Wikipedia. 

Performance(%) Visua-lizeUs DBLP Wiki-pedia 

F1@10 MAP@10 F1@10 MAP@10 F1@10 MAP@10 

BPR 6.22 5.51 8.95 13.55 14.12 17.20 

RankALS 2.72 1.50 7.62 7.52 9.70 14.05 

FISM 10.25 8.86 9.81 7.38 16.03 16.74 

DeepWalk 5.82 4.28 8.50 19.71 2.28 1.20 

LINE 9.62 7.81 8.99 9.62 5.52 14.93 

Node2vec 6.73 6.25 8.54 19.44 3.83 2.59 

Metapath 5.92 5.35 8.65 19.06 2.05 1.26 

BiNE 13.63 16.46 11.79 20.62 13.67 19.66 

BiVAE 21.94 43.75 25.76 42.62 25.75 52.84 

BiVAE + local_ns 17.48 31.79 20.32 32.26 25.27 48.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• All the methods based on the Network Embedding usually have better performance based on the AUC-ROC and AUC-PR

on all the datasets. 

• The performance of DeepWalk, LINE, and Node2vec methods designed for homogeneous networks are generally worse

than the BiNe, BiVAE and BiVAE+local_ns. This is because our method and the BiNE can model the special properties of

bipartite networks. 

• The performance of Metapath2vec++ is worse than BiNE and BiVAE on both datasets in both matrices. This implies

that the methods tailored for bipartite networks perform much better. In addition, compared to the BiNE, although the

improvement is a little tiny, the BiVAE outperforms better, which may due to BiVAE can model the relations of nodes by

the set of all valid triplets and capture the uncertainty of nodes in bipartite networks. Additionally, the computational

complexity of BiVAE is lower than that of BiNE. 

• Compared with the BiVAE and BiVAE+local_ns, the former has better performance on the Wiki-pedia and Movielens, and

the BiVAE+local_ns has achieved excellent results on the DBLP and Wikibooks. So we have reason to believe that the

different sam pling mechanisms do influence the results of the model, and how to design more effective and efficient

sampling strategies is a more challenging issue. 

5.5. Recommendation 

The recommendation is an important application of network embedding, which can reflect the ability of node represen-

tations. For each dataset, 60% of the links are randomly sampled for training, and the rest links are used as test samples. We

use the inner product of two different types of nodes to evaluate the preference between them and select Top-10 items with

larger scores for the recommendation. Table 5 shows the results of recommendations on three datasets by using two met-

rics, i.e., F1@10 and MAP@10 [14] , the Table 6 gives the corresponding results on datasets of the Movielens and Wikibooks.

The main observations from the results are summarized as follows. 

• As shown in Tables 5 and 6 , it is obvious that BiVAE and BiVAE+local_ns outperform all baselines on the five datasets

in both matrices. This demonstrates the effectiveness of our proposed method on item recommendation tasks, and the

improvement in this result is very significant. 

• Among all the comparison methods, the BiNE achieve the best performance on these networks, other methods have

yielded better results on only one or more datasets. 

• Our method is superior to DeepWalk, LINE and Node2vec, which are the three state-of-the-art homogeneous network

embedding methods. This indicates that although these homogeneous network embedding methods can be applied to
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Table 6 

Top-10 recommendation on Movielens and Wikibooks. 

Performance(%) Movielens Wikibooks 

F1@10 MAP@10 F1@10 MAP@10 

BPR 4.26 3.90 0.95 0.64 

RankALS 1.10 2.40 1.22 3.36 

FISM 2.15 3.36 1.02 0.76 

DeepWalk 1.89 0.39 0.06 0.01 

LINE 2.41 0.54 0.10 0.01 

Node2vec 2.05 0.44 0.07 0.01 

Metapath 2.68 0.63 1.39 3.77 

BiNE 11.90 3.88 1.81 1.32 

BiVAE 12.75 4.05 5.91 9.24 

BiVAE + local_ns 12.29 3.95 4.94 9.06 

Fig. 2. Parameter w.r.t. dimension d , hyper-parameters λ1 and β . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bipartite networks, they consider neither the importance of the types of nodes nor the relations between the two types

of nodes. 

• The methods based on heterogeneous networks perform worse than our method significantly. This is because: (1) Meta-

path2vec++ is not optimal for bipartite networks composed of two types of nodes; (2) Although BiNE is tailored for

bipartite networks, it does not take into account using the triplets to constrain the relations between nodes and cannot

model the uncertainty of nodes in bipartite networks. 

• Compared with the BiVAE, the BiVAE+local_ns has competitive results on all the datasets and metrics, this means that

the random sampling mechanism is more conducive to the proposed method. 

5.6. Parameters sensitivity 

In this subsection, we investigate the influence of the embedding dimension d and two hyper-parameters λ1 and β . We

report AUC-ROC and AUC-PR on the Wikipedia dataset to analyze the link prediction tasks as shown in Fig. 2 , 

Fig. 2 (a) shows how the embedding dimension affects the performance. The experimental performance first increases

and then remains stable when d reaches a certain value. This implies that when the embedding dimension is too large, our

framework cannot embed more useful information due to the introduction of some noises. 

The hyper-parameter λ1 is a balanced parameter, which denotes the weight of the global structure. From Fig. 2 (b), we

observe that the performance first increases and then decreases when λ1 = 20 . This demonstrates that preserving the global

structure is essential to our framework. Especially, when λ1 approaches 0, our model degenerates to consider only the local

structures of the network, when λ1 is big enough, the global term plays a larger role. From this figure, it is easy to know

that our model performs better when we consider the both terms with a good tradeoff. 

Fig. 2 (c) shows how the hyper-parameter β affects the performance, where β is the weight that imposes on the non-

zero elements. The best performance is obtained when β = 5 , while the performance decreases when β is too large. 

5.7. Visualization 

We show the visualization in this subsection, which is another important application for network embedding. Because

of the lack of ground truth in our datasets mentioned earlier, we visualize the node representations of a subset of Aminer
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Fig. 3. Visualization of authors in the subset of Aminer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dataset 6 by using the visualization tool t-SNE [48] . We construct a heterogeneous collaboration network from a subset of

Aminer dataset, which consists of 981 authors and 28 venues. What’s more, these nodes are from the research fields of

theoretical computer science and computer science databases & information systems. A link represents the relationship

between an author and a venue. Besides, we take the research field in which the author publishes the most papers as the

ground truth of the author. 

The visualization results are shown in Fig. 3 . We use different colors to represent the author’s research fields, where

blue dots represent the research field of theoretical computer science and red dots represent the research field of com-

puter science databases & information systems. From Fig. 3 , we observe that our method can clearly separate two types

of nodes when compared with DeepWalk, Node2vec, metapath2vec++ and BiNE, whose two types of nodes are mixed to-

gether. Although LINE can better separate the two types of nodes, it’s obviously not good enough compared with BiVAE. The

observations demonstrate the superiority of our method in this task. 

6. Discussions and conclusions 

In this paper, we propose a deep learning framework BiVAE, which uses the set of triplets to restrain the relations be-

tween two different types of nodes to enhance the effect of node embedding in bipartite networks. The variational autoen-

coder framework can capture the uncertainty of nodes. Besides, BiVAE can preserve the local and global structures while

establishing highly nonlinear relations. Further more, we define the Second Order Structure of the bipartite network and

propose another new sample mechanism for the training algorithm. 

In comparison with several state-of-the-art baselines, experiments on different tasks validate the superiority of our pro-

posed framework. On the link prediction task, the BiVAE and BiVAE+local_ns not only have obvious improvement on the

classic link prediction models and homogeneous network embedding methods, but also have some performance advan-

tages with lower computational complexity. On the recommendation task, our method has been a significant performance

improvement than all the baselines including the BiNE. 

There are still some problems to be studied in the future. How to set the balance parameters automatically in the objec-

tive function? How to construct a more effective and efficient negative sampling mechanism to improve the performance of

the model? Besides, it is possible to integrate external information for the bipartite network embedding, which will be our
next work. 

6 https://www.aminer.cn/data . 

https://www.aminer.cn/data
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