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Recently, centre loss that aiming to assist Softmax loss with the objec-
tives of both inter-class dispension and intra-class compactness simul-
taneously, has achieved remarkable performance on convolutional
neural network-based face recognition. However, its advantages
highly rely on the centre feature assumption, which influences the
capacity of the final obtained face features. Inspired by the centre
loss approach, a novel Orientation Truncated Centre Learning is
proposed, which takes advantage of an orientation truncated centre
function to make the centre feature learning have more suitable
orientation for deep face recognition. Three metrics are proposed to
evaluate how discriminative are the distributions of the learned features
for MNIST visualisation. Experimental results on several challenging
benchmarks, including fine-grained labelled faces in the wild
(FGLFW), labelled faces in the wild (LFW), YouTube faces (YTF),
and benchmark of large-scale unconstrained face recognition
(BLUFR), show that the proposed approach can easily generate more
favourable results than several state-of-the-art competitors.
Introduction: Convolutional neural network (CNN) based face recog-
nition has achieved significant performance. However, how to design
better supervision signals for more discriminative face features is one of
the most concerned issues. Commonly used loss functions include
Softmax loss, Contrastive loss [1] and Triplet loss [2]. Softmax loss is
effective for multi-class classification, but the learned face features are
not discriminative sometimes. Contrastive loss and Triplet loss make it
more discriminative by using information of feature pairs and triplets.
However, the training procedure is not straightforward and the compu-
tation complexity will increase by selecting meaningful image pairs and
triplets. Recently, centre loss approach [3], which is a simple and trainable
method, has achieved great progress. However, its advantages highly rely
on the centre feature assumption. Once the centre feature is not learned
appropriately, the final face features may not represent the raw face
images suitably. Particularly, the situation may be more serious when
there exist a certain number of outliers. To this end, we propose a
simple and efficient approach for more discriminative face features,
called orientation truncated centre learning (OTCL) (see Fig. 1). Rather
than defining the centre feature by averaging the features of the focused
class in each iteration, OTCL learns the centre feature by using an orien-
tation truncated function. The idea is to update the centre feature accord-
ing to its nearest feature members, instead of using the full features to
avoid the disturbance of some outliers. Thus, the centre feature can rep-
resent the features of the same class more efficiently to learn more suitable
CNN models. Experimental results show the superiority of the proposed
approach over two baselines and several state-of-the-art methods.
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Fig. 1 Framework of OTCL

Proposed approach: Centre loss approach for CNN model learning is
based on an optimisation objective, expressed as

u∗ = min
u

LC(X , L, u), (1)

where LC(X , L, u) is the joint supervision of Softmax loss LS and centre
loss Lc, namely

Lc(X , L, u) = LS(X , L, u)+ lLc(X , L, u), (2)

and X = {x1, x2, . . . , xn} is the training dataset, L = {l1, l2, . . . , ln} is
the corresponding label set, and u is the parameter set, l is a hyper-
parameter to balance the two losses. Here Lc is centre loss which is
based on the distance of the feature xm to its corresponding centre
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feature clm , formalised as

LC = 1

2M

∑M

m=1

xm − clm
∥∥ ∥∥2, (3)

where clm is computed as the average of the features in the lmth class, and
M is the mini-batch size. However, when there exist many outliers for a
focused class, the corresponding centre feature may not properly rep-
resent the class. As shown in Fig. 2a, many features are far away
from their corresponding centres, which seem to have little connection
with the centre feature updating.
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Fig. 2 Centre features (white points) for different distributions of MNIST

a Distribution of MNIST testing database by LC
b Distribution of MNIST testing database by LOTC

Intuitively, we can update the centre feature according to those nearest
features around the centre feature, instead of using the full features.
Suppose that there exist some nearest features {xi1 , . . . , xiNi } around
the centre feature ci, such that

∑Ni

j=1

xij − ci
∥∥ ∥∥2≈ f (i) = R

∑M

m=1

I(lm = i) xm − clm
∥∥ ∥∥2, (4)

where Ni is the number of features in class i, I is the indicator function,
and R [ (0, 1). We want to find a suitable R to represent ci, and thus to
avoid the disturbance of the outliers for centre feature updating, as
shown in Fig. 2b.

For CNN training with N classes, considering all features in a mini-
batch, then

∑N

i=1

f (i) = R
∑N

i=1

∑M

m=1

I(lm = i) xm − clm
∥∥ ∥∥2= R

∑M

m=1

dm, (5)

where dm =‖ vm ‖2 and vm = xm − clm , we aim to find a smallest M̂
(M̂ ≤ M ) such that

∑M̂

m=1

dim ≥ R
∑M

m=1

dm, (6)

where di1 ≤ di2 ≤ · · · ≤ diM . Then, we propose the orientation truncated
centre (OTC) function

LOTC = 1

2M

∑M̂

m=1

dim = 1

2M

∑M̂

m=1

xim − clim
∥∥ ∥∥2, (7)

A truncated version of centre loss, to assist the centre feature updating to
have a more suitable orientation for CNN feature extraction. Further, we
update the centre feature by

Dci = −g
∂LOTC

∂ci
= g

M

∑M̂

m=1

I(lim = i)vim , (8)

where g is the centre feature learning rate.
In this way, we propose OTCL by changing the backward compu-

tation of centre loss approach by (8), without modifying the forward
computation, which can be easily optimised by the standard stochastic
gradient descent.

MNIST visualisation: We use LeNet + + [3] and MNIST database for
feature visualisation. Three metrics are proposed to characterise the dis-
crimination of the features: the average cosine distance between each
sample and its corresponding centre feature (CD1), the average cosine
distance between the centre features (CD2), the average cosine distance
between each sample and its inter-class centre feature (CD3), where

CD1 =
∑N

i=1

∑Ni

j=1

1

NiN

cTi xij

ci‖ ‖ xij
∥∥ ∥∥ , (9)

CD2 = 2

N (N − 1)

∑N

i=1

∑N

j=1

I(i = j)
cTi cj

ci‖ ‖ cj
∥∥ ∥∥ , (10)
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CD3 = 1
∑N

i Ni(N − 1)

∑N

i=1

∑Ni

j=1

∑N

n=1

I(n = i)
cTn xij

cn‖ ‖ xij
∥∥ ∥∥ , (11)

ci is the centre feature for class i, xij is the feature in the class i, Ni is the
number of features for class i, and N is the number of classes. By the
above definitions, feature distribution with larger CD1, smaller CD2
and smaller CD3 is treated as more discriminative. As shown in Fig. 3,
our proposed OTCL performs better than the centre loss approach.
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Fig. 3 Final feature distributions corresponding to LC and LOTC

a Diameter of a class cluster is about 2
b Diameter of a class cluster is about 1

Experimental results: The proposed approach is used for face feature
extraction without fine-tuning operations on CASIA-WebFace database
[4] and ResNet-27 [3]. The initial learning rate is 0.1 and is divided
by 10 at 30, 50 K iterations, until reaching the maximum iteration
60 K. We set l = 0.003 and g = 0.5 according to [3], and range R in
[0.1, 0.2, . . . , 0.9].

Table 1: Comparing performance on FGLFW
Method
ELECTRON
#Train (M)
ICS LE
FGLFW (%)
noisy Softmax [5]
 0.5
 94.50
human [6]
 n/a
 92.00
Deep convolutional maxout network (DCMN) [6]
 0.5
 91.00
Visual geometry group (VGG) [6, 7]
 2.6
 85.78
DeepFace [6, 8]
 0.5
 78.78
DeepID2 [1, 6]
 0.2
 78.25
Softmax
 0.44
 90.87
Softmax + Centre
 0.44
 94.28
OTCL-0.5
 0.44
 95.38
OTCL-0.7
 0.44
 95.45
Table 2: Comparing performance on LFW and YTF
Method
 #Train (M)
 LFW (%)
 YTF (%)
SphereFace [9]
 0.49
 99.42
 95.0
SphereFace
 0.44
 99.12
 92.98
NormFace [10]
 0.49
 99.19
 94.72
NormFace
 0.44
 98.63
 93.26
Softmax + Centre [3]
 0.7
 99.28
 94.9
Softmax + Centre
 0.44
 99.03
 93.3
OTCL-0.5
 0.44
 99.17
 93.94
OTCL-0.7
 0.44
 99.17
 94.18
Table 3: Comparing performance on BLUFR protocol
Method

Verification (%)
 Identification (%)
FAR = 0.1%
 FAR = 1%
 FAR = 1%
T

FAR = 10%
NormFace [10]
 95.83
 —
 77.18
 —

Softmax +Centre [3, 10]
 93.35
 —
 67.86
 —

LightenedCNN [11]
 89.12
 —
 61.79
 —

WebFaceCNN [4]
 80.26
 —
 28.9
 —
Softmax
 82.22
 93.5
 56.81
 73.3
Softmax + Centre
 93.64
 98.12
 70.73
 86.91
OTCL-0.5
 94.15
 98.15
 75.29
 88.73
OTCL-0.7
 94.88
 98.42
 77.28
 89.12
The performances of our best models OTCL-0.5 (R = 0.5) and
OTCL-0.7 (R = 0.7) are reported on FGLFW in Table 1, LFW and
TERS 20th S
YTF in Table 2, and BLUFR protocol in Table 3, respectively.
Experimental results show that the proposed approach outperforms
two baselines: Softmax, and Softmax + Centre. Specifically, our pro-
posed approach achieves the first place on FGLFW and performs
better than most of the compared methods on LFW, YTF, and
BLUFR protocol. Note that it also surpasses NormFace and
SphereFace with the same training data in Table 2. These all show the
superiority of the proposed approach to characterise the centre features
for more discriminative face features (Fig. 4).
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Fig. 4 Example images for MINST, LFW and YTF

Conclusions: In this Letter, we propose a simple and more efficient
algorithm for CNN-based face features learning, referred to as orientation
truncated centre learning. By adopting an OTC function to restrict the
clustering degree in a mini-batch for the centre feature definition, we
make the centre feature represent the features of the same class more effi-
ciently to learn CNN models. Feature visualisation with three metrics on
real-world dataset Modified National Institute of Standards and
Technology (MNIST) shows that the proposed approach can make the
features more discriminative. Various evaluation implementations on
face recognition tasks show that the proposed approach is effective and
can easily generate more favourable results than the baseline centre loss
approach and related state-of-the-art methods.
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