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Abstract—Inertial Measurement Unit (IMU) is one option for
the positioning system. Due to its independence and invulner-
ability, the IMU-based approaches could serve as an effective
complementarity for the positioning systems applying commu-
nication networks, when the infrastructures are insufficient or
unreliable. For pedestrians the Step and Heading System (SHS)
is a practicable solution. With the length and heading of each step
measured by the built-in inertial sensors in users portable device,
the current location would be updated. A novel mathematical
model for step length estimation is developed in this paper.
In this model the relation among the step length, frequency
and the variance of accelerations is revealed. Comparing with
former models, not only the accuracy of step length estimation
is improved substantially, but also the stabilization as well as
robustness of the whole positioning system can be enhanced.

Index Terms—Inertial Measurement Unit (IMU), Step and
Heading System (SHS), Pedestrian Dead Reckoning (PDR),
Position Tracking

I. INTRODUCTION

The development of informative life and the popularization

of smartphone have brought the field of indoor positioning

great opportunity. The mainstream schemes are more likely to

rely on communication networks. For example, as the scheme

based on WLAN, the radio strength fingerprint in a certain

building is analysed statistically [1][2]. But if there is no

available wireless access point in the target building, or the

Wi-Fi cover is not complete, this scheme will be limited.

The same shortage is also found in the schemes based on

RFID or Bluetooth etc. Therefore a complementary strategy

has to be developed, which does not lie on external signals.

When the communication signal is temporarily unavailable

or unreliable, this strategy can be adopted to independently

maintain the function of whole positioning system. Inertial

Measurement Units (IMU) [3][4] is an ideal alternative. Due

to their interference immunity, the built-in inertial sensors

within smartphones (or others portable devices) have received

increasing attentions. Because the information interaction with

external signals is not necessary, this self-contained strategy

has a promising prospect in all sorts of Location Based Service

(LBS), especially in some extreme situations, such as the

rescue mission after earthquake or conflagration in a dam-

aged architecture, or archeological and scientific expedition

in a cave or underground where the navigation signals from

satellite or cellular network are usually blocked.

For pedestrian a practicable method is to develop a Step

and Heading System (SHS), estimating the length of each

step by the accelerations recorded when user walking, and

according to the heading direction during each step, the real

time position is tracked [5][6]. On the basis of our previous

works [7][8], before step detection, a variety of calibrations

as well as filters are implemented to make the noises and

deviations in raw data to the minimum. After that the feature

vectors from acceleration sequence are extracted for step

length estimation and the gyroscope and magnetometer data

are fused for azimuth. Finally Particle Filter is employed to

constrain the moving trajectory to the physical surroundings.

Obviously the performance of a positioning system based

on Dead Reckoning depends essentially on the precision of

step length estimation. Even tiny deviation in every single step

could cause troublesome cumulative error in the final tracking

result. There are 9 kinds of estimation models available (listed

in Section II). All of these current models, complicated or

concise, show limitations in the estimation accuracy or uni-

versality. The usability of some models must be under certain

conditions. For that reason, a novel mathematical model is

developed in Section III. In this model the step length is

derived from both the step frequency and the variance of

vertical accelerations. As a result, more satisfactory precision

for step length estimation can be achieved.

II. RELATED WORKS

According to the previous literatures, there are 9 mathemat-

ical models available for step length estimation [9].

Static models:

1) Constant step length: Some applications employ this

method. The users have to measure their step length by

theirselves (walk with a certain amount of steps and measure

the distance), or use the recommended value by default.

2) Determined by height: The step length for male is 0.415

times his height while for female is 0.413 her height [10].

Dynamic models:

Of course the 2 static models above are very rough and only

capable of some imprecise applications.

3) Weinberg Model: [11]

step length = k · 4
√
amax − amin , (1)
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where amax and amin denote the peak and trough value of

the vertical accelerations in that step; k is the user specified

parameter.

4) Kim Model: [12]

step length = k · 3

√∑N
i=1 |ai|
N

. (2)

There are N sampling points in the step and ai is the vertical

acceleration of the ith point; k is the user parameter. In this

model, the magnitude of acceleration (the expression in cubic

radical sign) is drawn on.

5) Scarlett Model: [13]

step length = k ·
∑N

i=1 |ai|
N − amin

amax − amin
. (3)

The explanations for parameters are the same as above. The

peak and trough values as well as the magnitude are utilized.

6) Xu Model: [14]

step length = k · [(amax − amin) +
4
√
amax − amin]. (4)

Only the difference between the peak and trough value is made

use of.

7) Frequency related models: Some researchers also main-

tain that there is a linear relation between step length and step

frequency [4][15][16]. Although the concrete mathematical

expressions are various, the basic models are like this:

step length = af + b, (5)

where f denotes the step frequency, while a, b are the user

parameters. Furthermore, more precise nonlinear model is

presented as well [17]:

kd = 1.5k2f − 1.8475kf + 1.3468, (6)

where kd = d/dn and kf = f/fn, dn and fn are the step

length and frequency when pedestrians walk with their most

normal gait (or their average values).

After experiments, there is a fact that, all of linear and non-

linear models above are based on an assumption, or a premise:

all of volunteers are required to walk with their normal or

comfortable gaits. It can be therefore rationally explained

that, why the larger frequency the pedestrian walks with, the

longer step length s/he makes. However, the utilization of these

models is limited. They are only suitable for the most normal

gaits, small steps with high frequency and large paces but low

frequency are naturally never referred to.

8) Shin Model: [18]

step length = af + bv + c. (7)

In this model, not only the step frequency but also the variance

during that step is involved. So it is more precise than the

frequency singly related models listed before.

9) Bylemans Model: [19]

step length = 2.7

√√√√∑N
i=1 |ai|
N

·
√

k√
Δt · (amax − amin)

·0.1,
(8)

where Δt is the duration of the step (in ms), the meanings

of the rest of the parameters are similar to those of the

models before. In Eq. (8), the magnitude of accelerations,

the frequency and the difference between peak and trough are

involved. This model is up to now the most meticulous one

and was also employed in our previous schemes [7][8].

III. STEP LENGTH ESTIMATION MODEL

A. Deduction for the Model

Although some of the current models already show their

conveniences, most of them are only suitable for the most

common gait for human (step length: 0.65 to 0.75 meters,

frequency: 90 to 120 steps per minute). When it comes

to more varied and abundant gaits, the effect is less than

satisfactory. For more precision of step length estimation as

well as positioning, a novel mathematical model is investigated

in this paper. This new model should be general for all sorts

of gaits, because the pedestrian activities may also include

wander and roam. For the application scenario of museum or

exhibition hall, a lower walking speed is more preferred, while

a higher speed is geared towards the walking race.

In order to find out the objective relations among the step

length, the magnitude of accelerations, the peak value, the

trough value, the variance and the frequency of that step, a

multitude of experiments are implemented.

The experiments are based on the accelerometer in smart-

phone. The sampling rate is set to 50 Hz. All the acceleration

related data are measured in G, which denotes 1 unit of gravity

acceleration (ca. 9.8 m/s2). The step length is set from 0.4 to

0.9 m, every 0.05 m a group, and 11 groups in all; while the

frequency varies from 60 to 180 spm, every 5 spm a group,

and 25 groups in all, where spm stands for steps per minute.

For every step length group, and every frequency group: the

magnitude, average peak value, average trough value, and

the variance for acceleration data in both anterior-posterior

direction (y-axis), vertical direction (z-axis) and their module

(m) are recorded (12 items in all). The definition of magnitude

is the same as that in Eq. (2), (3) and (8). Each combine

group contains a certain step length and a certain frequency,

so there are 275 combine groups in all. In order to reduce

random error, all of these experiments are implemented by

just one volunteer, and every combine group with the same

gait is carried out at least 10 times. All these experiments

were performed in the corridor of our institute (as Fig. 1).

A treadmill is not adopted due to the potential influence of

conveyer belt in y-accelerations. The walking distance for 1

time is between 20 and 30 m (20 to 50 steps). So the whole

walking distance for this volunteer is more than 50 km. The

first stage for experiments lasted for 3 weeks (The following

stages are for running and putting smartphone in pocket).



Fig. 1. To discover the step length model, a large number of experiments
are implemented by volunteer. The step length and frequency are calibrated
by measuring tape and metronome. The acceleration data are collected by
smartphone.

Fig. 2. The step lengths are preselected

As shown in Fig. 1, to adjust the volunteer’s steps to a

preselected frequency, a metronome app for music is utilized.

To make the volunteer’s steps coincide with a certain length, a

measuring tape is laid on the floor and all foot striking points

are marked with color taps (Fig. 2). After 3 weeks walking

experiments, a considerable quantity of data are acquired. An

assumption has to be accepted that the changing in volunteers

weight could not influence the collected data greatly.

To demonstrate the relations between the 8 items and

frequency, the data when the step length = 0.7 m are shown

in Fig. 3 as an example. From top to bottom they are data in

y-axis (anterior-posterior direction), z-axis (vertical direction)

and their module respectively. From left to right they are the

magnitude, the difference between peak and trough, and the

variance successively. Because there is too much confusion in

the peak-trough difference of the module values, the figures

for this item are not displayed. Instead of peak and trough

value separately, the differences between them are used.

From Fig. 3, it can be found that, the relations in terms of

y-data and m-data are not clear. In view of that, only z-data

related items would be involved in our model.

The aim of the model is to discover a relation that the

step length can be expressed by the measured data. Fig. 4

shows in different frequencies, the variation trend of the 3

items in terms of step length. Due to the instability in y-

data, only the items about z-data are referred to. Here each
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Fig. 5. The fitting curves of the step length to the 3 items (the magnitude,
the difference of peak and trough, and the variance) are shown according to
different frequency groups.

frequency group is defined as frequency domain rather than

a certain frequency value. Because during the experiences it

is too difficult for volunteer to adjust to a definite frequency

always accurately, there are some deviations in the frequencies

measured afterward. From Fig. 4, it is evident that there are

quadratic relations between these 3 items and step length. By

defining just one of these 3 relations, the step length model

can be acquired. For each of 11 frequency groups and each of

3 items, there would be a fitting curve. The 33 fitting curves

are therefore compared in Fig. 5.

The item variance is chosen as the independent variable

for the final model. Because from Fig. 5, the curves in the

bottom figure vary most sharply. Among these 3 items, the

variance shows the most remarkable relation with the step

length. The model is expected be in the form that step length

is a function of variance and frequency.

According to Fig. 5, it is assumed that the relation between

variance (v) and step length (s) is quadratic:

v = as2 + bs+ c, (9)

where a, b, and c are coefficients to be determined. These co-

efficients are also functions in terms of frequency. In order to

determine these coefficients, the relations between frequency
and variance under certain step length are required. These

relations can be obtained from the fitting curves. As Fig. 6,
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Fig. 3. With 0.7 m as step length, the 8 items vary with different frequencies
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Fig. 6. When step length is 0.7 m, the relation between frequency and
variance is shown. Two quadratic functions can be fitted.

TABLE I
FREQUENCY-VARIANCE RELATIONS AT DIFFERENT STEP LENGTHS

Step length Frequency-Variance relations

0.4
v = 1.61× 10−8f2 + 0.0000203f − 0.000768 (f <140)
v = 0.00000214f2 − 0.000776f + 0.0722 (f � 140)

0.5
v = 1.52× 10−8f2 + 0.0000344f − 0.00141 (f <140)
v = 0.00000483f2 − 0.000924f + 0.0779 (f � 140)

0.6
v = 0.00000221f2 + 0.000293f − 0.0113 (f <140)
v = 3.075× 10−7f2 − 0.000155f + 0.0256 (f � 140)

0.7
v = 0.00000650f2 − 0.000951f + 0.0386 (f <140)
v = 0.00000750f2 − 0.00285f + 0.283 (f � 140)

0.8
v = 0.00000826f2 − 0.000888f + 0.0287 (f <140)
v = −0.000719f + 0.147 (f � 140)

0.9
v = 0.0000128f2 − 0.00131f + 0.0407 (f <140)
v = −0.00135f + 0.263 (f � 140)

this example is f − v figure when step length is 0.7 m. This

figure is already shown as a part of Fig. 3.

When step length is 0.7 m, the relation between frequency
and variance can be expressed by a piecewise function:{

v = 0.00000650f2 − 0.000951f + 0.0386 (f<140)
v = 0.00000750f2 − 0.00285f + 0.283 (f � 140)

(10)

Along with the increasing frequency, the motion in verti-

cal direction would be firstly more and more intense, and

then calmer and calmer. Similarly, the relations between

frequency and variance at other step lengths (part of) are

listed in Table I.

With the 6 pairs of equations in Table I, the coefficients a,

b, c can be calculated by the least square method:⎡
⎣ c

b
a

⎤
⎦ =

⎡
⎣ 6

∑6
i=1 si

∑6
i=1 s

2
i∑6

i=1 si
∑6

i=1 s
2
i

∑6
i=1 s

3
i∑6

i=1 s
2
i

∑6
i=1 s

3
i

∑6
i=1 s

4
i

⎤
⎦
−1 ⎡

⎣
∑6

i=1 vi∑6
i=1 sivi∑6
i=1 s

2
i vi

⎤
⎦

(11)

where si are [0.4 0.5 0.6 0.7 0.8 0.9]; vi are the equations in

Table I. Therefore, when f <140 spm:⎡
⎣ a

b
c

⎤
⎦ =

⎡
⎣ 0.0000545f2 − 0.00501f + 0.15495

−0.0000461f2 + 0.00404f − 0.130
0.0000102f2 − 0.000913f + 0.0336

⎤
⎦ ; (12)

when f �140 spm:⎡
⎣ a

b
c

⎤
⎦ =

⎡
⎣ 0.000178f2 − 0.0613f + 5.381

−0.000177f2 + 0.0607f − 5.272
0.0000423f2 − 0.0145f + 1.248

⎤
⎦ . (13)

From Eq. (9),

s = k · −b+
√
b2 − 4a(c− v)

2a
. (14)

The Eq. (12), (13) together with (14) makes up the main

ingredients of the mathematical model for step length esti-

mation. The step length is finally a function of frequency
and variance.

However, all of sampling data source from 1 volunteer. So

theoretically the equations above are only suitable for that 1

volunteer. When a pedestrian walks calmly, with the same step

length a comparative lower variance would be measured, or

when the feet strike ground harshly a higher variance resulted.

Even the gesture or position holding smartphone can influence

the variance greatly. In order to generalize the model, the

individual parameter k is added to the model.

One or more test walking can be used for parameters

calibration. The distance could be estimated with the initial

k=1, and compared with the real distance entered by user. Eq.

(15) is used to set the user specified parameter.

k = dreal/destimated, (15)

where destimated and dreal denote the distances estimated with

the initial parameter and the real distance during test walking.

Adding with Eq. (15), the model is completed.

B. Evaluation for the Model

To test the precision of our model for step length estimation,

10 different volunteers (male and female, height from 1.60

m to 1.80 m, weight from 60 kg to 75 kg) are required

to walk a distance at least 30 meters with smartphone held

in different gestures (except swinging or changing between

gestures). They are encouraged to walk with their normal and

abnormal step lengths as well as frequencies.

After all of test experiments, the estimation precisions of

all models are listed in Table II. The precision is indicated

by 2 indexes: Root Mean Squared Error (RMSE) and Average

Deviation Rate.

The deviation rate is calculated by

deviation rate = |sestimated − sreal
sreal

| × 100% (16)

where sestimated denotes the step length estimated by different

models, while sreal is the real observed value.

From the results listed in Table II, Weinberg and Xu Models

are both based on the difference between peak and trough.

Their precisions are on a similar level. Xu Model has even

precisions toward different step lengths but Weinberg Model

performs better in 0.7 to 0.9 m length domain in which

pedestrians usually walk. Frequency related models show less

precision in the experiments. The reason has analysed before,

they are only suitable for the most common gaits (step length



TABLE II
THE RMSES AND AVERAGE DEVIATION RATES OF ALL AVAILABLE MODELS

Step Length Domains (m) 0.40-0.49 0.50-0.59 0.60-0.69 0.70-0.79 0.80-0.89 0.90-0.99 All
Weinberg RMSE 0.16951 0.10327 0.07335 0.06191 0.07402 0.11029 0.10089

Model Average Deviation Rate 41.61% 18.55% 10.14% 7.58% 8.26% 9.84% 15.79%
Kim RMSE 0.17543 0.08457 0.08985 0.09550 0.10316 0.10242 0.10655

Model Average Deviation Rate 43.37% 14.14% 12.85% 12.01% 12.14% 8.66% 16.34%
Scarlett RMSE 0.34873 0.19269 0.10021 0.01141 0.09738 0.19708 0.17335
Model Average Deviation Rate 86.95% 38.34% 16.36% 1.37% 12.25% 21.98% 28.11%

Xu RMSE 0.10489 0.07248 0.09493 0.12298 0.17271 0.15061 0.11661
Model Average Deviation Rate 24.36% 12.03% 12.67% 14.65% 18.85% 13.15% 15.24%

Frequency RMSE 0.37316 0.32566 0.26572 0.18114 0.13944 0.24883 0.26419
Model Average Deviation Rate 87.40% 57.01% 35.75% 20.98% 15.58% 26.44% 40.71%
Shin RMSE 0.33404 0.28898 0.23151 0.16262 0.13738 0.21270 0.23997

Model Average Deviation Rate 76.99% 48.62% 30.56% 19.58% 15.03% 22.36% 35.99%
Bylemans RMSE 0.17029 0.08246 0.08512 0.09099 0.10198 0.15163 0.10835

Model Average Deviation Rate 42.57% 13.69% 12.73% 11.47% 11.27% 14.17% 16.16%
Our RMSE 0.13880 0.00685 0.05675 0.05212 0.08716 0.05060 0.07681

Model Average Deviation Rate 33.17% 13.68% 7.24% 5.88% 8.78% 4.73% 10.90%

0.65-0.75 m, frequency 90-120 spm), but here abnormal gaits

are involved. Shin Model also refers to the variance, so its

performance is better than only frequency based models. Our

model is up to now the most accurate model in all. The average

deviation rate for each step is 10.90%. This is only average

precision. In terms of more general step length domains, the

deviations are even lower.

IV. CONCLUSION

A novel mathematical model for step length estimation

is described in this paper. From the test experiments, the

average deviation rate is only 10.90%, which shows more

superb performance than other models in the same condition.

Although it is complicated and consists of 4 equations (Eq. 12,

13, 14, 15), its computation cost is feasible for smartphone.

Besides, there is another advantage in our model. Because

the expressions refer to the variance of vertical accelerations

rather than the differences between peak and trough, our model

is able to promote the stabilization of the whole positioning

system. Once any single peak or trough is misrecognized, it

could lead to a series of disorders in peak-trough pairs, which

would cause meaningless result in peak-trough based models.

But the variance can be safely measured and the influence of

possible error in frequency is also comparatively limited.
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