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Abstract—Role discovery assist in various applications of
online social networks, such as water army detection, shopping
recommendation, rumor tracing, etc. However, existing studies
often overlook the significance of hierarchical structures in online
social networks, which are crucial for understanding the roles
played by different users. To address this gap, we propose a novel
approach based on hyperbolic graph learning, called HyperRole,
which effectively leverages the hierarchical structure of online
social networks for role discovery. HyperRole first extracts
structural features from users and constructs user sequences
based on feature similarity, capturing the relationships between
users across different scales. Then, we learn role information
from structural features by hyperbolic graph Transformer to
embed users into the hyperbolic space, preserving the hierarchi-
cal structure between users and enabling interactions between
users of the same level that are far away from each other.
Additionally, we leverage the hierarchical distance between the
target user and other users within the same sequence to guide
and modify the role information of the target user. Based on
the generated user role embeddings, we train a multi-class
classifier to classify roles. Extensive experiments on several real-
world network datasets demonstrate that our model outperforms
existing baseline methods, showcasing its superior performance.

Index Terms—Online Social Networks, Role Discovery, Hier-
archical Structure, Hyperbolic Graph Transformer

I. INTRODUCTION

The rapid development of online social networks brought
about a diversity of complex systems, e.g., currency trading
systems, recommender systems, etc. To address the real-world
challenges [1]–[3] posed by these complex systems, it is
necessary to gain a deeper understanding of the users within
the network. The concept of roles [4], [5] points out that the
behavioral logic of users and their interactions are closely
related to their roles within the network. Users positioned at
the center of the network typically wield significant influence,
while those connecting different regions serve as bridges [6].
Role discovery [7] has thus become a key area of study in
online social networks, aiming to delve into the roles and
functions of individual users to better understand the network’s
intrinsic evolutionary mechanisms.

Initial research [8]–[10] on role discovery utilized matrix
decomposition methods, constructing feature matrices from
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Fig. 1. Comparison of embedding distances for the hierarchical structure of
hyperbolic and Euclidean spaces.

user attributes and network structure information. Various
matrix decomposition techniques are then employed to analyze
the role features of users from these matrices. Although
these methods are computationally efficient and have low
time complexity, the derived role features heavily depend
on prior assumptions and are sensitive to noise present in
online social networks. Random walk-based methods [11]–
[14] utilize well-designed random walk strategies to obtain
corresponding random walk sequences for each user, distin-
guishing the roles of different users by aggregating features
along these sequences. While the generalization ability of
random walks can effectively mitigate noise, the accuracy of
role discovery is highly dependent on the parameter selection
for the random walk strategy, which often involves high com-
plexity. The development of graph learning [15] brings more
expressive solutions to online social networks. Graph learn-
ing based methods [16]–[22] utilize Graph Neural Networks
(GNNs) [23] and other graph learning models to learn complex
network information hidden within the network to generate
user embeddings. For solving the role discovery problem,
these methods constrain the learning process to ensure that the
generated user embeddings include rich role features, offering
superior fitting and generalization capabilities.

Although existing graph learning-based methods achieve
significant success, there are still two problems that need to
be solved:

• Distance distortion of hierarchical structure: The hi-
erarchical structure of online social networks can not be
expressed non-destructively [24]. Even though advanced
role discovery methods embed network information into
a low-dimensional space and retain the original structural
properties through graph learning models, they still can
not completely avoid the problem of distance distortion
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due to over-squeezing [25]. As shown in Fig. 1, the
chairman user has a large number of employee users,
and embedding these employee users in the Euclidean
space will result in their Euclidean distances being too
close due to the problem of over-squeezing, which fails
to correctly express the distances between these users.

• Neglect of Long-distance dependencies in hierarchical
structures: Since online social networks have a hier-
archical structure, some users with the same roles are
distributed in the same stratum. However, due to the
different parent nodes, it becomes challenging for the
GNN to capture the connection between these users with
the same roles but far away from each other.

Hyperbolic geometry, which studies spaces with constant
negative curvature, offers powerful modeling capabilities for
complex networks [26], [27]. To preserve the hierarchical
structure of online social networks in the embedding space,
we utilize a graph learning model to embed user feature infor-
mation into hyperbolic space, thereby improving the accuracy
of role discovery. Hyperbolic space is a Riemannian manifold
with constant negative curvature, that better represents and
distinguishes nodes across different hierarchies, effectively
preserving the hierarchical structure of the original network
and avoiding distance distortion. Unfortunately, most existing
hyperbolic graph learning models [28]–[30] based on the
improvement of GNNs inherit the limitation of GNNs, such as
only obtaining information from neighborhoods. This limita-
tion fails to address the problem of long-distance dependencies
in hierarchical structures. To overcome this challenge, we pro-
pose leveraging Transformer’s ability to capture global infor-
mation. This approach enables the identification of connections
between users with the same roles who are distant from each
other within the hierarchical structure, thereby addressing the
shortcomings of existing role discovery methods.

In this paper, we introduce a novel simplified hyperbolic
graph Transformer model, called HyperRole, designed to
address the role discovery problem in online social networks.
HyperRole utilizes hyperbolic geometry to preserve the hi-
erarchical structure of online social networks in hyperbolic
space, effectively distinguishing different roles within the
network. The combination of hyperbolic geometry and graph
Transformer [31] gives the model the ability to allow long-
distance users in the hierarchy to interact with information
in the hyperbolic space. Specifically, HyperRole first extracts
real statistical information from user information and network
structure as structural features of users by feature extrac-
tion methods, which are categorized into local and higher-
order features. These structural features reflect the role of
users to some extent. Then, respectively, user sequences are
constructed based on the similarity of the structural fea-
tures to learn the local and higher-order relationships among
users independently. By feeding these user sequences into
the hyperbolic graph learning model, HyperRole learns the
user embeddings from the structural features of users and
mines the essential role information. Additionally, HyperRole

designed a readout module to guide other users in the same
sequence to adaptively integrate role features to the target user
according to the hierarchical distance between them. Relying
on the generated user embeddings, we train a multi-classifier
to determine the role of the user. Our main contributions can
be summarized as follows:

• We propose the first hierarchical structure role discovery
method based on hyperbolic geometry in online social
networks, aimed at preserving the hierarchical relation-
ships among users in hyperbolic space. By leveraging
the property of hyperbolic space, we can effectively
differentiate between different hierarchies of users to
more accurately recognize their roles in the network.

• We propose a Hyperbolic Graph Transformer framework
to extract structural features, which enables remote users
to interact with information in hyperbolic space. In par-
ticular, we construct hyperbolic distance-aware readout
functions to guide the target user to learn role features
based on hierarchical distances from other users.

• We evaluate the performance of the proposed HyperRole
in role discovery tasks on several real-world networks.
Extensive experiments justify our consideration of pre-
serving the hierarchical structure in the network and the
superiority of the model for role discovery.

II. PRELIMINARIES

A. Problem Statement

An online social network is represented by an undirected
unweighted graph G = {U,E} where U = {v1, v2, · · · , vM}
is the set of M nodes and E ⊆ U × U is the set of edges
between nodes. The set of neighbors of node v is defined as
N(v) = {u ∈ U |(u, v) ∈ E}. zi is the attribute vector of the
user vi and zi ∈ Rdi . The goal of the role discovery problem
is to extract useful role information from the network structure
and node information and to classify users in the network.

B. Hyperbolic Geometry

Before introducing the Hyperbolic Graph Transformer, we
first present some necessary definitions related to hyperbolic
geometry. We denote the Minkowski inner product as ⟨., .⟩L :
Rd+1×Rd+1 → R and ⟨x,y⟩L := −x0y0+x1y1+ ...+xdyd.
Then we define Hd,c and TxHd,c as follows:

Hd,c : = {x ∈ Rd+1 : ⟨x,x⟩L = −c, x0 > 0}, (1)

TxHd,c : = {v ∈ Rd+1 : ⟨v,x⟩L = 0}, (2)

where Hd,c indicates the hyperboloid manifold within d di-
mensions with constant negative curvature −1/c (c > 0),
TxHd,c denotes the tangent space centered at point x that
performs Euclidean operations undefined in hyperbolic space,
and ||v||L =

√
⟨v,v⟩L denotes the norm of v ∈ TxHd,c. We

define the intrinsic distance function between two points x,y
in Hd,c as follows:

Dc
L(x,y) =

√
c arcosh(−⟨x,y⟩L/c), (3)

where arcosh(·) is the inverse hyperbolic function.
We can establish a mapping between tangent space and

hyperbolic space by exponential and logarithmic maps, which
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are only defined locally in general Riemannian manifolds
while forming a bijection between the hyperbolic space and
the tangent space at a point in the hyperbolic space. Let
o := {

√
c, 0, . . . , 0} ∈ Hd,c denote the reference point in

Hd,c to perform tangent space operations. Let x be a point in
ToHd,c and map it by expKo (·) to Hd,c with:

expKo (x) =
√
ccosh(

||x||2√
c

),
√
csinh

(
||x||2√

c

)
x

||x||2
, (4)

where cosh(·) is the hyperbolic cosine function and sinh(·) is
the sine function. Similarly, we assume y as a point in Hd,c

and map it by logKo (·) to ToHd,c with:

logKo (y) = Dc
L(o,y)

y + 1
c ⟨o,y⟩Lo

||y + 1
c ⟨o,y⟩Lo||L

, (5)

Since the tangent space ToHd,c is Euclidean and isomorphic
to R, we replace ToHd,c with R in the following for better
readability and comprehensibility, without strictly distinguish-
ing between them.

C. Overview of HyperRole

An overview of HyperRole is illustrated in Fig. 2.
Network Modeling. Given online social network data,

which includes user information and user connection data, the
network is modeled as graph data. User information serves
as user attributes, while user connection data represents the
network structure.

Structural Feature Extraction. Based on the generated
graph, two structural feature extraction methods are applied
to all users, extracting both local structural features and
higher-order structural features to learn users’ role features
(Sec. III-A).

Hierarchical Structure Learning. Then, in order to effec-
tively learn and utilize hierarchical structures in online social
networks, we propose a simplified hyperbolic Transformer-
based user embedding method, which effectively preserves
hierarchical structures in the hyperbolic space and utilizes the
Transformer and hierarchical distances to guide users to learn
user embeddings from users at the same hierarchical level
(Sec. III-B).

Role Discovery. Leveraging structural features for con-
straints, we generate user role embeddings with role features
through the graph learning model. We regard the role discovery
task in online social networks as the node classification task in
the graph, resulting in role discovery for all users (Sec. III-C).

III. HYPERROLE

In this section, we present HyperRole, a role discovery
approach based on hyperbolic graph Transformers.

A. Structural Feature Extraction

Extracting structural features of users in the network to
identify the roles of users is a general approach for role
discovery. To improve the accuracy of role discovery, we
extract local and higher-order features of the users in order
to facilitate the graph learning model to learn more essential
features of the roles. It is important to emphasize that, to

TABLE I
NOTATIONS AND THEIR DEFINITIONS.

Notation Definition
G(U,E) The network with users U and their edges E

M The number of nodes
N The length of user sequence
xl Local feature embeddings in Euclidean spaces
xh High-order feature embeddings in Euclidean spaces
d The dimension of a vector
zi The attributes of user vi
H User embeddings in hyperbolic spaces
(·)l, (·)h l, h corresponds to local and higher order
ℓ, L The number of layers
σ A nonlinear activation function
c The reciprocal of the curvature of a hyperbolic space
Hd,c The hyperboloid manifold within d dimensions with

constant negative curvature −1/c (c > 0),
TxHd,c The tangent space centered at point x
⊗c,⊕c The multiplication and addition defined in Hc

⟨., .⟩L The Minkowski inner product
Dc

L(x,y) The intrinsic distance between two points x,y in Hd,c

accurately depict each user’s role and learn role features in
graph learning, the structural features must be based on real
statistical information rather than low-dimensional embed-
dings derived from learning.

1) Local feature extraction: The role of a user in the social
network is significantly influenced by connected users, and
a user who connects to a large number of other users is
extremely influential on a local scale. Therefore, we capture
the local features of users to recognize the local role of
users. Specifically, we utilize the ReFeX [32] method, a
widely validated neighborhood information extraction method.
ReFeX aggregates neighborhood features by simple math-
ematical computation over multiple iterations with binning
and single encoding for each dimension, ultimately generating
local features of users. We define xl

i as the local embedding
of vi and xl

i ∈ Rdl , where i = 1, 2, . . . ,M .
2) Higher-order feature extraction: Although local features

reflect to some extent the roles of users on a local scale, the
highly complex structure of social networks may lead to many
users obtaining overly homogeneous local features. To address
this problem, we distinguish the roles played by different users
in similar network structures by recognizing the complex struc-
tures in which the users are located. In particular, we utilize
the Graphlet Degree Vector (GDV) [33] method to generate
higher-order features of users. GDV classifies node orbits by
enumerating subgraph structures and partitioning them based
on graph self-isomorphisms and then counts user occurrences
in different orbits to represent higher-order features of users.
We define xh

i as the local embedding of vi and xh
i ∈ Rdh ,

where i = 1, 2, . . . ,M .

B. Hierarchical Structure Learning

After extracting the structural features of users in the social
network, we built a graph learning module, the simplified
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Fig. 2. The framework of HyperRole. HyperRole models online social networks as graph data, extracting the structural features of users. It generates node
embeddings through a hierarchical structure learning module and learns users’ role features from these structural features, which are then fed into a multi-class
classifier for role discovery.

hyperbolic graph Transformer skeleton, for learning more
essential role information from complex network structures
and structural features in the social network.

1) Token Sequence Construction: Graph Transformers typ-
ically input all user features in the graph as token sequences,
however, this behavior is unreasonable given the permutation
invariance of users. Meanwhile, the proximity of relationships
between users in social networks is ignored in the simple
arrangement of token sequences. For example, in the token
sequence, the board chairman and the department manager
should be closer to each other, and should be farther away
from the ordinary employees.

To avoid unnecessary connections between unrelated users
and to learn local and higher-order features separately during
the graph learning process, we construct two independent
token sequences based on the similarity of structural features.
For each node vi, we define the set of the top N nodes whose
embeddings are most similar to vi’s embedding as TopN (vi):

TopN (vi) = {vj ∈ U \ vi | rank(Sim(xl
i, x

l
j)) ≤ N}, (6)

Toph
N (vi) = {vj ∈ U \ vi | rank(Sim(xh

i , x
h
j )) ≤ N}, (7)

where Sim(a, b) = a · b/(|a| · |b|) indicates the similarity
between a and b, and rank(·) indicates the position in the
sorted list of the similarity, with the smallest distance having
the highest rank. We construct the token sequences as follows:

Sl
i = {zi} ∪ {zn | vn ∈ Topl

N (vi)}, (8)

Sh
i = {zi} ∪ {zn | vn ∈ Toph

N (vi)}, (9)

where i = 1, 2, . . . ,M , n = 1, 2, . . . , N , and Sl
i, S

h
i ∈

R(N+1)×di are token sequences of user vi. To facilitate our
discussion, when constructing Sl

i and Sh
i , we place the at-

tribute zi corresponding to vi in the first positions of the sets,
denoted as z0, and we then insert the attributes of the points
in the ToplN (vi) and Toph

N (vi) sets into the sets Sl
i and Sh

i in
descending order of similarity, and we record these indices as
pli and phi respectively.

2) HyperLinear: The HyperLinear module learns low-
dimensional embeddings that capture role information through
graph learning. The embedding space is transformed from
Euclidean space to Hyperbolic space. For input token sequence
Sl
i and Sh

i , the HyperLinear module map them as follows:

H l,0
i = expc0o (Sl

i)⊗c0 W l,0, (10)

Hh,0
i = expc0o (Sh

i )⊗c0 Wh,0, (11)

where W l,0,Wh,0 ∈ Hdi×d,c0 is the learnable projection of
the input layer of the HyperLinear module in the hyperboloid
manifold within di × d dimensions with constant negative
curvature −1/c0, expc0o (·) is the operation of the exponential
map transferring the embedding from Rd at the origin to Hd,c0 ,
and S ⊗c0 W := expc0o (W logc0o (S)) is the multiplication
defined in hyperbolic space.

3) Simplified Hyperbolic Transformer Encoder: In this
module, we develop a simplified Transformer encoder in
hyperbolic space, as shown in Fig. 3. Unlike the traditional
Transformer, we omit the normalization operation, since nor-
malization in hyperbolic space remains an unsolved problem.
Experimental results indicate that the model achieves excel-
lent performance even without normalization. Specifically, we
rewrite the hyperbolic version of the Multi-head Self-Attention
(MSA) by definition:

Q = H ⊗c WQ,K = H ⊗c WK , V = H ⊗c WV , (12)
MSA(H) = softmax(⟨Q,K⟩L)⊗c V, (13)

where ⟨·, ·⟩L denotes the Minkowski inner product used to
compute the similarity between two hyperbolic vectors and
WQ,WK ,WV ∈ Hd×d,c are learnable weight matrices.

Fig. 3. The architecture of the simplified hyperbolic Transformer encoder.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on July 02,2025 at 04:07:42 UTC from IEEE Xplore.  Restrictions apply. 



Compared to traditional self-attention, we replace the orig-
inal dot product operation with the Minkowski inner product
and discard the degree-based scaling because this scaling is
not significant for hyperbolic embeddings. The feedforward
network that consists of hyperbolic linear transformations,
called HyperFNN, is as follows:

FFN(H) = (W ⊗cℓ H)⊕cℓ b, (14)
where Kℓ,Kℓ+1 represents the hyperbolic space curvature of
the ℓ, ℓ + 1-th layer. W ∈ Hd×d,cℓ and b ∈ H(N+1)×d,cℓ

are the learnable weight matrix and bias. H ⊕cℓ b :=
expcℓo (P cℓ

o−→H (b)) is the addition defined in hyperbolic space.
P cℓ
o−→H (·) is the parallel transport from ToHd,cℓ to THHd,cℓ .

The summarized proposed simplified hyperbolic Transformer
encoder is as follows, take user vi as an example:

H ′
i
l,(ℓ) = MSA(H

l,(ℓ−1)
i )⊕cℓ H

l,(ℓ−1)
i , (15)

H
l,(ℓ)
i = σ⊗cℓ,cℓ+1

(FFN(H ′
i
l,(ℓ))⊕cℓ H ′

i
l,(ℓ)), (16)

where H
l,(ℓ)
i denotes the output of the ℓ-th Transformer

encoder. ⊕Kℓ is an addition operation defined in Hd,cℓ and
σ⊗cℓ,cℓ+1

:= exp
cℓ+1
o (σ(logcℓo (S))) is nonlinear activations

transferring the embedding from Hd,cℓ to Hd,cℓ+1 . We can
obtain H

h,(ℓ)
i in the same process. Then we denote the

local and high-order embedding sequences of the Hyperbolic
Transformer encoder module as H l and Hh, which are as
follows:

H l = (H
l,(ℓ)
1 , H

l,(ℓ)
2 . . . , H

l,(ℓ)
M ), (17)

Hh = (H
h,(ℓ)
1 , H

h,(ℓ)
2 . . . , H

h,(ℓ)
M ), (18)

Through this Transformer encoder, we enable long-distance
users in the social network to associate as well. Leveraging
the property of negative curvature in hyperbolic space, the
model accurately learns low-dimensional embeddings of users,
maintaining appropriate distances and preserving the original
hierarchical structure in the embedding space.

Fig. 4. The overview of hyperbolic distance-aware readout.

4) Hyperbolic Distance-Aware Readout: After the Trans-
former encoder, we obtain an embedding sequence corre-
sponding to each user, containing relevant user feature in-
formation. To further enhance the learned role features, this
module utilizes the hierarchical distances between users for
guidance, as shown in Fig. 4, so that the target user adap-
tively learns the relationships between different users in the
social network, resulting in the final user embedding. Here,
we calculate the hyperbolic distance Dc

L(·, ·) between user

embeddings to measure the hierarchical distance. For the em-
bedding sequence H l

i corresponding to user vi, the Hyperbolic
Distance-Aware Readout module is as follows:

gli = logcℓo (H l
i), (19)

αl
i,n =

exp(Dc
L(g

l
i,0, g

l
i,n)W

⊤
a )∑N

n=1 exp(D
c
L(g

l
i,0, g

l
i,n)W

⊤
a )

, (20)

H l
i,out = expcℓo (

N∑
n=0

αi,ng
l
i), (21)

where i = 0, 1, . . . ,M , n = 1, 2, . . . , N , logcℓo (·) is the
operation of the exponential map transferring the embedding
from Hd,cℓ to Rd at the origin, gli ∈ Hd×N,cℓ , Wa ∈ R1×1

denotes the learnable weight matrix, exp(·) is the exponential
operation, and hl

i,out ∈ Hd,cℓ denotes the user embedding of vi
learned by the hyperbolic distance-Aware readout module. Let
H l

out = (H l
1,out, H

l
2,out, . . . ,H

l
M,out). We can obtain Hh

out by
the same process and H l

out, H
h
out ∈ HM×d,cℓ .

C. Role Discovery

As outlined in Section III-B, HyperRole generates the cor-
responding user embeddings H l

out, H
h
out by constructing two

independent token sequences and learning the local and higher-
order role features of the users from relevant users across
the entire social network based on the simplified hyperbolic
Transformer encoder. We reconstruct the role information in
the user embeddings by a Hyperbolic Multi-Layer Perceptron
(HMLP) similar to (14), which is as follows:

H l
re = HMLP(H l

out) = (W ⊗cℓ H l
out)⊕cℓ b, (22)

Hh
re = HMLP(Hh

out) = (W ⊗cℓ Hh
out)⊕cℓ b, (23)

where H l
re ∈ HM×dl,cℓ , Hh

re ∈ HM×dh,cℓ are reconstructed
local and higher-order features. To make user embeddings
learn real structural features, we constrain the distance between
user embeddings and structural features. As the user embed-
dings exist in a hyperbolic space while the structural features
are in an Euclidean space, we map the structural features to
hyperbolic space and compute the hyperbolic distance between
the user embedding and the structural features. The Hyperbolic
Distance loss L1 is as follows:

L1 = Dc
L(H

l
re, exp

c
o(X

l)) +Dc
L(H

h
re, exp

c
o(X

h)), (24)

Finally, we train a multi-class classifier based on logistic
regression for role discovery on the basis of H l

out ⊕c Hh
out

obtained. The classifier optimizes its own fitting curve with the
training data, making it possible to output the corresponding
roles based on the input user embeddings. The classifier is
trained by the cross entropy loss function:

L2 = − 1

M

M∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)], (25)

where yi is the true user role of user vi, ŷi is the user role of
user vi predicted by the classifier, and log(·) is the ogarithmic
operation. The pseudocode of the HyperRole framework is
summarized in Algorithm 1.
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Fig. 5. Comparisons of results for all models under different division ratios for real-world datasets.

Algorithm 1 HyperRole
Input: Graph data G = (V,E) extracted from the online

social network
Output: Roles of predicted users ŷ

1: Extract local features X l by ReFeX and higher-order
features Xh by GDV

2: for i = 1 to M do
3: Construct token sequences Sl

i and Sh
i by (8) and (9)

4: Calculate H
l,(0)
i , H

h,(0)
i by (10) and (11)

5: for ℓ = 1 to L do
6: Calculate H ′

i
l,(ℓ), H ′

i
h,(ℓ) by (15)

7: Calculate H
l,(ℓ)
i , H

h,(ℓ)
i by (16)

8: end for
9: Calculate hl

i,out, h
h
i,out by (21)

10: end for
11: Calculate H l

re, H
h
re by (22) and (23)

12: Calculate L1 by (24)
13: Use back-propagate on L1 to update parameters
14: Fix precession step model parameters
15: Input H l

out⊕cHh
out into a multi-class classifier to get user

roles ŷ
16: Calculate L2 by (25)
17: Use back-propagate on L2 to update parameters
18: Return: Predicted roles of users ŷ

IV. EXPERIMENTS

A. Experimental Settings

1) Dataset: Five widely used real-world datasets with hier-
archical structures are applied for evaluating HyperRole. The
user categories in the datasets are strictly divided according
to user roles. A brief description of the dataset used in the
experiments is provided below, and detailed statistics of each
dataset can be found in Table II.

• Air-traffic networks [11]: We adopt three air-traffic
networks, namely the Brazil, Europe, and USA air-traffic

TABLE II
THE STATISTICAL INFORMATION OF REAL NETWORKS.

Dataset #Users #Edges #Classes Density(%)

Brazil 131 1,003 4 11.7792
Enron 143 2,583 7 25.4408
Europe 399 5,993 4 7.5478
USA 1,190 13,599 4 1.9222
Actor 7,779 26,752 4 0.0886

networks, where users denote airports, and edges denote
the existence of flights between airports. User categories
are highly correlated with functions and roles played by
airports in these networks, from which we can equate
these air traffic networks to social networks, with airports
viewed as users and edges representing the existence of
connections between users.

• Enron email network [34]: This is a small email network
within the Enron email system, where users correspond
to employees’ email addresses and edges between users
indicate instances of email communication between em-
ployees. User labels are assigned based on employees’
positions or departments.

• Actor co-occurrence network [35]: The Actor network
is a subgraph network extracted from the Flim net-
work [36]. In the Actor networks, users represent actors,
connected edges indicate their simultaneous appearance
in a Wikipedia page, and user categories are categorized
according to the number of words on that page. Thus, the
user category measures the influence of the user in the
network.

2) Evaluation metrics: We use two metrics together to mea-
sure the correctness of role discovery. Macro-F1 and Micro-
F1 are extensions based on F1-score [37] and are widely used
in multi-classification, which combine precision and recall to
better handle class imbalance. Micro-F1 calculates the total
precision and recall for all categories and then calculates
the F1-score, while Macro-F1 calculates the F1-score after
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calculating the precision and recall for each class, and finally
averages the F1-score for all categories. F1-score is as follows:

F1-score = 2 · Precision ·Recall

Precision+Recall
. (26)

3) Baselines: We compare HyperRole with the following
baselines, which are divided into three types.

Matrix factorization based methods:
• RolX [8] gets user roles by non-negative matrix factor-

ization of the structural feature matrix.
• GraphWave [9] analyzes user roles by spectral graph

wavelet diffusion.
Random walk-based methods:
• struc2vec [11] constructs a multi-layer weighted graph

based on the structural similarity of users to learn user
embedding by random walks.

Graph learning based methods:
• GAS [16] introduces Graph Auto-Encoders (GAE) [38]

to mine user roles from structural features
• RESD [17] utilizes Variational Graph Auto-Encoders

(VGAE) [38] to learn the generation mechanism of struc-
tural features to improve the accuracy of role discovery.

• SHOAL [18] integrates local and higher-order features
via Graph Isomorphism Network (GIN) and adversarial
learning to enhance user embedding.

• RFLH [19] mines the connection between local
and higher-order features by VGAE and Normalizing
flows [39] to portray more essential user roles

4) Implementation details: For our model HyperRole, we
follow the original article’s guidance [32], [33] and adopt the
same settings as other models with ReFeX and GDV methods
for feature extraction. The number of iterations for ReFeX
fusing neighboring features is set to 3, and the number of bins
is set to 4. The subgraphs extracted by GDV are set to contain
nodes ranging from 2 to 5, resulting in 73-dimensional higher-
order features. For the Graph Transformer backbone, we set
the Transformer layers to 2, the number of attention heads to
1, the number of MLP layers to 2, the hidden dimension to
128, and the hyperparameter N ∈ {3, 5, 7, 9, 11, 13, 15}. All
curvatures are set as trainable parameters. During training, we
set the Adam SGD optimizer to update the parameters and set
the learning rate to 0.001. In addition, the batch size is set to
32 and the maximum training period is set to 100 epochs.

We develop the comprehensive model using the PyTorch
framework and conduct all experiments in a Linux envi-
ronment. To ensure the fairness of the entire comparison
experiment, the hyperparameters of baselines are set as optimal
according to the description within the above paper. All
trials are performed on a single Nvidia GeForce RTX 3090
GPU. The software environment comprises Python version 3.6,
PyTorch version 1.10.2, and CUDA version 11.3.

B. Result of Role Discovery

To evaluate the performance of HyperRole properly, we
performed experiments with different training ratios on the five

real datasets described in Section IV-A. We extract the graph-
structured data from the dataset and randomly divide the data
into a train set and a test set, with the ratio of the train set
ranging from 10% to 90%, and input the graph-structured data
into the model to output the corresponding role of users. The
comparative results of role discovery are shown in Fig. 5.

Taking the Brazil network with the least number of users as
an instance, our model HyperRole significantly outperforms
the baseline when backed by a certain percentage of training
data. The advantage of HyperRole over other baseline models
becomes even more pronounced as the training set expands.
This is attributed to the fact that HyperRole constructs input
sequences based on structural feature similarity, thus effec-
tively reducing the error messages received by the target users.
In contrast, several other baseline models rely on GCNs to
collect information from their neighbors, however, due to the
possible role imbalance in the hierarchical structure of an
online social network, which results in the target user receiving
incorrect features from wrong categories. For example, users
connected to a large number of leaf nodes can be misclassified
as leaf nodes.

Compared to the Enron network, which is similar in size to
the Brazil network, HyperRole still performs strongly in terms
of Micro-F1 scores, but underperforms in terms of Macro-
F1 scores. The reason for this difference is that Macro-F1
does not take into account the amount of data, but treats
each category equally. In the Enron network, the limited
number of users and the large number of categories lead to a
sparse distribution of users in certain categories. HyperRole
constructs input sequences by computing structural feature
similarity may make different categories of users classified
in the same input sequence to be learned incorrectly.

Our model also achieves the best results on all other
networks. As the number of users in the network increases, the
way HyperRole utilizes the Transformer to capture information
from a global perspective shows a more pronounced advan-
tage. It is worth noting that other graph learning models such
as RESD and GAS show obvious limitations in large networks
because they only learn user role information from local
structural features. In contrast, SHOAL and RFLH incorporate
both local and higher-order features into user embeddings and
outperform RESD and GAS, which highlights the necessity
of combining different structural features. Unlike SHOAL
and RFLH, which add additional auxiliary modules to their
graph learning models, HyperRole obtains excellent results
by building a simple Transformer model on hyperbolic space,
which effectively verifies that hyperbolic space can effectively
capture the hierarchical structure in online social networks.

C. Visualization

In this subsection, we present the results of the visualization
of the Brazil network. We first generate user embeddings from
the model and then project them onto a two-dimensional space
using T-SNE. Our expectation is that users with the same roles
should be close to each other and users with different roles
should be far away from each other in the 2D space.
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TABLE III
TIME AND MEMORY COMPARISON OF DIFFERENT METHODS WITH DIFFERENT DATASETS.

Method Brazil Enron Europe USA Actor
Time #param Time #param Time #param Time #param Time #param

RolX [8] 0.3s 5K 0.4s 4K 0.4s 9K 0.7s 21K 3.1s 127K
GraphWave [9] 0.2s 0K 0.3s 0K 1.1s 0K 7.2s 0K 9.9m 0K
struc2vec [11] 5.5s 17K 6.9s 19K 21.7s 51K 2.4m 152K 13.8m 993K
RESD [17] 14.8m 66K 17.0m 55K 15.3m 66K 16.9m 63K 58.8m 76K
GAS [16] 2.2s 85K 2.6s 89K 3.6s 154K 6.5s 357K 13.2s 2038K
SHOAL [18] 3.6s 872K 3.6s 849K 3.5s 872K 3.5s 866K 5.0s 890K
RFLH [19] 24.3s 17K 24.1s 17K 26.6s 26K 57.9s 51K 8.9m 262K
HyperRole 5.7s 33K 6.1s 36K 6.5s 102K 6.8s 304K 7.2s 1986K

(a) RolX (b) struc2vec (c) GraphWave (d) RESD

(e) GAS (f) SHOAL (g) RFLH (h) HyperRole

Fig. 6. Visualization of user embeddings on Brazil network. Each subgraph
shows the position of users mapped by the method in a two-dimensional space.

Fig. 6 depicts the spatial distribution of the various roles in
the Brazil airport network. We note that although the RolX
method presents a clear clustering phenomenon, it is not
able to effectively differentiate between different user roles
because it relies only on matrix factorization without addi-
tional constraints. Methods such as struc2vec, RESD and GAS
show certain role differentiation abilities by utilizing local
or higher-order features, but they are unable to sufficiently
restrict users sharing the same role to a reasonable range. On
the contrary, GraphWave, which relies on global features to
distinguish users, is able to restrict users to similar spatial
areas, but lacks the ability to distinguish between different
roles. SHOAL and RFLH combine local and higher-order
features, and show different abilities in role discovery. SHOAL
focuses on restricting users with the same role to similar spatial
areas, while a large number of users overlap complicates its
differentiation. In contrast, RFLH can effectively distinguish
users with the same role, although its restriction seems to be
more relaxed. In comparison, our model HyperRole exhibits
excellent differentiation. Except for users of incorrectly deter-
mined roles, the distinction between different roles is more
obvious, and users of the same roles are close to each other
and do not overlap. The experimental results demonstrate the
effectiveness of embedding users in hyperbolic space.

D. Parameter Sensitivity Analysis

We investigate the impact of hyperparameters on the
model’s performance. To observe the trend change in scores
more clearly, we carried out Min-Max Normalization on F1-

scores and set the training ratio to 70%. As depicted in Fig. 7,
our experiments are conducted on three distinct aeronautical
networks, each representing a different network size.

We analyze the impact of the number of users N for
sequence construction on the performance of extracting global
features. We search for the optimal length of sequence con-
struction and let N ∈ {3, 5, 7, 9, 11, 13, 15}. The Brazilian
network achieves good results with a small N , obtaining the
optimal result at N = 9. However, the score decreases rapidly
as N continues to increase, due to the fact that an excessively
long user sequence incorrectly classifies users with different
roles in the same sequence. The experimental results show that
each network has an optimal N such that each user can obtain
as much feature information as possible from users with the
same role while avoiding feature information from roles other
than those expected.
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Fig. 7. The analysis of the length N of the node sequence.

E. Efficiency Comparisons

In this comparison experiment, we report the time and
memory required by all methods on different datasets, where
the number of parameters for GraphWave is 0K because it
only involves mathematical computation and no parameter
training. All methods still follow the experimental setup in
Section IV-A with a 70% training set ratio. As shown in
Table III, although our method HyperRole is not superior in
terms of time and memory compared to non-graph learning
methods, it far outperforms them in terms of correctness in
the role discovery task. The time consumption of HyperRole is
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constant at a small order of magnitude compared to advanced
graph learning methods. Due to the complex computation of
the Transformer mechanism and hyperbolic geometry, Hyper-
Role has a large overhead on large datasets, and otherwise,
the memory required by HyperRole is within an acceptable
range. It can be seen that HyperRole can obtain the best results
among the current role discovery methods within a small time
overhead.

V. RELATED WORK

A. Role Discovery

Early role discovery methods applied some low-complexity
matrix factorization methods to obtain information related to
user roles from user features and network structure. RolX [8]
utilizes the ReFeX method to extract user structural features
and generates user embeddings using non-negative matrix
factorization techniques. GraphWave [9] proposes a spectral
wavelet diffusion method to generate role embeddings for
each user without the requirement of heuristically defining
user structural features and model training. EMBER [10],
on the other hand, collects the degree information within
a k-hop neighborhood of users and randomly selects users
to compute similarity matrices and obtains user embedding
matrices through implicit factorization.

Compared to the matrix factorization-based methods, ran-
dom walk-based methods are more capable of recognizing the
complex structure in which the user is located, and distinguish-
ing the user roles by comparing the similarity of the walk se-
quences. struc2vec [11] constructs multi-layer weighted graphs
to encode structural similarities between users and generates
random walk sequences by measuring similarities between
users at different scales. Node2bit [12] performs temporal
random walks for directed temporal networks, and obtains the
role features of each user by aggregating the user features
in the random walk sequence. struc2gauss [13] learns user
embeddings by learning them from Gaussian distributions,
takes into account the noise present in complex networks,
and computes user similarities for random sampling to con-
strain user role embeddings via the RoleSim [40] algorithm.
Role2Vec [14] proposes a feature-based random walk method
that categorizes topologically similar users into the same roles
and assigns similar user role embeddings during training.

Graph learning-based methods focus more on mining poten-
tial connections between users from their structural features,
and extracting richer implicit information about user roles
from complex network structures through GNNs. GAS [16] to
enhance the generalization ability of user embedding, encoding
the structural features of the network by GCN [41], and then
reconstructing the structural features to learn user roles by the
multi-layer perceptron. To model the nonlinear relationship
of the user’s structural features, RESD [17] introduces VAE
and compensates for the network information lost during
the encoding process by adding node degree constraints.
SHOAL [18] integrates local and higher-order structural fea-
tures of the user by combining GAE and adversarial learning
to more accurately recognize user roles. RFLH [19] exploits

VGAE and Normalizing flows to mine the connections be-
tween different structural features of a user, generating more
flexible and expressive user role embeddings.

Even though existing approaches to graph learning are
extremely capable of learning structural features and mining
complex network structures, they all ignore the widespread
hierarchical structures in online social networks. Hierarchical
structure is crucial to help us understand and analyze users’
roles, so our model notes this problem and addresses it by
introducing hyperbolic geometry.

B. Hyperbolic Graph Neural Networks

The hyperbolic graph neural network is born from the
combination of hyperbolic geometry and graph neural net-
works, [28] first defines the graph neural network in hyperbolic
geometric models (Lorentz model and Poincaré Ball model).
HGCN [29] builds on its previous work by defining complete
convolutional operations and nonlinear activations, and con-
firms that generated node embeddings preserve the hierarchical
structure of the network. Since computing in hyperbolic space
is different from Euclidean space, HGAT [30] develops a
complete attention computing mechanism for hyperbolic space
to migrate graph attention networks to hyperbolic space.

On the basis of HGAT, although there have been some stud-
ies [42] to investigate how to extend the attention mechanism
to the whole globe in hyperbolic space, they only apply the
hyperbolic geometry to a certain part of the process, not the
whole process. It is obvious that the advantages brought by
the local application of hyperbolic geometry are undermined
by subsequent operations in Euclidean space, so we propose
a simplified Hyperbolic Transformer that applies hyperbolic
geometry to the whole model.

VI. CONCLUSION

In this paper, we propose a graph deep learning framework
based on hyperbolic geometry and Transformer, called Hyper-
Role, for role discovery of users in online social networks.
HyperRole first extracts users’ real statistical features in the
network as structural features, and then computes the similarity
of the structural features to construct two independent user
sequences to mine the local and higher-order relationships
between users, respectively. Then we build a simplified hy-
perbolic Transformer model to learn the user’s role features
from structural features to generate user embeddings that can
correctly express the hierarchical structure of users in the
network. Finally, we utilize the hyperbolic distance between
user embeddings to guide the target user to obtain its own
role features from other users in the same user sequence.
Experimental results show that our HyperRole can effectively
preserve the hierarchical structure in online social networks,
which is one of the main reasons why HyperRole achieves
optimal results in the role discovery task compared to other
baselines. Moreover, compared with other complex graph
deep learning models, the computational space overhead of
HyperRole is much smaller, while the computational time
overhead does not increase significantly.
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guná, “Hyperbolic geometry of complex networks,” Physical Review
E—Statistical, Nonlinear, and Soft Matter Physics, vol. 82, no. 3, p.
036106, 2010.

[27] F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, and D. Kri-
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