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Abstract—The fast-growing Internet of Things (IoT) have
generated a vast number of IoT tasks, and these tasks are
usually featured by strict response latency requirements. To cater
for the time-sensitive IoT application scenarios, vehicular fog
computing (VFC) can be adopted to serve the offloading requests
from the IoT devices. However, current works in VFC seldom
consider the task execution failures that are actually inevitable
owing to limited computing resources in VFC compared to cloud
computing. Hence, we strive to enhance the VFC system by
incorporating the failures for task execution into our system
model, which makes task offloading more general and practical.
We formulate our energy consumption optimization as a mixed
integer nonlinear programming problem and further put forward
an iterative algorithm to solve it. We validate our approach by
extensive simulation and the experimental results have proven its
advantages in terms of the optimal values.

Index Terms—Vehicular fog computing, service provisioning,
failure, energy consumption, task offloading

I. INTRODUCTION

Vehicular fog computing (VFC) has gained tremendous
attention in both academia and industry in the past few years.
Evolved vehicles are bearing the weight of the enthusiasm
for smart transportation, and such an enthusiasm is further
propelled by the world’s first 5G-capable electric car unveiled
in China. Apart from path navigation, driving safety, and info-
tainment services, smart vehicles can also provision computing
resources and such vehicles are termed fog vehicles (FV)
in VFC [1]. The fast-growing IoT devices have increasing
demands of computing resources, although their own compu-
tational capabilities are restricted by the limited physical sizes.
Task offloading to the cloud center for execution usually incurs
long response delay, which cannot satisfy the rigorous latency
requirements of the devices. Fog vehicles can become a perfect
substitute, since the computing resources are brought in close
vicinity of the IoT devices.

Similar to cloud computing, the virtualization technology is
also widely applied to VFC. Virtual machines (VM) created
by FVs can efficiently support the scalability and flexibility of
computing resource distribution, such that the computational
demands from IoT devices can be satisfied on demand with-

out additional overheads [2]. A variety of IoT applications
can be performed in VFC in the form of computing tasks.
It shall be noted that the amount of computing resources
and energy supply in VFC is much less than that in cloud
computing. Thus, the elaborate resource allocation is of vital
importance to VFC for the sake of resources saving in terms
of computing resource and energy consumption. For example,
in order to satisfy the quality of service (QoS) requirements
of IoT devices, the tasks should be accomplished before their
deadline. However, to blindly shorten the response delay does
not bring about better quality of experience (QoE) for IoT
devices, expect for more energy consumptions. Unfortunately,
existing works on VFC seldom notice that. On the other hand,
it is an inescapable fact that task execution in VFC is more
susceptible to failures [3], owing to its limited computing
resources and energy supply. It usually takes time to resume
the task execution after the failures occur. Note that we only
take into consideration the recoverable failures in this paper
such as temporary disconnection and software failures. Each
recovery from a failure incurs extra energy consumption and
calculation delay. Therefore, it is necessary to incorporate
the failure-resisted task offloading into the failure-prone VFC
system. To that end, we put forward an energy-aware failure-
resisted service provisioning scheme in VFC in this paper.
Specifically, the contributions of this paper are threefold, given
below:

• Different from the traditional service provisioning which
assumes that the offloaded tasks can be executed without
failures in VFC, we have considered the failures for task
execution in our system model, which makes our task
offloading model more general and practical.

• In this paper, we aim to minimize the total energy
consumption for all the fog vehicles and model it as a
mixed integer nonlinear programming problem. Due to
the difficulty in solving it, we put forward an iterative
algorithm to solve this problem to obtain the approxi-
mately optimal solution. Specifically, we have adopted a
heuristic rule to speed up the searching process.

• Extensive simulation is carried out to validate the efficien-978-1-6654-3540-6/22 © 2022 IEEE
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cy of our approach. The simulation results have shown
that our approach can achieve a better result in terms of
the optimal values.

II. RELATED WORKS

Cloud computing residing in the remote core network can
provide unlimited computing resources at the expense of long
response delay and a fault-tolerated mechanism is required for
reducing the failures of task execution [4]. Authors in [5] put
forward an efficient QoS-aware and fault-tolerated architecture
which incorporates the software-defined vehicular networks to
tackle the above issues. Then heuristic algorithms are proposed
to solve the formulated problem. Authors in [6] envision an
application scenario where the fog nodes can process the
tasks by creating VMs using the rented computing resources.
Furthermore, they have taken into consideration the reliability
of the fog computing system, e.g., measuring it by the number
of failures of task execution. The goal is to seek the tradeoff
between the system reliability maximization and system costs
minimization.

In a VFC scenario where RSU is deployed along the rural
highways, the performance of RSU is usually limited by the
energy supply, which requires that the task scheduling and
resource allocation should be more efficient. For example,
how to optimize the energy consumption is crucial, because
the task offloading incurs both the computation and commu-
nication costs, thus bringing more energy consumptions of
RSU. Hence, authors in [7] put forward a strategy for energy
consumption optimization which can meet the constraints
including the task deadline and resource availability. Authors
in [8] strive to optimize the energy efficiency for internet of
vehicles. To that end, they propose a non-orthogonal multiple
access (NOMA)-based fog computing vehicular network archi-
tecture and the corresponding optimization problem. Then the
resource optimization problem is divided into two subproblems
for solving the problem more efficiently.

The sensing capability has been playing an important role
in autonomous driving, but one single autonomous vehicle
has limited sensing coverage. To avoid misdetecting the dead
zones, a VFC architecture which combines greedy and SVM
algorithms is proposed to enhance the sensing capability via
cooperation among fog vehicles [9]. They further use the dis-
tributed deep learning for trajectory prediction. The simulation
shows that the sensing capability can be greatly enhanced in
terms of the sensing coverage and accuracy. Authors in [10]
try to optimize the response delay and energy consumption
by modeling the problem as a multi-objective optimization
problem. Then an efficient offloading strategy is used for task
execution at FVs, and solved based on differential evolution
algorithm.

It is challenging to motivate FVs to contribute the comput-
ing resources and guarantee the service availability. A task
offloading strategy is proposed to encourage FVs to share
the resources considering vehicle mobility, task priority and
service availability, and the problem is formulated as Markov
decision process [11]. The deep reinforcement learning-based
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Fig. 1. Failure-aware VFC architecture for deadline-driven IoT tasks

approach is used for solving this problem. The topology of
vehicular networks fluctuates a lot due to the mobility of
vehicles. The service provisioning in VFC is supposed to
consider this factor. Specifically, a joint optimization problem
is proposed which tries to optimize both task scheduling and
resource allocation while considering the effects of vehicle
mobility [12]. Due to the difficulty in solving this non-convex
problem, authors divide it to two sub-problems.

Other works such as [13]–[17] also focus on the perfor-
mance improvement of VFC systems with regards to response
latency, energy consumption, privacy and so on. However, due
to the limitation of space, we do not detail them any longer.
Different from the above works, we consider a more general
and practical task offloading model in VFC, and try to jointly
optimize the task offloading and resource allocation in VFC.

III. SYSTEM MODEL

The failure-aware VFC architecture for deadline-driven IoT
tasks is shown in Fig. 1, which consists of three entities, i.e.,
the IoT devices, FVs and RSU. RSU acting as the fog server
can serve the FVs within its wireless coverage. For example,
RSU can take charge of task assignment for them. There are M
IoT tasks, indexed by M = {1, ...,M}, and N FVs, indexed
by N = {1, ..., N}, respectively, in the proposed system. The
task i(∈ M) can be represented by the tuple (Ii, Oi, Di),
where Ii is the size of the task-input data, Oi is the amount
of computing resources needed to accomplish task i, and Di

is the deadline for task i. The FV j(∈ N ) can be represented
by the tuple (fj,max, hj , gj , ), where fj,max is the maximal
processing frequencies of FV j, hj is the maximal number
of VMs that FV j can simultaneously support, and gj is the
dwelling time of FV j. The dwelling time of FV j within the
coverage of RSU can be easily estimated [18]. Assume that the
FVs information such as the VM information and the dwelling
time is known to RSU. According to these information, the M
tasks can be assigned to different FVs for execution. Define
xij as a binary decision variable to denote whether task i is
performed by FV j. Particularly, xij = 1, if task i is performed
by FV j; and xij = 0, otherwise.

A. Networking Model

Task offloading to VFC instead of the cloud center for
execution aims to better cater for the strict latency require-
ments of IoT devices. The corresponding transmission delay
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of the computation tasks needs to be calculated as follows.
For instance, the transmission delay of task i offloaded to FV
j, denoted by dtrsi,j , is given as dtrsi,j = Ii/ri,j , where ri,j is
the transmission rate of the wireless channel between device
i and vehicle j, and can be calculated as:

ri,j = B log2(1 +
PiHij
σ2

) (1)

where Pi denotes the transmission power of device i, Hij is
the channel gain between device i and vehicle j, B is the
bandwidth for the wireless channel and σ2 is the noise power.

B. Failure-aware Calculation Model
When the task i is allocated to FV j for execution, j

will create a VM for i by designating computing and storage
resources. It shall be noted that the execution may fail when
the corresponding VM processes task i. Then, the calculation
delay denoted by dclti,j will be discussed based on the following
two cases. If the task execution is successful, the calculation
delay, denoted by dsi,j , can be expressed as:

dsi,j = ζj +
Oi
fj

(2)

where ζj that is independent of any offloaded tasks denotes the
initialization time of the VM; fj is the processing frequency
of FV j. On the other hand, if the task execution fails, the VM
will restart the task after some recovery time, e.g., by using
checkpointing and rollback/roll-forward technologies [3]. Note
that the recovery time here is different from the initialization
time of the VM (i.e., ζj), in the sense that the principles
and technologies behind them are not the same. Following
the works [3], [6], we also assume that the failures of task i at
FV j follow a Poisson process with the failure rate λj . Then,
define N (t) as the number of failures during the time (0, t].
Hence, the probability that there are k failures within the time
interval lasting dsi,j seconds can be expressed as:

P{N (dsi,j) = k} =
(λjd

s
i,j)

k

k!
e−λjd

s
i,j (3)

and E[N (dsi,j)] = λjd
s
i,j . Define Rk(dsi,j) as the recovery

time of the kth failure for task i at FV j, and we further
assume it follows an exponential distribution with the recov-
ery rate µj . Meanwhile, the total N (dsi,j) failures for task
i at FV j are assumed to be independent of each other.
Then, the recovery times are independent and identically
distributed (i.i.d.) random variables, and the total recovery time
R(dsi,j) =

∑N (dsi,j)

k=1 Rk(dsi,j) follows Gamma distribution,
i.e., R(dsi,j) ∼ Γ(λjd

s
i,j , µj). Hence, the mean of the total

recovery time is λjd
s
i,j/µj . The failure-aware calculation

delay, which consists of the norm calculation delay and the
recovery time, can be expressed as:

dclti,j = dsi,j +
λjd

s
i,j

µj
= (1 +

λj
µj

)(ζj +
Oi
fj

) (4)

The response delay drspi,j for the task i offloaded to FV j

can be expressed as: drspi,j = dtrsi,j + dclti,j . Here, we omit the
returning delay owing to the fact that the size of execute results
is negligible compared to the task-input data size.

C. Energy Consumption Model

When task i is performed by the FV j, the energy con-
sumption of FV j needs to be calculated depending upon the
following two cases. If there are no failures during the task
processing, the energy consumption esi,j can be calculated as:

esi,j = χj + ϑςOif
2
j (5)

where χj is the static power consumption incurred by VM
initialization, regardless of the workload of tasks, ϑ is the
effective switched capacitance coefficient, and ς is the number
of cycles needed to perform one task-input bit at j. Obviously,
the larger the processing frequency, the more the energy
consumptions. As a result, it is advised to reduce the extra
overheads on energy consumptions by adjusting the processing
frequency fi, as long as the deadline of the IoT tasks is
satisfied. On the other hand, if there are failures for task
execution, the extra energy consumptions can be brought about
during the task processing recovery. Assume that the energy
consumption for each failure recovery is fixed, denoted by ξj .
Since the failures of task i at FV j follow a Poisson process
with the failure rate λj and E(N (dsi,j)) = λjd

s
i,j , the extra

energy consumption for FV j is λjdsi,jξj . Thus, the average
total energy consumptions for task i performing at FV j can
be expressed as:

ei,j = χj + ϑςOif
2
j + λjd

s
i,jξj

= ϑςOif
2
j + λjξj

Oi
fj

+ λjξjζj + χj (6)

D. Problem Formulation

The goal in this paper is to minimize the energy consump-
tions for all the fog vehicles in the failure-resisted VFC system.
In particular, we define O(x,f) =

∑M
i=1

∑N
j=1 xijei,j as our

optimization objective, where x is the M×N matrix of which
the element xij is the task offloading decision for the task
i at FV j, and f = (f1, ..., fN ) is a vector to denote the
processing frequencies of all the FVs allocated to the tasks
offloaded from IoT devices. Based on these descriptions, the
optimization problem in this paper is formulated as below:

(P1) min
x,f
O(x,f)

s.t. drspi,j ≤ Di ∀i ∈M,∀j ∈ N (7)

drspi,j ≤ gj ∀i ∈M,∀j ∈ N (8)

M∑
i=1

xij ≤ hj ∀j ∈ N (9)

N∑
j=1

xij = 1 ∀i ∈M (10)

fj ≤ fj,max ∀j ∈ N (11)

xij ∈ {0, 1} ∀i ∈M,∀j ∈ N (12)

where the constraint (7) guarantees that the total response
delay drspi,j should not exceed the deadline of the task i, and
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on the other hand the constraint (8) guarantees that the total
response delay drspi,j should not exceed the dwelling time of
FV j, either. Since an arbitrary FV j can support maximal
hj VMs at the same time, the total number of tasks offloaded
to the FV j shouldn’t exceed hj , which can be guaranteed
by the constraint (9). In the meanwhile, an arbitrary task can
be offloaded to at most one FV for execution, which can be
guaranteed by the constraint (10). Constraints (11) and (12)
ensure that the two variables should not violate their own
constraints.

IV. ALGORITHM DESIGN

To obtain the optimal solution to P1 requires exponential
time, e.g., by the exhaustive search among the potential NM

solutions. Such a prohibitively costly way cannot perfectly
suit our deadline-driven IoT situation. Furthermore, P1 is a
mixed integer nonlinear programming which is pretty difficult
to solve, due to the coexistence of discrete variable (i.e., x)
and continuous variable (i.e., f ) as well as the nonlinearity
of the optimization objective. Accordingly, we put forward an
iterative algorithm to solve this problem. In particular, we try
to search the optimal decision pair (x∗,f∗) in an iterative
fashion.

The proposed algorithm is shown in Alg. 1. The algorithm
works as follows. At the beginning, IAFE will do some ini-
tialization on the required parameters including the failure rate
vector λ and recovery rate vector µ, where λ = (λ1, ..., λN )
and µ = (µ1, ..., µN ). Such parameters can be easily estimated
based on the statistical histories. One IoT task, say i, is
randomly selected, and then change its offloading decision
xi to x̃i by randomly altering its offloading decision (e.g.,
xik = 1 to xip = 1). Then, we need to check whether
x̃i is feasible. For instance, if there are no violation of
the constraints such as the inequations (7)–(9), x̃i is valid.
The new task offloading decision x̃ is formed based on
x̃i (line 9). Given the offloading decision x̃, the algorithm
calculates the optimal resource allocation f̃ by minimizing
the optimization objective O(x,f). Since there is only one
task (i.e., i) changing its offloading decision, f̃−i = f−i, i.e.,
the energy consumptions of other tasks except i is the same.
We only need to update the energy consumption of task i. In
the meanwhile, the objective value O(x̃, f̃) = O(x,f)+4ei,
where 4ei = eip−eik. Therefore, we can speed up the search
process to a great extent.

Iteration-based approach for this mixed discrete-continuous
optimization may be trapped in a local optimum. To tackle this
issue, we have adopted a control factor θ to help escape the
local optimum. Particularly, the exploration continues with the
probability of θ and stops with the probability of 1− θ, when
O is very close to Õ. The process repeats until the stopping
criterion is satisfied, e.g., the maximal number of steps has
been reached.

Lemma 1: Given the offloading decision x for all the IoT
tasks M, there exists an optimal resource allocation scheme
f which can minimize the optimization objective O(x,f).

Algorithm 1: Iterative Algorithm for Failure Resisted
Energy Optimization (IAFE)

Input: M, N , ζ, χ, ϑ, ς , ξ, B, P , H, σ2

Output: Optimal decision pair (x∗,f∗)
1 Predict the failure rate vector λ, recovery rate vector µ;
2 Construct an initial task offloading decision x;
3 Calculate the optimal resource allocation f by

minimizing O(x,f);
4 Record the optimal objective value O(x,f);
5 repeat
6 Randomly pick an offloading decision xi of task i;
7 Change xi to x̃i by altering the offloading decision

of task i randomly;
8 if x̃i is valid then
9 x̃← (x−i, x̃i);

10 Obtain f̃ by minimizing O(x̃,f);
11 Record Õ(x̃, f̃);
12 if |Õ − O| ≤ δ then
13 Generate a random value θ(∈ (0, 1));
14 With probability θ, update: O ← Õ

(x,f)← (x̃, f̃) ;
15 else
16 O ← Õ ;
17 (x,f)← (x̃, f̃);
18 end
19 end
20 until stopping criterion satisfied;

Proof: First, the minimal value of ei,j exists, i.e.,

ei,j = ϑςOif
2
j + λjξj

Oi
fj

+ λjξjζj + χj

‡
≥(

1

4
ϑςO3

i λ
2
jξ

2
j )1/3 + λjξjζj + χj

where the equal sign of ‡ holds, if and only if ϑςOif
2
j

= 1
2λjξj

Oi

fj
, i.e., fj,1 = ( 1

2λjξj/ϑς)
1/3, which is independent

of the task-input data Oi. Second, there are other two critical
values we need to check. One is the energy consumption of
ei,j for the response latency equal to the deadline Di; the other
is the energy consumption for the response latency equal to d-
welling time of FV j gj . Let dmin = min{Di, gj}, and we can
obtain f̃j,2 = (λj+µj)Oi/(µj(dmin−dtrsi,j )−ζj(λj+µj)), and
let fj,2 = max{f̃j,2|j ∈ N}. As a result, given the offloading
decision x, the minimal value of O(x,f) exists by checking
the three potential processing frequencies {fj,1, fj,2, fj,max},
respectively. �

V. SIMULATION EVALUATION

In this section, we validate the efficiency of our approach
in terms of the optimal values by conducting extensive simu-
lation. Specifically, the involved parameters are initialized in
a random fashion. For instance, the number of fog vehicles in
VFC is 10, and the number of IoT tasks varies from 20 to 70.
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Fig. 2. The performance comparison with different failure rates

The failure rate and the recovery rate in the simulation vary
from 5 to 10 and from 1 to 10, respectively.

In the meanwhile, we compare IAFE with three bench-
marks which are mainly dependent upon the heuristic rules.
PF-optimal: Different FVs have different maximal allowed
processing frequencies (i.e., fj,max). This approach always
allocates the IoT tasks to the unoccupied FV with the max-
imal processing frequency. VM-optimal: Different FVs have
different maximal number of VMs, and this approach always
allocates the IoT tasks to the unoccupied FV with the maximal
number of VMs. Failure-optimal: Different FVs have different
failure rates, and this approach always allocates the IoT tasks
to the unoccupied FV with minimal failure rate.

We first investigate the effect of the failure rates upon our
approach. Particularly, the performance comparison with dif-
ferent failure rates is shown in Fig. 2, where the x-coordinate
denotes the number of IoT tasks and the y-coordinate denotes
the optimal energy consumptions for five cases. “FR:100%”
denotes the original case where the failure rate for each FV is
set randomly. The next four cases, denoted by “FR:120%”,
“FR:140%”, “FR:160%”, and “FR:180%”, mean that each
case improves the failure rate by 20%, 40%, 60% and 80%,
respectively compared to the original case. First of all, higher
failure rates lead to larger energy consumptions which can be
easily observed from the figure. For example, we can randomly
pick two from five cases, say “FR:120%” and “FR:160%”,
and the minimal optimal values for “FR:160%” are always
larger than the optimal values for “FR:120%”, no matter how
the number of IoT tasks varies. Second, the optimal energy
consumptions increase as the number of IoT tasks increases,
which can be observed from all the five cases. More IoT
tasks mean more energy consumptions taken to accomplish
them, no matter which FVs are assigned. Note that the task
information (e.g., Ii, Oi and Di) is generated randomly, it is
understandable that the performance may fluctuate a lot, e.g.,
when the number of IoT tasks is equal to 32 compared to the
number of tasks equal to 34.

In the next, we investigate the effects of iteration steps upon
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Fig. 3. The evaluation of maximal steps before achieving the optimal values

the approach. It is well known that the iterative algorithms are
time-consuming. Due to the difficulty in solving our mixed
integer nonlinear programming problem, we adopt the iterative
algorithm to solve it and we need to check whether it can well
suit our time-driven IoT application scenario. The simulation
results for the evaluation of maximal steps before achieving
the optimal values are shown in Fig. 3, where the x-coordinate
denotes the number of iteration steps and the y-coordinate
denotes the optimal energy consumptions. We study the four
cases in the simulation, i.e., the number of IoT tasks are 20,
25, 30 and 35, respectively. In the simulation, we set the
maximal number of iteration steps to 500. From the figure,
we can see that the optimal values (i.e., energy consumptions)
can achieve the best within 300 iteration steps. For instance,
for the case with the number of IoT tasks equal to 20, the
optimal value of energy consumptions does not decrease after
the number of iteration steps reaches about 200; for the case
with the number of IoT tasks equal to 35, the optimal value
of energy consumptions does not decrease after the number of
iteration steps reaches 90. Similarly, for the other two cases,
the optimal values can also be obtained when the number of
iteration steps are equal to 240 and 250, respectively. Note
that in the simulation we evaluate the number of iteration steps
instead of the running time, since the latter can also be greatly
influenced by the hardware of computing nodes apart from
the algorithms. Generally, it is more objective to evaluate the
performance of approach using the former in the simulation.

Last, we evaluate our approach with three benchmarks in
terms of the optimal values of energy consumptions. The
simulation results are shown in Fig. 4. Several conclusions can
be drawn from the figure. First, our approach can achieve the
best performance among the four approaches no matter how
the number of IoT tasks varies. Second, there are actually
no comparable relationships among three benchmarks. For
instance, the performance of PF-optimal is the best among
the three approaches when the number of IoT tasks equals
about 32, while it has the worst performance compared to the
other two approaches when the number of IoT tasks equals 40.
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Fig. 4. The performance comparison of four approaches

The similar situations can also be observed for other number
of IoT tasks in the figure. Third, the four approaches fluctuate
a lot, since the task information is generated randomly, which
is still acceptable in our opinion. To sum up, our approach
is the best compared to the three benchmarks in terms of the
optimal values.

VI. CONCLUSION

The explosive growth in the number of IoT tasks has posed
great pressure on the back-haul links when they are offloaded
to the cloud center for execution. The resulting long response
delay may degrade both QoS and QoE of IoT devices to
some extent. In this context, VFC can become a tempting
choice for executing the IoT tasks, since FVs in VFC can
provision computing resources in close vicinity of the IoT
devices and thus better cater for the strict latency requirement
of IoT tasks. In this paper, we improve the performance
of the VFC system by incorporating the failures for task
execution. Particularly, we consider to optimize the energy
consumptions of all the FVs and formulate it as a mixed
integer nonlinear programming problem and further solve it by
an an iterative algorithm. By conducting extensive simulation,
we have proven that the proposed strategy in this paper can
better optimize the energy consumptions compared to other
benchmarks.
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