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a b s t r a c t

Community detection and community evolution tracking are two important tasks in dynamic complex
network analysis. Recently, a variety of models and methods have been proposed for detecting the
community structure and analyzing their evolution. However, all these methods are only committed
to improving the performance of community detection or identifying evolutionary events, ignoring the
internal relevance between the structure of each snapshot of the dynamic network and the evolution
pattern of communities, especially the structural features of nodes and their dynamic transition
behavior. To cope with this problem, we firstly conduct experiments on 15 real-world dynamic
networks to explore the transition behavior of nodes in dynamic networks, which is one of the most
influential evolutionary patterns in temporal community detection. Firstly, we obtain the temporal
community structure based on very successful temporal community detection methods. Secondly, we
extract features of nodes based on the structure of the dynamic network, and take the community
transition behavior of nodes as the binary classification problem. Finally, we use the decision tree to
find the node-level features that have a general impact on node transition. Experiments indicate that
the degree and average neighbor degree of nodes have the most common indispensable impact on the
node transition behavior, which are very helpful for modeling dynamic complex networks in future.

© 2020 Published by Elsevier B.V.

1. Introduction

Complex network analysis [1,2] has received increasing at-
tention from researchers in different fields, including computer
science, social science, and physical science [3–5]. Complex net-
works always consist of nodes and edges, which represent the
objects and the interactions between the objects, respectively. For
example, in a social network, nodes could be the social accounts
and edges represent the following or followed relationships be-
tween accounts. As one of the most important and powerful
data structures, analyzing and modeling complex networks can
be used for many missions, such as social interaction pattern
analysis, social recommendation and protein functional modules
recognition. As the most fundamental tasks in complex networks,
node identification, link prediction and information dissemina-
tion have been widely studied and concerned. In addition, com-
munity detection is also one of the most significant tasks, which
is usually defined as identifying tightly linked subgraphs from
complex networks and benefiting from other tasks.
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In general, detecting community structures can help us rec-
ognize meaningful modules of a network. A variety of works for
community detection have been developed, such as modularity-
based methods [6], model-based methods [7,8] and randomwalk-
based methods [9–11], where comprehensive surveys can be seen
in [12,13]. However, all these methods assume that the target
network is static, that is, the network structure is invariant.
Virtually, the network structure varies over time, i.e. dynamic
networks. More specifically, in a dynamic network, the nodes
may birth or death with time and links between two nodes
may appear or disappear. For dynamic network modeling, we
usually reply to it as a series of snapshots or slices, each of
which can be regarded as a static network. From the perspective
of community detection, compared with static networks, detect-
ing the dynamic community poses new challenges [14], among
which, how to fuse consecutive snapshot networks to improve
performance of community detection and how to describe the
evolution of communities are the most important.

Take a co-author network as an example, just as shown in
Fig. 1, we show two snapshots of the dynamic network based
on the DBLP data [15]. The nodes and edges are the authors and
their cooperative relationship, and nodes with the same color
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Fig. 1. A co-author network with two snapshots. The left figure is the co-authorship of three communities in the previous snapshot, corresponding to the data mining
(green), database (blue) and machine learning (orange), while the right figure shows the community assignment changes in the next snapshot. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

represent the same community to which they belong. These three
communities are the authors from data mining, database and
machine learning, respectively. From the last snapshot to the
next, a very important phenomenon is that the research field
of some nodes has changed, for example, an author from the
database joins into the data mining with the time going by and
varying of the network. This is a critical behavior of community
detection in dynamic networks, i.e. the transition behavior of
nodes, which is the most widely considered dynamic pattern and
also is our concern in this paper.

In recent years, more and more attention has been paid to
dynamic community detection and different methods have been
proposed, including two-step methods, evolutionary clustering
methods and model-based methods. Two-step based methods
[16,17] usually apply a static community detection algorithm
to each snapshot, and then perform community matching step
at adjacent time slices. This kind of methods is not accurate
enough because data in the real world is often noisy. Moreover,
such a two-step process usually results in unstable community
structures and consequentially, unwarranted community evolu-
tion [15]. Evolutionary clustering is firstly devoted to clustering
the stream data and has been developed for dynamic commu-
nity detection, the previous or historical network or community
information are integrated into the community detection in fol-
lowing subsequent network snapshots, such as the evolutionary
spectral clustering, dynamic non-negative matrix factorization
and multi-objective evolutionary clustering [18,19], this type of
methods is still the most widely studied and used. The model-
based methods [20,21] usually define a series of network gener-
ation mechanisms to reconstruct the dynamic complex network
and analyze the evolution of communities, such as the dynamic
stochastic block model DSBM [15], which denoted the dynamic
pattern based on the classic SBM and transforming community
detection and evolution into the parameter estimation. On the
whole, the model-based methods have very high computational
complexity.

As we all know, all the existing methods for dynamic com-
munity detection are focusing on the performance of community
detection and the evolutionary patterns or events, while ignoring
the internal relevance between the structure varying of dynamic
network and the evolution pattern of communities. Therefore, we
are interested in, how the structural information of nodes affects
the community transitions. In other words, community evolu-
tion is usually driven by node transition, and the relationship

between the transition behavior and the local varying of nodes is
our concern. Although some model-based methods (e.g. [22,23])
use the degree of nodes to improve the accuracy of community
detection, these methods only make the node distribution within
a community following the power law and do not reveal the
relationship between nodes degree and community evolution. As
we have discussed, what kind of nodes are more likely to transfer
their communities? Are there more statistical features related
to the transfer behavior of nodes? Which is the most important
feature? We believe that this could help us design more suitable
models for community discovery in dynamic networks.

Our motivation is to explore which local structure information
or features of the node has important impact on the transition
behavior of nodes in dynamic networks, and which structural
feature has a larger influence and which one has a small impact.
So in this paper, for a given dynamic network, we firstly obtain
its community structure based on three very successful temporal
community detection methods. Then, we extract the ten features
of nodes based on the structure of the previous snapshot network,
and take the community transition behavior of nodes as the
binary classification problem. In detail, we use the decision tree as
the classification model to find the node-level features that have
a general impact on node transition and analyze the community
evolution on all the snapshots of the dynamic network. We take
the framework on 15 real-world dynamic networks shows that
the degree and average neighbor degree of nodes are the most
two important features impacting on the node transition behav-
ior. We believe that this is very helpful for modeling dynamic
complex networks in future. The specific contributions of this
paper are as follows:

• As far as we know, this paper is the first exploration of the
problem that what kind of nodes is more likely to transfer
its community, it is the most important behavior in dynamic
networks.

• We extract the community features of the nodes belonging
and features of the nodes themselves, and treat the node’s
community transition as a binary classification problem,
then use these features to classify whether the nodes are
transferred or not.

• We find that the important common feature of the node’s
community transition is node’s average neighbor degree and
node’s degree. And node’s average neighbor degree is even
more important than node’s degree, which is inconsistent
with our previous understanding.
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2. Related work

Community detection is a fundamental task in complex net-
work analysis, which can offer insight into the network formation
mechanism and prediction [13,24].

There have been a variety of methods proposed for community
detection, including modularity optimization methods, spectral
clustering methods and model-based methods. For example, Liu
et al. [25] proposed a modularity optimization method using
simulated annealing with a k-means iterative procedure to realize
the model selection, which outperforms most of the similarity
methods. Some other methods [26] detect clusters of networks
by utilizing the spectral properties of the graph, but when the
network is sparse, the eigenvalues of the community-related
eigenvectors are not disparate, which may make spectral cluster-
ing unstable. Krzakala et al. [27] proposed a spectral algorithm
based on a non-backtracking walk to solve this problem on di-
rected networks. Karrer et al. [7] proposed a model-based method
called the degree corrected stochastic block model, in which
nodes in the same community can have heterogeneous degrees.
That is in line with real-world data. The detailed review can be
seen in [13]. However, all these methods are only designed for
static networks without considering the temporal information.

Dynamic community detection needs to solve two key sub-
problems. One is detecting community structure of each snap-
shot, and the other is matching communities across consecu-
tive time slices or tracking community evolution. Most previous
studies have addressed these two issues separately.

For the first problem, previous works can be divided into two-
step methods, evolutionary clustering and model-based methods.
The two-step approaches solve this problem by performing a
static community detection method on each snapshot and then
matching communities between consecutive snapshots. Tajeuna
et al. [28] proposed a two-step method, which uses a similarity
measure that involves the global temporal aspect of the net-
work under investigation to match the communities in different
time slices. Evolutionary clustering introduces the community
division information from previous snapshots when performing
the community detection approach to the current snapshot [19].
TILES [29] is a state-of-the-art evolutionary clustering method,
which dynamically recomputes community membership of nodes
whenever a new interaction takes place. This strategy makes
TILES fit for large networks and its accuracy is higher than most
existing algorithms. Model-based methods, like dynamic stochas-
tic block model [15], considering the dynamic network from the
perspective of generating model, the mechanism of the network
is constructed and the community structures are obtained by
parameter estimation [30,31].

Meanwhile, for community evolution, this exciting work [32]
summarizes community evolution into identifying some events,
and then uses these events to carry out community and node
evolution behavior. Palla et al. [16] is the first to give the defi-
nition of six community evolution events, including birth, death,
merging, splitting, growth and contraction. They first used a
clique percolation method to detect communities in each snap-
shot, then matched community evolution events and analyzed
community evolutionary and node behavior prediction in consec-
utive snapshots by defining an auto-correlation function. Greene
et al. [33] proposed a standard dynamic network data set based
on community evolution events, which has been widely used in
dynamic community detection. Asur et al. [34] not only define
five community events, but also define four node-level events,
including appear, disappear, join and leave, to capture the influ-
ence of the behavior of nodes on communities. But the dynamic
behaviors of different nodes are complex, and they have different
effects on the community. However, these works did not take into

Fig. 2. Framework schematic.

account that the evolutionary behaviors of different nodes are
distinguishing, and the impact on the community is also different.

Some researchers have realized that the node behavior is the
driving force of community evolution, and community evolution
plays a key role in temporal community detection. Therefore,
some previous work has begun to use node structural features
to enhance dynamic community detection [33].

In addition, there are some researchers trying to use node em-
bedding model dynamic network [35]. They generally treat node
embedding vectors as node structural features and then use the
node embedding vectors to enhance dynamic community detec-
tion. However, this makes the node features unexplainable, as a
result, we cannot understand how node structural features affect
community-level evolution. Meanwhile, Yin et al. [36] used node
average neighbor degree to enhance link prediction, but they did
not discuss the general influence of node average neighbor degree
on real-world data sets.

3. Proposed framework

In this section, we introduce how to find the most critical
structural features that affect the transition behavior of nodes
across the snapshots.

The proposed framework is depicted in Fig. 2, first of all, we
use some temporal community detection methods to detect node
community membership and node transition behaviors. Then, we
extract the structural features of nodes and use them as classifi-
cation features. We assume that the node community transition
is only related to node structural features in the current snapshot,
so we split snapshots in a network into adjacent snapshot pairs,
and besides, different snapshot pairs in the same network are
independent. We then treat the node community transition as a
binary classification problem. For example, if a node i transfers its
community membership between consecutive snapshots, then it
is labeled Li = 1. Finally, the most critical node structure features
that affect the node community transition are analyzed.

To show the consistency of our proposed framework and
experimental results, we select three popular and successful ap-
proaches for dynamic community detection: (1) TILES [29], which
belongs to the evolutionary clustering framework. It effectively
uses the network structure at time t and the community struc-
ture at the previous moment to detect the community at time
t , which better community detection performance and lower
computational complexity; (2) GenLouvain [37], which is a fast
algorithm of modularity optimization for time-dependent net-
works. It generalizes the determination of community structure
via quality functions to dynamic networks and could discover
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Table 1
Notations and definitions.
Symbol Feature Description Definition

f 1 Community node number Number of nodes within the community l at time t . nt
l

f 2 Community edge number Number of edges within the community l at time t . etl

f 3 Intra community edges Ratio of the total number of edges between the nodes inside the
community (etl (in)) to the number of nodes in the community.

etl (in)
ntl

f 4 Inter community edges Ratio of the total number of edges of nodes connected outside the
community (etl (out)) to the number of nodes in the community.

etl (out)
ntl

f 5 Community activity Ratio of the total number of connections made in the previous snapshot by
the nodes of the community (atl ) to the number of nodes in the
community.

atl
ntl

f 6 Community Conductance Ratio of the number of edges in the community to the sum of degrees of
the nodes in the community.

etl
dtl

f 7 Node degree Sum of links connected to node i at time t . eti
f 8 Node average neighbor degree Average degree of node i’s neighbors, where N(i)t are the neighbors of

node i at time t and etj is the degree of node j which belongs to N(i)t .

1
|N(i)t |

∑
j∈N(i)t e

t
j

f 9 Node closeness centrality Measuring a node i’s average path length to other nodes in community,
where C t

l,−i is a set of all nodes in community l except i at time t and
d(i, j) is the distance between node i and j.

∑
j∈C t

l,−i

C t
l

d(i,j)

f 10 Node betweenness centrality Measuring a node i’s importance in its community connectivity, where σjk
is the total number of shortest paths from node j to node k and σjk(i) is
the number of those paths that pass through i

∑
j,k∈C t

l,−i

σjk(i)
σjk

some important dynamic patterns; (3) PisCES [38], which is a
global community detection method based on discovering per-
sistent communities by eigenvector smoothing and combining
information across a series of snapshots. It is also data-driven and
can reveal dense communities that persist, merge, and diverge
over time.

3.1. Notations and definitions

We use G = (V, E) to denote a collection of the dynamic
network, where V is the set of nodes and E is the set of edges of
the dynamic network. We fix the number of nodes in the network.
Therefore, the nodes of the dynamic network do not change over
time, which means that the size of the nodes collection |V| = N is
a constant in the dynamic network. We use the changes in edges
to represent the changes in the network. Therefore, a new node
joins in the network can be treated as an isolated node with links
to other nodes. Thus, the size of edges changes over time. We use
|E| to represent the size of edges in the whole network and |E t

| to
represent the size of edges in the tth snapshot. Furthermore, we
also use G = (G1, G2, . . . , GT ) to represent a dynamic network,
where T representing the number of network snapshots and Gt

representing the tth snapshot in the network. We then use Ct
=

(ct1, . . . , c
t
N ) to represent the nodes community membership at

snapshot t . More specifically, cti = k represents node i belong
to community k at snapshot t .

3.2. Community detection and node transition detection

For the first step in our framework, we need to detect com-
munity structures and node transition behaviors from network
triplet data. We select the following three methods, namely,
TILES [29], GenLouvain [37] and PisCES [38].

• TILES [29] can solve both problems at the same time. TILES
is a state-of-the-art evolutionary community detection al-
gorithm. It proceeds to analyze an interactive stream: when
a new link is generated, TILES uses a label propagation
procedure to diffuse the changes to the node surroundings
and adjust the neighborhood community membership. A
node in TILES can belong to a community with two levels,

i.e. peripheral level and core level. A node is a core node if
it involves at least a triangle with other nodes in the same
community, and it is a peripheral node if it is a one-hop
neighbor of the core node. Only core nodes are allowed to
spread community membership to their neighbors.

• GenLouvain [37] proposes a multislice generalization of
modularity inspired by the equivalence between the mod-
ularity quality function (with a resolution parameter) and
stability of communities under Laplacian dynamics. It can
be used for multiple scales, time-dependent and multiplex
networks. This metric can be effectively learned by any
modularity optimization method.

• PisCES [38] extends the spectral clustering for dynamic net-
works through eigenvector smoothing, then it proposes an
objective function based on the series of eigenvectors across
the snapshots, and finally, an iterative algorithm is proposed
for detecting the temporal communities.

It should be noted that TILES generates overlapping communi-
ties. It believes that overlapping communities represent different
spheres of the social world of an individual. This brings us some
troubles, because if a node belongs to different communities
at the same time slice, how can we determine that this node
changes its community membership in the next time slice? We
believe that a node will transfer its community membership
when it joins a new community, because a new community can
represent a new social hub or new interest of an individual.
Feature selection has always been an active and widely accepted
method for enhancing the quality of data in machine learning and
data mining.

3.3. Feature selection and extraction

Considering that the transfer behavior of a node is affected
by the community in which it belongs to, we also introduce
several community-level features. For example, if an online social
group is not active enough, the members of the group will be
more likely to join other groups. So we need to take community-
level features into consideration, to verify its influence on the
node community transition for the empirical evidence. Thus, our
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Fig. 3. The degree distributions of 15 dynamic networks.

Algorithm 1 Feature extraction
Input: A sequence of undirected graphs G = G1, · · · , GT and
the community assignment C = C1, · · · , CT

Output: Nodes feature set F and nodes label set
L
1: for every graph Gt where t ̸= T do
2: for every community Ct

l in Ct do
3: Calculate community level features Fc
4: for every node i in community Ct

l do
5: Calculate node level features Fn
6: Compose node i’s feature sequence F = Fc + Fn
7: if node i changes its community in Gt+1 then
8: node i’s label Li = 1
9: else

10: node i’s label Li = 0
11: end if
12: end for
13: end for
14: end for

Fig. 4. The importance of different node characteristics or features on the
dynamic behavior of 15 real dynamic networks based on the TILES [29] method.

Fig. 5. The importance of different node characteristics or features on the
dynamic behavior of 15 real dynamic networks based on the GenLouvain [37]
method.

Fig. 6. The importance of different node characteristics or features on the
dynamic behavior of 15 real dynamic networks based on the PisCES [38] method.
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Fig. 7. Bitmaps of nodes degree on 15 data sets.

node features contain community structural features and node
structural features in the network.

We use five community-level features to represent the state
of the community in which the node is located, including the
number of community nodes, the number of community edges,
intra-community edges, inter-community edges and community
activities. These features can be considered as higher-level local
structural features of nodes. In addition, we use five node fea-
tures to capture the node lower-level local structural features,
including node degree, node average neighbor degree, node close-
ness centrality and node betweenness centrality. The detailed
description of node features is listed in Table 1.

The feature extraction algorithm is provided in Algorithm 1. To
calculate the node’s features effectively, we calculate community-
level features before calculating node features that are part of this
community. And after splitting snapshots of a network into snap-
shot pairs, our feature extraction algorithm can run in parallel.
This can make our algorithm suitable for a large scale network.

3.4. Feature importance analysis

We use decision tree [39] to solve the binary classification
problem. Because a decision tree is a white-box algorithm, it

can tell us which feature plays a more important role in the
classification mission. Different from artificial neural networks
and other black-box algorithms, it can output any information
needed during the classification process.

A decision tree is a solution support tool that uses a tree-like
graph or model of decisions. Each node of the decision tree is
a ‘‘test’’ of the feature (e.g. whether a coin flip appears at the
head or tail), each branch is the result of the test (e.g. the head
and the tail of a coin flip are two branches), and each leaf node
is a class label. The path from the root to the leaf represents
the classification rule. Decision tree is an efficient algorithm for
classification mission. The cost of using a tree is logarithmic,
which makes it very fast in large data sets.

We use Gini importance or Mean Decrease in Impurity (MDI)
to calculate each feature importance as the total decrease in node
impurity [45]. Node impurity like Gini impurity is a computation-
ally efficient approximation to the entropy, which can measure
how well a potential split is separating the samples in a decision
tree node. Decrease Impurity is defined as below:

∆i(s, r) = i(r) − pLi(rL) − pRi(rR), (1)

where i(r) is some impurity measure like Gini index, r represents
a decision tree node, and rL and rR are the children of r . Besides,
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Table 2
Description of data sets.
Name Description |V| |E|

Internet Internet [40] topology during 04/01/2004–04/04/2005. 33936 104824
Facebook Facebook New Orleans networks [41] friends links during

06/08/2008–21/01/2009.
62306 905565

bitcoin Who-trusts-whom network of people who trade using Bitcoin
on Bitcoin OTC [42] during 09/11/2010–19/01/2016.

5881 35592

Friend Call logs of members of a young-family residential living
community adjacent to a major research university in North
America [43] during 10/07/2010–16/07/2011.

130 60518

fb-forum The Facebook-like Forum Network [44] during
15/05/2004–24/10/2004.

899 33720

fb-messages The Facebook-like Social Network [44] from an online
community for students at University of California during
24/03/2004–22/10/2004.

1897 61734

ia-digg-reply A reply network of the social news website Digg [44] during
29/10/2008–13/11/2008.

30397 87627

ia-facebook-wall-wosn-dir The Facebook friendship graph [44] during
15/05/2004–24/10/2004.

44668 876993

ia-reality-call The MIT Reality mining a small set of human call logs data
[44] during 24/09/2004–07/01/2005.

6810 52050

ia-slashdot-reply-dir Reply network of technology website Slashdot [44] during
01/12/2005–31/08/2006.

51097 140778

ia-stackexch-user-marks-post User answering question network of Stack Overflow [44]
during 03/10/2008–25/11/2011.

545196 1302439

ia-yahoo-messages The message network in Yahoo [44] with time presented by
link sequences.

99 303 3179718

soc-epinions-trust-dir Epinion who-trusts-whom network [44] with time presented
by link sequences.

131828 841373

soc-wiki-elec Wikipedia adminship election data [44] during
14/09/2004–05/01/2008.

8271 107071

wiki The Wikipedia links data [40] during
20/02/2001–06/12/2002.

329623 39953145

pL = NrL/Nr and pR = NrR/Nr , where Nr is the number of samples
go through node r .

The normalized ∆i(s, r) for each feature can give us a kind of
importance measure, and it is very computationally efficient for
large scale data sets.

4. Experiment

In this section, we first introduce the details of the 15 real-
world data sets used throughout this paper. Then we show the
binary classification results in 15 data sets and our findings in
feature importance experiment, that is, node degree and node
average neighbor degree are the two most important structural
features for node community transition.

4.1. Real-world data sets

The data sets used in the experiment contain different types
of networks, for example, social networks with social account
users as nodes and relationship as links, friends cell phone call
records networks with phone owners as nodes and phone contacts
as links, who-trust-whom networks with people as nodes and
trust relationships as links and tech-website answering questions
networks with website account as nodes and answering questions
as links. The characteristics of the data sets and their sources are
given in Table 2. Fig. 3 shows all of the node distributions of our
data sets follow a power law.

4.2. Feature importance

We use the decision tree to process the node binary classifi-
cation mission on 15 real-world data sets. As mentioned before,
decision tree is an efficient algorithm for classification, so it is

a good choice to execute binary classification in large data sets.
Moreover, it allows us to calculate the feature importance in
classification mission.

Figs. 4–6 show the importance of different node characteristics
or features on the dynamic behavior of 15 real dynamic networks
based on the TILES [29], GenLouvain [37] and PisCES [38], re-
spectively. The results all show that node degree (f7) and node
average neighbor degree (f8) are the two generally important
features for node community transition on dynamic networks,
which means that node degree and node average neighbor degree
affect almost all the real-world data sets in community transition.
Furthermore, node community activity plays an important role in
slashdot reply data, but this feature is not applicable to all other
data sets, which means that it does not have a general impact
on community transition. Other community-level features, such
as the number of community node, have no obvious guarantee
against community transition. On the contrary, node-level fea-
tures, such as node closeness centrality and node betweenness
centrality, have a few intense on some data sets like internet,
facebook and facebook messages. However, they did not work
well on digg reply data or slashdot reply data. It also proves that
the node closeness centrality and node betweenness centrality
have no general influence on community transition.

Fig. 7 shows the bitmaps of node degree in different labels (1
represents nodes who transferred their community, 0 otherwise)
on 15 data sets. As we can see, it shows an obvious pattern,
that is, all nodes that transfer their communities have a higher
degree than nodes that do not transfer their communities. This
pattern proves that degree-corrected models like [7,46,47] have
to be in conformity with the facts. Other features like node com-
munity activity, node closeness centrality and node betweenness
centrality may play important roles in community transition in
some data sets, but not all of them. Just as shown in Fig. 8,
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Fig. 8. Bitmaps of nodes closeness centrality on 15 data sets.

node closeness centrality does not show obvious pattern on all
15 data sets. Even in internet data, which shows the important
instance of node closeness centrality, node closeness centrality
still does not show significant differences between different la-
bels. Furthermore, we find that the node average neighbor degree
also plays an important role, or in other words, it plays a more
important role than the node degree in almost all data sets we
used. However, just as shown in Fig. 9, although the different
labels on each data set are different, the bitmaps do not show
an obvious consistent pattern. Through a case study on how
the average neighbor degree of nodes affects the migration of
a node community, it is found that it is still useful for dynamic
community detection or community evolution.

Just as shown in Fig. 10(a), we chose three most representative
data sets, namely, stackoverflow (left two columns), Friend (mid-
dle two columns) and facebook-wall-wosn (right two columns).
The left column in every data set is the degree of nodes to
which the nodes of communities have changed. The nodes that
transferred their community have a larger degree than the nodes
that did not. And as shown in Fig. 10(b), we also chose three most
representative data sets, namely, facebook (left two columns),
Friend (middle two columns) and facebook-wall-wosn (right two

columns). The left column in every data set is the average neigh-
bor degree of nodes that changed communities, which proves that
nodes that transferred their communities have a larger average
neighbor degree than the nodes that did not.

It is undoubtedly that the node degree can affect node com-
munity transition. Obviously, the higher the degree of nodes, the
more likely it is to encounter nodes in other communities. And if
the average neighbor degree of a node is larger, then the node
is more likely to be affected by its neighbors. We will show a
real-world case in the next section.

5. Case study

In this section, we use part of the DBLP data [15] to show
the impact of node degree and node average neighbor degree on
node community transition. DBLP is a well-studied data set in
many research area, especially in complex network analysis. Our
data is extracted from DBLP, and it contains the co-authorship
information among the papers from 28 conferences over 10 years
(1997–2007). These conferences cover three main research areas,
including data mining, database and machine learning. Moreover,
this data set has a ground truth, so we can extract the community
membership of nodes without pre-processing this data.
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Fig. 9. Bitmaps of nodes average neighbor degree on 15 data sets. 1 in x-axis represents the bitmap of nodes transferring their communities, and 0 otherwise.

Fig. 10. Quartile map of node degree and node average neighbor degree in three data sets.

Fig. 11 shows the sample of DBLP data in year 2006–2007.
The text of a node means ‘average neighbor degree-author name’,
e.g. ‘4.82- Shuicheng Yang ’ means this node represents an author
Shuicheng Yang, and its average neighbor degree is 4.82. And the
scale of node represents node degree, i.e. a big node has more
friends than a small node. The top two pictures show the influ-
ence of average neighbor degree. Jun Yan, Zheng Chen and Ning
Liu are working on the database at previous snapshot (top-left),

and they all have large average neighbor degree 9.33. They have
a big degree friend Shuicheng Yang who is working on machine
learning. Influenced by Shuicheng Yang, in the next snapshot (top-
right) Jun Yan, Zheng Chen and Ning Liu change their research
interest to machine learning, i.e. they published a paper about
machine learning together in 2006. After investigation, we find
that the above four authors jointly published an article on TKDE in
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Fig. 11. Cases in DBLP shows the influence of node degree and average neighbor degree to node’s community transition.

2006.1 And the two pictures at the bottom show the influence of
node degree. Marc Pollefey has a large degree, which means that
he has many friends with this network. Most of his friends are
working on data mining (bottom-left). Influenced by his friends,
he changed his research area to data mining (bottom-right) in
the next snapshot. More specifically, Marc Pollefey and one of his
friends Jan-Michael Frahm published a paper together on EDGE
in 2006.2 Through these samples, we can intuitively understand
the influence of the node degree and the node average neighbor
degree on the transition of node community. However, more
research on the node average neighbor degree is still needed to
explore its impact mechanism on node community transition.

6. Conclusion

In this paper, we first consider the node’s community transi-
tion as a binary classification problem. Through the analysis of
15 real-world dynamic networks, it is found that the degree and
average neighbor degree of nodes are the two significant features
that affect the pattern of node’s community transition. In fact, we
observe that node average neighbor degree is more important
than the node degree, which is inconsistent with our previous
understanding and also corrects our previous cognition of node
transition factors. It has important reference meaning for the
generation of dynamic networks and the detection of community
structure. We also conduct a case study to explain the insurance
against the node degree and node average neighbor degree to
node community transition.

Unfortunately, the influence mechanism of the node average
neighbor degree on the node community transition has not been
found. This is the next step of our work. At the same time, one
of the main directions of our future research is how to integrate
our results with dynamic community detection methods, which
is also what we will do next.
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