
Model-based Performance Analysis of Local
Re-execution Scheme in Offloading System

Qiushi Wang, Huaming Wu, Katinka Wolter
Department of Mathematics and Computer Science
Freie Universität Berlin, Takustr.9, Berlin, Germany

Email: qiushi.wang@fu-berlin.de, katinka.wolter@fu-berlin.de

Abstract—Offloading is a useful approach to save energy
and time for mobile devices by migrating heavy computation
to remote powerful servers. However, the unreliable wireless
network constrains the implementation of offloading applications.
The execution continuity is always interrupted by network
failures. To deal with this problem, locally re-executing the
pre-determined offloading task in the mobile device is a valid
method. Challenges arise due to the best trade-off between
costs and benefits of Local Re-execution. In this paper, using
a Stochastic Activity Network model, we defined three metrics
to investigate the performance of Local Re-execution, which is
launched by different timeout values. Through comprehensively
comparing the simulation results, we further explored the optimal
timeout value for activating Local Re-execution, and reached the
conclusion that the optimum is mainly controlled by the delay
of network recovery.

Index Terms—Modeling; performance analysis; Offloading;
Stochastic Activity Network; timeout;

I. INTRODUCTION

A significant improvement of mobile communications has
been seen in recent years. Both the hardware processing rate
and the flexibility of operating systems are able to undertake
some heavier applications which could previously only be run
on desktops or servers. However, even though smart mobile
devices have undergone a fast development, they are still
unable to compete with their desktop siblings. The constraints
are obvious. The limited battery capacity prevents a long
run time of some intensively computational applications (like
image processings or games). To deal with this problem,
Offloading is one of the popular technics. It migrates the heavy
computation to remote servers through the wireless network.
This can not only save the energy but also accelerate the
execution time and thus provides a better user-experience.
Connecting mobile terminals and remote servers, the wireless
network plays an important role in the offloading system.
To some degree, it directly affects the performance of the
offloading execution. Usually, the offloading does not require
a mass data transmission between mobile clients and remote
servers. It only needs an overhead of several Megabits to
migrate the executing thread [1] or the application state [2]
from mobile terminals to remote servers and then get back the
results. This tiny delay of data transmission will not impair the
application performance.

As the remote cloud servers of large enterprises are sup-
ported by better back-up and protection schemes, comparing

with the frequently fluctuated wireless network condition,
they can be seen as high-availiability systems. In that way,
the wireless network becomes the major cause of bringing
the unstability in offloading systems. There are two major
failure handling schemes. The first one is a halt in the current
execution state and waiting for the network condition to satisfy
the offloading requirement, then relaunching the offloading
task. The other one is as soon as the wireless connection lost,
the mobile device immediately re-executes the pre-determined
offloading task locally. However, both of the two schemes only
adapt extreme scenarios. The former one performs well when
the wireless network can quickly recover to the demanding
level. But it may wast a large amount of time for waiting if the
network suffers from a long time failure. In this case, the latter
should be choosen. Although it costs more time and battery
energy, the continuity of application execution is maintained.
As well, Local Re-execution is not cost-effective in the first
scenario. In order to provide a balanced performance in both
the scenarios, combining the two schemes with a timeout
scheme is a reasonable method.

In this paper, we used SAN(Stochastic Activity Network)
[3] models to simulate the execution of offloading systems
and computed three metrics: Unstability, Energy Consumption
and Throughput to evaluate the performance of the offloading
system. The paper is organized as follows: after presenting a
survey on related concepts for offloadind and SAN in Section
2, we make a description of the proposed models in section
3. We derive formulas how to compute the three metrics and
the normalization method to synchronise them in section 4.
Simulations and results are shown in Section 5 while Section
6 concludes the paper.

II. BACKGROUND AND RELATED WORK

As soon as the concept of cloud computing was proposed,
it has attracted attentions to integrate mobile devices within
the cloud. Partitioning and Offloading are two fundamental
steps to implemente the mobile cloud computing. Partitioning
tries to reasonably separate the mobile application into several
components. Some of them can be executed in remote servers
and the others can only be run locally in mobile devices.
It has been researched deeply [4]. Offloading has to decide,
based on different wireless network conditions, which parts
of the movable components should be migrated to execute
in remote servers. According to the architectures, different

978-1-4799-0181-4/13/$31.00 ©2013 IEEE

methods (CloneCloud [1], MAUI [2], VM-Based Cloudlets
[5]) are used to complete the two jobs.

For analyzing the performance of the offloading in mobile
clouds, one of the popular ways is using stochastic models [6].
But these models can only analyze the execution time, and
merely consider the influence of wireless network factors like
MTTF. In this paper, using SAN, many more system factors,
like the processing rate of mobile devices, the delay of data
transmission between clients and servers and the workload
of offloading tasks were considered. Besides the execution
time, by refering some experimental parameters, we derived
the formulas to calculate the energy consumption.

SAN was an extension to Petri-net, which has been exten-
sively used for performance modeling to analyze computer and
communication systems. In order to represent the timeliness
and parallelism of the system in a stochastic setting, several
extensions have been proposed like GSPNs and SRNs [7].
SAN was defined with the purpose of facilitating unified
performance/dependability evaluation. Timed and Instanta-
neous activities, the essential core of SAN, are easily used
to represent the execution of the modeled system. Another
element, gate in SAN, permits greater flexibility in defining
enabling and completion rules. It is convenient to be used as
representatives of the selection between waiting or Local Re-
execution. In brief, SAN is a general modelling technique that
can be easily used to analyse the performance of offloading.

III. PERFORMANCE ANALYSIS MODELS

There are two steps for evaluating the performance. The
first one is using Stochastic Activity Networks (SAN) as
modeling technique to determine the measures. The second
one is using these measures to calculate the performance by
formulas. The models are described in this section while the
formulas are introduced in the next section. Our models of
the entire offloading system consists of two parts: a network
model and an execution state model. The network model is
an independent model (Fig.2). It is used to simulate varied
conditions of the wireless network during offloading. The
execution state model (Fig.3) is used to simulate the execution
of offloading in mobile devices. Each state in the offloading
process is represented by the corresponding Marking in our
SAN models, and the running of offloading is represented by
Activities which control the changes between those states. We
also discussed the interactions between the two models and
the factors which disturb the completion of offloading tasks.

A. System Description

Based on the proposal in [2], we describe the offloading
process as shown in the flow chat Fig.1. It has five states. The
function of each state is listed as below:
• Migrating: The mobile device transmits the necessary

information to the remote server for offloading tasks. The
time spent in this state is related to the network condition
and the data size. During this time, data transmission could
be interrupted by the network failure. The mobile device
has to restart this work after the network recovery.

Fig. 1. Flow Chart of the offloading process

• Remote Execution: After the mobile device completing
the data transmission, offloaded tasks are executed in the
remote server. The mobile device holds on in the current
state, and waits for receiving the result from the remote
server.

• Receiving: This state is the same as Migrating. When the
network condition satisfies the offloading requirement, the
mobile device receives the result of completed offloaded
tasks from the remote server. If not, the mobile device
goes into Waiting state.

• Waiting: When the wireless network fails, the offloading
process moves to this state and the mobile device begins
to count the waiting time. After the network condition
recovered, the data transmission resumes again. But once
the waiting time exceeds the timeout limit, the mobile
device stops waiting and launches Local Re-execution.

• Local Re-execution: When the mobile device has waited
quite a long time for the network recovery. In order to
avoid wasting any more time, the pre-determined offload-
ing task is locally executed by the mobile device instead
of the remote server.

Both before and during the data transmission (Migrating and
Receiving), the condition of the wireless network is monitored.
When the network cannot support the data transmission, the
mobile device moves to the state of Waiting. There are two
inputs for Waiting (¬ and), they come from Migrating
and Receiving individually. After the network recovery, the
offloading process goes back to the state according to the
input source. If the network is not stable, as the connection
loses frequently, the mobile device has to wait a long time
for a sufficient up-time of the network to complete data
transmission. In order to avoid the long waiting time, the
task, which has been decided to offload, is re-executed locally
in the mobile device. It may need a longer execution time
than offloading, but the execution continuity is maintained.
Generally, the offloading tasks are mostly intensive. Local Re-
execution may quickly use up the capacity of the battery in the
mobile device. If the failed network can be repaired in a short
time, it is worth waiting for a moment rather than re-executing
immediately.

As we known, a mobile device consists of several compo-
nents like CPU, Storage, Antenna, Battery and so on. During
serving the function of each state in the offloading process, the

Fig. 2. Wireless Network Model

utilizations of these components are different. In Migrating and
Receiving, the utilizations of Antenna and other components
related with wireless communication are high, but CPU does
not take too many jobs. Whereas in Local Re-execution, the
utilization of CPU is close to 100%, but Antenna is almost
not used. Thus, when completing the function of a given state,
we consider these components make up a particular module.
The power of this module equals the sum of every individual
component power. As researched in [8], the energy consumed
by each module does not change. Therefor, we classify the
states based on the modules used by them. As this paper
mainly focusing on theoretical analysis, for simplifying the
calculation only three kinds of modules (CPU, WiFi and Idel)
are used. It is assumed that the energy consumption of the
states belong to the same module are equal. Migrating and
Receiving are grouped into WiFi as they mainly use wireless
components. Waiting and Remote Execution are belong to Idle,
because most components are in the idle state when the mobile
device is waiting. In Local Re-execution, CPU of the mobile
device undertakes many intensive computations, it consumes
a lot of energy, thus it is seperated as a single category.

B. Wireless Network Model

As can be seen in Fig.2, this simple model only consists
of two places Up and Down, two activities Fail and Repair.
During transmitting the data for offloading tasks, it is easy
to judge the wireless network between two states: up or
down. If the network staisfies the requirements, it is in the
up state(Token in Up), offloading can be executed smoothly. If
not, the network is in the failed state(Token in Down). Through
the two activities Fail and Repair, the network condition
turns from one state to the other after halting for a randomly
distributed time, with the probability density function f(t). In
this paper, we use the exponential distribution as the f(t) of
two activities Fail and Repair.

C. Execution State Model

Based on the offloading process described before, the places
in Execution State Model are corresponding to the states in the
process. It is easy to find this relation between Fig.1 and Fig.3.
Execution State Model consists of five places, the meanings
of their markings are as below:
• Suspend: The mobile device is executing locally or in the

idle state. When the token returns back to this place, it

Fig. 3. Execution State Model

denotes the end of an offloading task execution. Then after
activating Invoke, the token moves out again and indicates
the beginning of a new offoading task.

• Migrating: The marking of this place may denote two
states: Migrating and Waiting. If the marking of Up
is 0, token in Migrating represents the mobile device
is in the Waiting state. Otherwise, it represents in the
Migrating state. Until Data Trans is activated, the data
transmission is successful. Before that, the mobile device
could moves into the Waiting state again, once the marking
of Up changes from 1 to 0 as the enabling condition of
Data Trans is broken (Table I).

• Remote Execution: Tokens in this place denotes that the
mobile device is in the Remote Execution state and waits
for the completion of the offloading task.

• Receiving: As the same as Migrating. It denotes the mo-
bile device could be in both states of Receiving or Waiting.
After Result Trans is activated, the result of the offloading
task from remote servers is received successfully.

• Local Re execution: Its marking denotes that the offload-
ing process is in the state of Local Re-execution. After a
local service time, modeled by activating Local Service,
the pre-determined offloading task is completed locally.

This model also shares the same place Up with the pre-
vious network model. Through the input gates, it controls
the enabling condition of the three activities, Data Trans,
Result Trans and Timeout, which change the marking of Mi-
grating and Receiving. If the wireless network is not in the up
state, the two activities Data Trans and Result Trans cannot
be activited. The token only stays in Migrating or Receiving.
When the wireless network returns to the up state, these
activities would be activated again. However, the activation
of Data Trans (Result Trans) only moves the token from the
place Migrating (Receiving) to the place Local Re execution
(Suspend). The marking of Up is not changed in this model,
it only depends on Wireless Network Model.

The activity Timeout is used to control the timeout value for
triggering Local Re-execution. The waiting time is recored at
the beginning of the offloading process going into the Waiting
state. Once the network is repaired, the enabling predicates of

TABLE I
ENABLING PREDICATE OF THE INPUT GATES

Gate Predicate Function
Input Data Trans #Up > 0 & #Migrating = 0;

#Migrating > 0 #Remote Execution = 1;
Input Result Trans #Up > 0 & #Receiving = 0;

#Receiving > 0 #Suspend = 1;
Input Timeout (#Up == 0 & #Local Re execution = 1;

#Migrating > 0), If(#Migrating > 0)
or (#Up == 0 & then #Migrating = 0;
#Receiving > 0), else if (#Receiving > 0)

then #Receiving = 0;

refers to the number of tokens in the given place

Data Trans or Result Trans are satisfied again. The offloading
process returns back to the Migrating or Receiving states. If the
duration of a network failure exceeds the timeout value, Time-
out is activated and the token moves into Local Re execution,
which represents the offloading process is in the Local Re-
execution state. Normally, the timeout value should be fixed.
Definitions of those parameters are shown in Table II.

IV. COMPUTING PERFORMANCE

In this paper, we focus on the performance comparison
between different timeout values, which postpones Local Re-
execution. Three metrics are choosed to measure the per-
formance: Unstability, Energy Consumption and Throughput.
They are not only used independently, but also after nor-
malization combined by calculating the geometric distance
from the best value of each metric. The data of Unstability
and Throughput are directly got from the results of model
simulations. Energy Consumption has to be calculated with
the power parameters (Table III).

A. Unstability

The aim of this metric is to estimate the delay caused
by the network failure which brings the interruption in the
data transmission. Unstability is defined as the probability
of an offloading task meets the connection failure during
transmitting data with remote servers. In the model it is
represented as the token halting in Migrating or Receiving,
when the network is in the down state. As shown in Table I,
it is the same as the enabling predicate of Input Timeout.

Prunstability = Pr((#Migrating = 1 ∨
#Receiving = 1) ∧#Up = 0)

(1)

B. Throughput

Throughput H, which reflects the efficiency of the system,
is always one of the most important metrics for any computer
system. In this paper, we defined H as the number of offloading
tasks served in a particular model time. In the model, it is
represented as the number of Invoke activations.

TABLE II
PARAMETERS FOR EACH ACTIVITY (EXPONENTIAL DISTRIBUTION)

Name Parameter Meaning
Tarrival = 1/λarrival is the

Invoke: λarrival mean time before the next
offloading request arrival.
Ttrans = 1/λtrans is the mean

Data/Result Trans: λtrans time to complete the data
transmission.
Tserver = 1/λserver is the

Remote Service: λserver mean service time of the offloa-
ded task in the remote server.
P is the percentage of the entire

Timeout: P × (Tserver + 2× Ttrans) execution time of an offloading
* task, it controls timeout values.

N is the multiple of processing
Local Service: λserver

N
rate of the remote server with
respect to the mobile device.

* In the offloading process, it experiences two data transmission states:
Migrating and Receiving. As the f(t) of Data Trans is the same as
Result Trans, the numerator is 2.

C. Energy Consumption

In [8], Aaron Carroll made detailed measurements of the
power consumption of each module in a mobile device.
Although the power consumptions of the same module in
different devices are not equal, generally the ratios between
these modules do not change. So, for convenient theory anal-
ysis, we calculated Energy Consumption by directly referring
to the parameters given in Table III. The value of Energy
Consumption in each state equals the holding time, as the
token stays in the corresponding place, multiples the power of
the module (CPU, WiFi and Idle), which the state belongs to.
The energy consumed in Execution State Model is:

E′re = Ttrans × pwifi + Tidle × pidle + Tre × pcpu (2)

Ttrans is the time spent in Migrating and Receiving. It
includes the time wasted in the interrupted data transmission.
Tidle consists of two parts T1 and T2, T1 is the holding
time in Remote Execution. T2 is the holding time in Waiting.
As being restricted by the timeout value, T2 has an upper
limit as P × (1/λserver + 2/λtrans). Local Re-execution is
launched when the waiting time exceeds this limitation. Tre is
the time used for Local Re-execution, which has the positive
correlatioin with the processing rate of the mobile device N
and the remote service time of the offloading task T1. Ts is
the total model time.

Ttrans = Pr((#Migrating = 1 ∨
#Receiving = 1) ∧#Up = 1)× Ts

(3)

Tidle = T1 + T2 (4)

T1 = Pr(#Remote Execution = 1)× Ts (5)

T2 = Prunstability × Ts (6)

Tre = N × T1 (7)

TABLE III
PARAMETERS OF ENERGY CONSUMPTION IN THE MODULES [8]

State Module Power
Migrating/Receiving Wifi pwifi = 900mw

Waiting / pidle = 250mw

Local Re execution CPU pcpu =

{
900mw, N = 10

450mw, N = 20

280mw, N = 30

The power of CPU is linked with their processing rates.
The faster the mobile CPU is, the more energy it requires.
In this paper, we only took three values of CPU power into
consideration (as shown in Table III, N = 10, 20 and 30, the
larger N means the slower processing rate of CPU). Actually
under different workloads, the power of CPU should have
different values. But we only tried to illustrate how to use
our models to calculate the energy used in the offloading re-
execution. So when the mobile device moves to the state of
Local Re-execution, we assumed that the workload of CPU
keeps the same.

Ere = E′re/H (8)

Actually, the total Energy Consumption is also related to
Throughput H in a particular model time. To exclude this
influence, the average Energy Consumption of each offload
task Ere is calculated.

D. Synthetical Performance Analysis

The order of magnitudes and the units of three metrics are
quite different. In order to synthetically analyze them, at first,
we used normalization to transform all the data of the same
metric into the range of [0,1]. The transform formula is

y =
x−Min(X)

Max(X)−Min(X)
(9)

After transforming, we found that under the same timeout
value, the reaults of three metrics make up a three-dimensional
vector 〈ui, ei, hi〉 (ui: Unstability, ei: Energy Consumption,
hi: Throughput). The performance of each timeout value is
defined as the geometric distance of this vector from the best
one. To Unstability, it is expected to be the lower the better
as the same as Energy Consumption. But to Throughput, if
the system can accomplish more tasks in a period, it has a
better performance. Therefore, the best vector is 〈0, 0, 1〉, and
the distance is calaulated as:

A =
√
w1 × u2i + w2 × e2i + w3 × (1− hi)2 (10)

(w1, w2, w3) is the weight vector for the three metrics. It
can be adapted for different application scenarios. But in this
paper, we only analyzed the result of equal weight vector
(1,1,1). Through the geometric distance, it provides a direct
view of the comparison between the performances of different
timeout values.

TABLE IV
MODEL PARAMETER VALUES USED IN THE SIMULATION

parameter List of values (in seconds)
Arrival rate λarrival 1/10

Data Transmission time Ttrans 2, 5, 8, 10, 16, 20
Remote service time Tserver 5, 10, 20
Mean times to failure Tfail 100, 500, 1000, 2000

Mean times to repair Trepair 12 values between 10 and 120
Percentage of timeout P+ 21 values between 0% and 200%

Speed multiple (cloud/mobile) N 10, 20, 30 *
+ refer to Table II item Timeout
* these values refer to the experimental results in [5]

V. SIMULATION AND RESULT

In order to explore the effects of the restart timeout under
different workloads, hardware capabilities and network con-
ditions, we simulated our models using Mobius [9] by using
Lagged Fibonacci random number generator with the Seed of
31415. Performance was investigated through the simulations
by varying the values of related parameters, which represents
various system configurations and offloading environments.
The complete set of simulation parameters is provided in
Table IV. We fixed these paramenter values only based on
assumptions, which are made as a matter of experience and
convenience. All the parameter combinations have been sim-
ulated with a model time of 86400s(24 hours).

The performance is calculated by formula (10). Fig.4 de-
picts the performance comparison of various P with different
Trepair. Since the geometrical distance is used as the criterion
to evaluate the performance, the bottom in the picture is
the most desirable. We also drew the performance of no re-
execution in the end of the axis P . Apparently it is far from
the best vector. Thus in this way, it has also been testified
that Local Re-execution is more advantageous to deal with the
network failure. Then we tried to find out, under the particular
Trepair, if there is an optimal P ∗. Even it can not provide
the best performance in all Ttrans, it is still able to acquire
acceptable results of the three matrics no matter how long

Fig. 4. Performance comparison with Trepair and P , Tfail = 500s, Tserver
= 10s, Ttrans = 10s, N = 20.

Fig. 5. Optimal P with λrepair under different λserver and N , Tfail =
1000s, Ttrans = 2s∼20s

Ttrans is. This P ∗ can be viewed as the default optimum for
the offloading process with an unknown workload. For this
target, we summed up the performance values of all Ttrans at
the same P . The reaults show that the shape of the amount of
performance also resembles a valley like Fig.4.

Fig.5 shows the changing of the optimal P ∗ with Trepair
under different mobile device capabilities N and workloads
of the offloading task λserver. At a first overview, the optimal
P ∗ has an increasing trend with Trepair. But they stay around
the value of 100% after Trepair passing a specific threshold
(Trepair > 50s), besides an unusual case N = 10, λserver =
1/5. In this case, the mobile device has a powerful capability
(low N), it can complete the task in a short time without con-
suming too more energy for Local Re-execution. Although the
little longer time of Local Re-execution decreases Throughput,
it is offset by the saved waiting time. Throughput could even
be improved when Trepair is quite long. Therefore, when the
offloading task is not heavy and the mobile device is fast, it
is better to launch Local Re-execution as quickly as possible,
rather than wasting a long time for the network recovery.

It is easy to find in Fig.5, most of the optimal P ∗ under
different N and λserver distribute around a given curve. We
tried to identify this curve by calculating the mean of those
optimums in the same Trepair. The extreme case (N = 10 and
λserver = 1/5) is excluded. Fig.6 shows the results of different
Tfail. Under different Tfail, the curves of the optimal P ∗ are
nearly the same. This demonstrates that Tfail has no effect on
the optimal P ∗. Another point is that, when Treapir ≤ 30s,
the curve has an increasing trend. When Treapir ≥ 40s, the
optimum stays around 100%. Thus, despite there are some
minor fluctuations, this value can be considered as the default
optimum for offloading tasks.

VI. CONCLUSION

This paper proposed a SAN model for performance analysis
of failure handling schemes in offloading systems. By adapting
the most commonly used timeout mechanism, an efficient

Fig. 6. Optimal P with λrepair under different λfail.

failure handling scheme combining Local Re-execution and
network recovery waiting has been introduced. Our models
allow to comprehensively analyze the effects of different pa-
rameters on the performance. Through simulation, the analysis
results indicate that the optimum is not affected by the failure
rate of the wireless network but decided by its repair rate.
When the network repairs quickly, the optimal timeout value
increases with it. When the network needs a long time to
repair, the optimum equals the offloading time. In summary,
even these simulation results are theoretical, they are still
worthful during investigating the effects of various system
and network parameters on the failure handling scheme in
offloading.

REFERENCES

[1] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic
execution between mobile device and cloud,” in Proceedings of the sixth
conference on Computer systems, 2011, pp. 301–314.

[2] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chan-
dra, and P. Bahl, “Maui: making smartphones last longer with code
offload,” in Proceedings of the 8th international conference on Mobile
systems, applications, and services. ACM, 2010, pp. 49–62.

[3] W. Sanders and J. Meyer, “Stochastic activity networks: Formal defini-
tions and concepts,” Lectures on Formal Methods and PerformanceAnal-
ysis, pp. 315–343, 2001.

[4] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, 2013.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14–23, 2009.

[6] R. Gabner, H. Schwefel, K. Hummel, and G. Haring, “Optimal model-
based policies for component migration of mobile cloud services,” in
Network Computing and Applications (NCA), 2011 10th IEEE Interna-
tional Symposium on. IEEE, 2011, pp. 195–202.

[7] J. Muppala, G. Ciardo, and K. Trivedi, “Stochastic reward nets for
reliability prediction,” Communications in reliability, maintainability and
serviceability, vol. 1, no. 2, pp. 9–20, 1994.

[8] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” in Proceedings of the 2010 USENIX conference on USENIX
annual technical conference. USENIX Association, 2010, pp. 21–21.

[9] D. Daly, D. Deavours, J. Doyle, P. Webster, and W. Sanders, “Möbius: An
extensible tool for performance and dependability modeling,” Computer
Performance Evaluation. Modelling Techniques and Tools, pp. 332–336,
2000.

