
3572 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 5, MAY 2022

ChainFL: A Simulation Platform for Joint
Federated Learning and Blockchain in
Edge/Cloud Computing Environments

Guanjin Qu, Naichuan Cui, Huaming Wu , Member, IEEE, Ruidong Li , Senior Member, IEEE,
and Yuemin Ding , Member, IEEE

Abstract—As a distributed computing paradigm, edge
computing has become a key technology for providing
timely services to mobile devices by connecting Inter-
net of Things (IoT), cloud centers, and other facilities.
By offloading compute-intensive tasks from IoT devices
to edge/cloud servers, the communication and compu-
tation pressure caused by the massive data in Indus-
trial IoT can be effectively reduced. In the process of
computation offloading in edge computing, it is criti-
cal to dynamically make optimal offloading decisions to
minimize the delay and energy consumption spent on
the devices. Although there are a large number of task
offloading-decision models, how to measure and evaluate
the quality of different models and configurations is cru-
cial. In this article, we propose a novel simulation platform
named ChainFL, which can build an edge computing en-
vironment among IoT devices while being compatible with
federated learning and blockchain technologies to better
support the embedding of security-focused offloading al-
gorithms. ChainFL is lightweight and compatible, and it
can quickly build complex network environments by con-
necting devices of different architectures. Moreover, due
to its distributed nature, ChainFL can also be deployed
as a federated learning platform across multiple devices
to enable federated learning with high security due to its
embedded blockchain. Finally, we validate the versatility
and effectiveness of ChainFL by embedding a complex
offloading-decision model in the platform, and deploying it
in an Industrial IoT environment with security risks.
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I. INTRODUCTION

OVER the last few years, the rapid proliferation of various
Internet of Things (IoT) devices has brought great con-

venience to people’s daily lives. However, due to the limited
computing resources of IoT devices, it is still difficult to di-
rectly deploy compute-intensive applications on them, such as
face recognition and augmented reality [1]. In order to prevent
resource-constrained devices from high computation latency and
high energy consumption caused by running large amounts of
computing, we generally rely on cloud servers closely to assist in
computing and storing by offloading local tasks to cloud servers
for remote processing, thereby reducing application response
time and extending battery life. However, it still suffers from
limited communication resources as well as high latency since
the cloud center is usually far away from the users. In addition, in
the field of Industrial IoTs (IIoT), extremely vast amounts of data
from a huge number of sensors still pose communication and
computational difficulties for traditional cloud centers. In addi-
tion, in the cases of limited heterogeneous network resources, it
is of great challenge to guarantee the quality of service, protect
IIoT applications from a variety of threats and attacks [2], as
well as ensure the fairness of various IIoT devices [3].

As a supplement to traditional cloud computing, edge com-
puting is a distributed computing paradigm that uses computing
resources located at the proximity of IoT devices to provide
efficient services in a timely manner [4]. Edge servers are
generally connected to the IoT and cloud center via local area
networks, and complex computing tasks of IoT devices may
be offloaded to the edge or the cloud for computing, which
can break through the resource limitations of mobile devices,
reduce computing load, improve task processing efficiency, and
save energy consumption. Blockchain technology has emerged
in edge computing environments due to its seamless network
control, distributed services, and security, which is reliable in
providing edge services according to user requirements, and
thus can improve the distributed resource scheduling and task
offloading at ease [5].

Currently, a large number of methods and models for task
offloading decision-making are mainly divided into traditional
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offloading techniques and intelligent offloading techniques. The
former usually applies some heuristic algorithms, where a
large amount of computation is required to make offloading
decisions [6], while the latter are based on deep learning models,
where the internal laws and representation levels of standard
sample data are learned through deep neural networks so that
computers can have analytical capabilities like humans. For
instance, deep reinforcement learning (DRL)-based methods can
promote offloading decision-making, dynamic resource alloca-
tion, and content caching, which are conducive to coping with the
explosive growth of communication and computing in emerging
IoT applications. Intelligent offloading algorithms have gradu-
ally emerged in recent years and become ever-increasing popu-
lar [7]–[9]. By introducing neural networks and other methods,
offloading decision-making can achieve good results, but there
still exist several challenges, e.g., slow learning speed and long
training time. Besides, most of the current intelligent offloading
algorithms are based on neural networks, which are generally
deployed on edge servers since strong computing capacities are
required.

In order to solve the aforementioned challenging issues, more
and more approaches have been introduced into the intelligent
offloading model. Among them, distributed learning models
can effectively help multiple institutions to perform data usage
and machine learning modeling under the requirements of user
privacy protection, data security, and government regulations.
As a distributed machine learning paradigm, federated learning
can effectively solve the problem of data islands, allowing par-
ticipants to jointly model on the basis of not sharing data, thereby
preventing privacy leakage as well as protecting users’ pri-
vacy [10], while improving the training speed of the model [11].
In addition, as a new data structure, the data or information stored
in blockchain has the characteristics of unforgeability, traceabil-
ity, openness and transparency, and collective maintenance [12].
With these characteristics, blockchain technology has laid a
solid foundation of trust and established a reliable cooperation
mechanism. By introducing blockchain into edge computing,
the privacy and security requirements for task offloading can be
well improved.

When designing optimal offloading-decision algorithms, it is
necessary to comprehensively consider the overall latency and
energy consumption of all IoT devices, especially for delay-
sensitive applications in large-scale industries [13], [14]. There-
fore, it is urgent to have a simulation platform that measures
the offloading effectiveness of different task offloading models.
In addition, blockchain owns disadvantages such as huge data
volume and slow embedding speed. How to rationally combine
blockchain and federated learning to ensure that the efficiency
of federated learning is less affected, while still meeting the
security requirements, has become a research hotspot in related
fields [15]. Although there are various simulation platforms for
edge computing, they are often incompatible with some new
models due to their early construction and the impact of tech-
nologies, e.g., distributed learning and blockchain. To address
these challenges, we have built a new simulation platform called
ChainFL, which owns the following advantages.

1) ChainFL has strong compatibility and can be built be-
tween devices under different architectures. It can quickly
build an environment that simulates multiple IoT devices,
edges, and clouds. In addition, ChainFL itself is very
lightweight and can be easily extended to the existing task
offloading-decision model in the form of a toolkit. By
introducing simulated datasets or collecting real-world
task information, the process of task offloading can be
simulated on the platform.

2) The network structure of ChainFL is very suitable for
blockchain embedding and supports distributed learn-
ing such as federated learning. In addition, it has bet-
ter applicability to task offloading models involving
blockchain, federated learning, and other algorithms. As
far as we know, this is the first simulation platform that is
jointly optimized for blockchain and federated learning
in edge/cloud computing environments.

3) ChainFL can be deployed as a federated learning platform
across multiple devices to enable federated learning in
edge computing environments. Compared to traditional
federated learning algorithms, ChainFL has an embedded
blockchain structure, which can increase the security and
reliability of federated learning in IIoTs.

The rest of this article is organized as follows. Section II
summarizes related work. Section III details the structure and
application of the simulation platform. Section IV presents
extensive experimental results to evaluate the performance of
our proposed ChainFL. Section V discusses several potential
application scenarios to be supported. Finally, Section VI con-
cludes this article.

II. RELATED WORK

A large number of studies have been proposed to imitate the
environment, including IoT, edge computing, and cloud comput-
ing. Some of these systems have also been developed to allow
embedded task offloading-decision models. In this section, we
review related work and compare it with our simulation platform.
In addition, we compare the feature differences between existing
federated learning platforms and the proposed ChainFL.

A. Edge/Cloud Simulation Platform

CloudSim [16] is a popular cloud computing simulation plat-
form, which is a function library developed on the discrete event
simulation package SimJava. CloudSim supports the research
and development of cloud computing, and the modeling and
simulation of a variety of cloud computing infrastructures. This
has attracted widespread attention from both academia and
industry, and has led to various follow-up projects based on
CloudSim, e.g., iFogSim [17], CloudSimSDN [18], and Con-
tainerCloudSim [19].

ifogSim [17] is a toolkit proposed to simulate a fog comput-
ing environment, whose concept is similar to edge computing.
iFogSim uses not only a central server, but also an edge server
closer to the user level. It can be used to create an integrated
edge and cloud simulation environment to evaluate the resource
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TABLE I
COMPARISON OF FEATURES BETWEEN DIFFERENT FEDERATED LEARNING PLATFORMS

management strategy of edge cloud. However, iFogSim focuses
more on the management of computing resources such as CPU,
memory, and storage. On the contrary, in addition to these
functions, our simulation platform can implement more complex
network functions.

CLONE [20] is an edge-based collaborative learning frame-
work, which is mainly used to deal with the contradiction
between edge intelligence and privacy protection, and the lim-
itation of insufficient bandwidth. In order to support the col-
laborative training and inference of models on edge devices, its
application scenarios are classified into two categories, namely,
CLONE training and CLONE inference. The core idea is that
training/inference tasks are solved by a set of distributed edge
nodes and coordinated by the edge server. The edge server
is responsible for performing aggregation or other necessary
operations on the uploaded parameters and sending the updated
parameters back to the edge node. Each edge node trains the
neural network model locally based on its private training data,
which will not be offloaded to the edge or the cloud, and pushes
the corresponding parameters to the edge server during the
training/inference process.

With the popularity of Kubernetes as a containerized ap-
plication that manages multiple hosts on the cloud platform,
it makes the deployment of containerized applications simple
and efficient. However, Kubernetes is designed for cloud data
centers after all. KubeEdge [21] is the world’s first open-edge
computing platform based on Kubernetes and provides cloud-
side collaboration capabilities. It relies on Kubernetes’ container
orchestration and scheduling capabilities to achieve cloud-edge
collaboration, resource heterogeneity, and lightweight func-
tions. K3S [22] is designed for R&D operation and main-
tenance personnel who run Kubernetes in a resource-limited
environment. The purpose is to run small Kubernetes clus-
ters on edge nodes of x86, ARM64, and ARMv7D architec-
tures. However, all components of K3S (including server and
agent) run on the edge, so the cloud-edge collaboration is not
involved.

Although these related systems provide examples of running
their frameworks, building such a system requires a lot of
equipment and time to build the environment and execute the
corresponding model. Therefore, to perform large-scale and
cost-effective simulation and evaluation for certain offloading-
decision or resource scheduling algorithms, it is still necessary
to establish an efficient and lightweight toolbox. In order to meet
this requirement, a fast simulation platform for evaluating task

offloading decisions and strategies in edge-cloud environments
is developed.

B. Federated Learning Platform

Federated learning platforms have developed rapidly in recent
years. Table I summarizes the technical comparison of differ-
ent federated learning platforms. Among them, TensorFlow-
Federated (TFF),1 the earliest federated learning platform pro-
posed by Google, supports optimization algorithms, e.g., Fe-
dAvg and FedProx, but it cannot accommodate some of the
newer algorithms as it can only perform centralized federated
learning. LEAF [23] and PySyft [24] are similar to TFF in that
there are more methods for training data than TFF. However,
they only support algorithms with a central structure, and are
not applicable for algorithms that require the exchange of com-
plex auxiliary information and custom training procedures. In
addition, federated learning platforms such as FATE [25] and
PaddleFL [26] have been released by related industries, but the
industry-dominated products often have cumbersome system
designs, inflexible application programming interfaces (APIs),
and complex environment settings that are not friendly to edge
computing and the embedding of decision algorithms for task of-
floading. FedML [27] is an open-source framework for federated
learning, which facilitates various algorithm research through
flexible and universal API design and reference benchmarks.
However, since it does not support the embedding of blockchain
algorithms, some of the latest blockchain structure-based algo-
rithms will not be introduced for use, especially in the area of
security.

The abovementioned federated learning platforms are rarely
designed for platform security. This would lead to certain secu-
rity risks in environments such as edge computing and IIoTs.
In contrast to these platforms, ChainFL allows for customized
encryption algorithms for information flow and supports em-
bedding in blockchains to enhance the tamper-evident nature of
information, thus improving the security of the global platform.

III. SIMULATION PLATFORM STRUCTURE AND FUNCTIONS

This section mainly provides the detailed structure and system
model of ChainFL, as well as the related functions and informa-
tion of the platform.

1[Online]. Available: https://medium.com/tensorflow/introducing-tensor
flow-federated-a4147aa20041
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Fig. 1. System model of the simulation platform ChainFL.

A. System Model

Fig. 1 illustrates the system model of the proposed simulation
platform ChainFL. According to the characteristics of task of-
floading, the edge computing environment is composed of cloud,
edge, user terminal, and communication center. In order to be
able to complete the most basic task offloading and communica-
tion transmission, it is also necessary to meet the requirements
of compatible blockchain and federated learning. Therefore, the
communication between various domains needs to be closer. For
this reason, we set up a communication center node, which is not
available in the conventional edge computing environment. The
main role of the ChainFL platform is to connect individual de-
vices and thus build an edge computing environment to provide
communication support for federal learning. To be compatible
with the embedding of blockchain algorithms, ChainFL allows
the content of the communication to be passed on the blockchain.
Specifically, local devices can upload parameters to the cloud
server for parameter aggregation, and the updated parameters
can be embedded in the blockchain and propagated to each
device for parameter updates. As for the task offloading models
that do not involve blockchain and federated learning algorithms,
the use of this simulation platform for experiments will not affect
the effect evaluation of the original model. We will explain the
structure and information of each level by domain as follows.

1) Communication center: Since our simulation platform is
compatible with blockchain and federated learning, we
use a P2P network structure that is different from the
conventional network structure. In order to ensure that
each node can quickly connect to the entire network for
offloading and training, we establish a communication
center node. The communication center has a public
IP address and is responsible for receiving IP address
information from each node. When a new device joins
the simulation environment, it first needs to access the
communication center and obtain the IP addresses of other
devices and then access the network. It should be noted
that in order to protect information security and reduce
the communication volume, the communication center is
not responsible for the communication of specific infor-
mation, so there is no risk of privacy leakage. In addition,

Fig. 2. ChainFL architecture for edge computing and task offloading.

when the node is connected to the network, it will not need
to access the communication center frequently. The use
of a communication center does not affect the efficiency
of traditional task offloading and communication; never-
theless, it is only responsible for connecting the newly
added devices to the system network.

2) Cloud domain: In addition to traditional cloud tasks such
as task offloading and resource scheduling, the cloud
nodes in this simulation platform also have other impor-
tant functions, e.g., the propagation and embedding of
blockchain, and the aggregation and transfer of parame-
ters in the federated learning algorithm. By embedding
related functions into the simulation platform, it provides
great convenience for the implantation and effect evalua-
tion of some complex offloading models.

3) Edge domain: As the most important part of the traditional
edge computing environment, the edge end is responsible
for task offloading, data transferring, and communicating
with the user terminal. In addition, most of the current
offloading-decision-making models put decision-making
algorithms on the edge. For ChainFL, the edge end also
takes the transfer function of blockchain and federated
learning parameters into account.

4) User terminal: As the lowest layer in the edge computing
environment, the user side is responsible for reasonably
offloading tasks generated by itself or training the neural
network in the federated learning algorithm.

B. Architecture of ChainFL

Fig. 2 shows the hierarchical layer structure of ChainFL for
edge computing and task offloading. It consists of an infras-
tructure layer, a virtualization layer, a communication layer, a
computing layer, and an application layer.

From bottom to top, the functions of each layer are defined as
follows.
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1) Infrastructure layer: This layer is mainly composed of
computing equipment and communication equipment.
Among them, computing devices include IoT devices
that are responsible for simulating the user side, such as
single-chip computers; devices that are responsible for
simulating edge base stations, such as mid-performance
computers; and devices that are responsible for simulating
the cloud, such as large workstations. These computing
devices are responsible for performing computing tasks
such as task offloading, neural network learning, and pa-
rameter aggregation when performing edge computing. In
addition, in order to ensure close communication between
various computing devices, we need to connect the com-
munication equipment of each computing device. The
communication equipment is divided into a gateway and a
communication center. For some small analog platforms,
the gateway can be replaced by a router. Each device will
be connected to the gateway for communication, which
also includes a communication center. The communica-
tion center can be formed by a single-chip microcomputer
with low computing power because it does not perform
computing tasks.

2) Virtualization layer: With the popularity of virtualization
technology, more and more virtual services are being used
in simulation platforms. ChainFL serves as a highly com-
patible platform that allows programs to run on virtual
machines. The virtual machine is capable of customizing
parameters such as bandwidth performance for better
performance evaluation. ChainFL’s strong support for
virtualization allows users to simulate complex network
environments with multiple devices on a single computer.

3) Communication layer: This layer is responsible for com-
munication between computing devices, which includes
not only the information communication for task offload-
ing in traditional edge computing and the most basic
necessary communication, but also the communication
process of federated learning and blockchain. Since the
communication layer is built on a gateway-based commu-
nication device, we can simulate the environment under
different bandwidths by adjusting the bandwidth value
in the virtualization layer. The specific information to be
communicated is as follows.
a) Information related to task offloading: It is mainly

composed of the communication required for the
task offloading decision process when the decision
algorithm is at the edge, task information and re-
lated decision instructions required to transfer for
each offloading decision, and the dynamic perception
between devices, e.g., real-time bandwidth and CPU
occupancy rate, as well as the task upload and result
download in the most critical task offloading process,
where the task may be in the form of text or pictures.

b) Communication transmission required for federated
learning: It mainly includes the upload of neural
network parameters on the user side after a fixed
number of rounds, and the decentralization of param-
eters after aggregation. Unlike conventional federated

learning, because this network adopts a P2P structure,
there is no need to specify an additional receiving
node for the parameters uploaded by the client. The
network will automatically aggregate them to the
cloud node, and the client only needs to upload the
parameters once per round. This reduces the amount
of communication required for federated learning. In
addition, ChainFL supports both elastic computing
power and edge-cloud collaboration. For example,
when the edge server on which the parameters reside
is unable to access the cloud, it will be automatically
passed to other edge servers to ensure the propagation
of the parameters.

c) Communication transmission required by
blockchain: It includes the transmission of
transactions and the spread of blockchains. Similar
to federated learning, information related to the
blockchain will be broadcast to all nodes in the entire
network at the communication layer for consensus
algorithm authentication, blockchain competitive
leadership, and embedded blocks.

4) Computing layer: This layer is responsible for the parts
that need to be computed in edge computing, including
calculations in task offloading, calculations required for
task decision algorithm training, as well as parameter ag-
gregation in federated learning and consensus algorithms
and workload proofs in the blockchain. The computing
layer usually consists of offloading-decision-making al-
gorithms, bandwidth allocation algorithms, task offload-
ing, and other parts.

5) Application layer: This layer is mainly responsible for
IoT applications deployed in edge computing, including
various applications of IoT devices, drone scheduling, and
unmanned vehicles. It should be noted that ChainFL does
not include specific algorithms in the computing layer and
the application layer. It only provides a toolkit to embed
the existing offloading models to simulate a complex
network environment and evaluate the offloading effect
of these models.

IV. PERFORMANCE EVALUATION AND CASE STUDY

In this section, we introduce a complex intelligent task
offloading-decision algorithm into ChainFL and simulate a mul-
titerminated edge computing environment in an IoT scenario.
We first verify the utility of the simulation platform and the
effectiveness of the federation algorithm by testing the utility
of the offloading-decision algorithm. After that, we simulate an
environment where security attacks exist and verify that this
platform can be effective against security attacks.

A. Experimental Setup

The ChainFL platform is written in Python, the communi-
cation is based on the HTTP protocol, and Flask is applied as
the HTTP service framework. ChainFL contains communication
procedures for each node and packages that reference other
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TABLE II
HARDWARE TOOLS FOR EXPERIMENTAL VERIFICATION

Fig. 3. Equipment structure with ChainFL.

offload algorithms. The devices and tools used in the experi-
ments are summarized in Table II . We set this environment to
have a cloud server, an edge server, a communication center,
and multiple clients. The whole structure of the experimental
platform is shown in Fig. 3.

We first run ChainFL’s communication program on each
device, and the results after running are shown in the bottom
right of the figure, where the terminal window shows the other
nodes currently connected to that device in real time. In addition,
as shown in the bottom-left corner of the figure, we can access
the backend management page by typing “local IP address: port
number/observe” into the browser to view the current connec-
tivity and blockchain information. Once the devices are running
their respective communication programs, they have formed an
IoT environment with edge computing, and then by referencing
the package to the original task offload decision algorithm, they
can use the full functionality of the platform, such as uploading
parameters, performing federation aggregation, and embedding
blockchain.

To validate the effectiveness of ChainFL on the task
offloading-decision model, we introduce the DRL algorithm
as an offloading-decision algorithm into the platform, which
is capable of effectively solving semisupervised problems such
as task offloading decision by combining deep learning with
reinforcement learning [28]. A number of studies have been
conducted to introduce DRL algorithms into edge comput-
ing [29]–[31], but few methods combine DRL with federated
learning for task offloading. In our experiments, we introduce
deep Q-network (DQN) algorithm [32] into the platform [9]. We

Fig. 4. Effect of federated learning for task offloading.

set the state space as task information and the action space as the
decision to offload to a particular server. Our overall optimiza-
tion objective is the total utility, which is a negatively correlated
linear weighted sum of the overall energy consumption and the
overall delay, where the former is the total energy incurred due
to offloading the task, and the latter is the total delay gener-
ated by offloading the task, including computation latency and
communication latency. A reasonable task offloading strategy
will generate less energy and latency, and thus have higher total
utility.

B. Experimental Analysis

1) Impact of Federated Learning: Fig. 4 shows the compari-
son of total utility with and without federated learning; here, the
horizontal coordinate is the number of training rounds and the
vertical coordinate is the total utility, where a higher total utility
means a better offloading effect. It can be seen that with the in-
crease in the number of training rounds, both schemes are able to
converge to a high level, demonstrating that the DRL algorithm
can achieve good results in task offloading decision-making. It
should be emphasized that the DRL algorithm with federated
learning not only achieves a faster convergence rate, but also
has better stability after convergence. At 500 rounds of training,
the model with federated learning improved its effectiveness by
11.7% over the traditional DRL algorithm. In short, the model
with federated learning achieves much better results than the
original model.

2) Impact of Number of Layers: As shown in Fig. 5, we
compare the effect of different numbers of neural network layers.
With the increase in the number of layers, we can obtain a much
better utility for task offloading. In addition, it can be seen that
even if the number of neural network layers has changed, the
model using federated learning is still superior to the one without
federated learning.

3) Number of Rounds of Local Training in Federated Learn-
ing: As shown in Fig. 6, we compare the different numbers
of local training rounds in federation learning. It can be seen
that both too high and too few local training rounds will cause
fluctuations in parameters, while 250 and 500 rounds possess a
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Fig. 5. Effect of different numbers of neural network layers for task
offloading.

Fig. 6. Effect of different numbers of local training rounds in federation
learning.

smoother trend. Therefore, the number of local training rounds
for federal learning in this section is uniformly set to be within
the 250–500 interval.

4) Impact of Number of Devices: Fig. 7 illustrates the effect
of the number of devices for task offloading. It can be clearly
seen that as the number of devices involved in federated learning
increases, the effect of federated learning is getting better. Espe-
cially, in the first 1000 rounds, the federated learning model with
more devices can converge to the desired effect more quickly.

5) Impact of ChainFL on Security: Federated learning, as
a newly emerged distributed learning framework, may have
multiple security risks [33]. In this article, we focus on two major
security risks: one is the malicious modification of uploaded
parameters due to a system vulnerability (upload attack), and the
other is that the updated parameters are maliciously tampered
with by poisoned devices during propagation (download attack).
To cope with the former, our platform allows custom encryption
of the uploaded parameters, while for the latter, ChainFL uses
blockchain algorithms to prevent the modification of updated pa-
rameters. Here, we use ECDSA [34] as the encryption algorithm
and use blockchain to record the updated parameters.

Fig. 7. Effect of different numbers of participating devices for task
offloading.

Fig. 8. Convergence performance under different security attacks.

Fig. 8 shows the convergence of the model in the presence of
security attacks, where the horizontal coordinate is the number
of training steps and the vertical coordinate is the loss function of
the neural network in the DRL algorithm. We can see that with
the intensification of security attacks, the convergence of the
model suffers more damage, while the download attack is even
more damaging to the convergence. In contrast, the federated
learning algorithm with protective measures is unaffected.

Fig. 9 shows the offloading effect of the model under the
security attack, where the abscissa is the number of training
steps and the ordinate is the total effectiveness of offloading. In
particular, Fig. 9(a) shows the federated learning effectiveness
curves under normal conditions and the effect of different levels
of security attacks on the model under unprotected conditions.
It can be seen that at 10% of the upload attacks, the attacks have
less impact on the unprotected model, but when the upload attack
rate reaches 20%, the unprotected model starts to fluctuate. In
addition, the upload attack is more destructive to the global
model, making the global model appear less convergent. The
download attack focuses more on the attack on the individual
user side, and the user side under the download attack will
occasionally fluctuate greatly, which leads to a large fluctuation
in the effect of the model. Fig. 9(b) shows a line graph of the
model effect under different attacks. It can be seen that the

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 04,2022 at 01:00:25 UTC from IEEE Xplore.  Restrictions apply. 



QU et al.: ChainFL: A SIMULATION PLATFORM FOR JOINT FEDERATED LEARNING 3579

Fig. 9. Model performance under different security attacks.

federated learning algorithm protected by the security measures
of this platform can effectively avoid the effect fluctuations
caused by security attacks, with faster convergence speed and
better stability. It should be emphasized that ChainFL is mainly
adopted as a platform to embed secure encryption algorithms
and blockchain algorithms to enhance security. Specific security
protection capabilities are influenced by the embedded security
algorithms and blockchain settings.

V. APPLICATION SCENARIOS AND DISCUSSIONS

In this section, we provide some application scenarios that
can be applied to the ChainFL simulation platform.

A. Case Study 1: Collaborate Edge and Cloud
Computing

ChainFL can be used both as a simulation platform and as a
deployment platform for federated learning. On the one hand,
ChainFL can simulate a complex IoT environment supporting
edge computing with a small number of devices, which in turn
provides an experimental platform for task offloading mod-
els to evaluate their effectiveness in a complex environment.
Furthermore, by embedding a task offloading-decision model
into ChainFL, it can serve as a complete task offloading model
for edge computing. The model is embedded with a federated

Fig. 10. Task offloading process with ChainFL in collaborate edge and
cloud computing environments.

learning mechanism that can be deployed on devices under
different systems to build a complex network including multiple
clients, edges, and clouds, and then implement complex task
offloading at the clients. The ChainFL platform is very easy to
deploy, users only need to know the IP of the communication
center and run the specified communication code on the device
to access the system and be recognized by other devices. By
allowing the customization of transport encryption algorithms
with blockchain algorithms, ChainFL has better security com-
pared to currently available federated learning platforms and
can be applied to complex scenarios, e.g., industrial cognitive
Internet of Vehicles [35].

As illustrated in Fig. 10, the embedded intelligent offloading-
decision algorithm is located on the user side, which generates
task offloading decisions by receiving task information, and then
offloads the task either to the edge or the cloud. After each train-
ing period, the client will automatically upload the parameters of
the neural network for federated learning, and update the learned
parameters to the network. The ChainFL platform provides a
way for many offloading-decision-making algorithms that are
in the research stage, which can be deployed in a real-world IoT
environment and perform a real task offloading process.

B. Case Study 2: Joint Federated Learning and
Blockchain Optimization

Compared with existing simulation platforms, ChainFL has
made more optimizations for federated learning and blockchain
algorithms, so it can train and evaluate the effects of traditional
federated learning algorithms. Fig. 11 shows the network struc-
ture of the ChainFL platform. For the blockchain algorithm, the
cloud is a full node, while the client and edge are lightweight
nodes. Due to the unique network structure of ChainFL, it is
more conducive to the generation and propagation of blockchain,
which can promote the application of blockchain in edge com-
puting environments. In practical deployments, ChainFL allows
blockchain algorithms to customize their consensus algorithms
and mining algorithms, thus increasing the compatibility of
the platform. Specifically, ChainFL does not embed specific
blockchain algorithms, and users can use it by introducing the
required packages to complete the corresponding functions.
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Fig. 11. Network structure of the ChainFL platform.

VI. CONCLUSION

In response to the complex conditions in the field of IIoTs, we
developed ChainFL, a novel simulation platform that provides
a more realistic environment for offloading-decision models for
tasks using different algorithms. In order to fully improve the
compatibility of the simulation platform, we simplified ChainFL
into a lightweight toolkit that is compatible with devices of dif-
ferent architectures, thus increasing the feasibility of ChainFL.
In addition, ChainFL can be deployed as a federated learning
platform with enhanced security to address the challenges posed
by big data and potential attacks in the IIoTs. We further val-
idated its efficiency, lightweight, and security by embedding
a complex task offloading framework in an environment with
potential attacks.

As a part of future work, we will utilize ChainFL in serverless
edge computing to provide more scalability and reliability, as
well as reduce costs for delay-sensitive tasks. We believe that
ChainFL can still perform parameter aggregation via the edge
server to complete the normal federation learning process in
serverless edge computing environments. In addition, we will
try to combine quantum computing to explore better encryption
algorithms, in order to provide models with better security and
high computational capacity.
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