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DS-NLCsiNet: Exploiting Non-Local Neural Networks
for Massive MIMO CSI Feedback

Xiaotong Yu, Xiangyi Li , Huaming Wu , Member, IEEE, and Yang Bai

Abstract— Channel state information (CSI) feedback plays
an important part in frequency division duplex (FDD) mas-
sive multiple-input multiple-output (MIMO) systems. However,
it is still facing many challenges, e.g., excessive feedback over-
head, low feedback accuracy and a large number of training
parameters. In this letter, to address these practical concerns,
we propose a deep learning (DL)-based CSI feedback scheme,
named DS-NLCsiNet. By taking advantage of non-local blocks,
DS-NLCsiNet can capture long-range dependencies efficiently.
In addition, dense connectivity is adopted to strengthen the
feature refinement module. Simulation results demonstrate that
DS-NLCsiNet achieves higher CSI feedback accuracy and better
reconstruction quality for the same compression ratio, when
compared to state-of-the-art compression schemes.

Index Terms— Massive MIMO, frequency division duplex
(FDD), CSI feedback, non-local neural networks, densely
connected convolutional networks.

I. INTRODUCTION

RECENTLY, massive multiple-input multiple-output
(MIMO) has emerged as one of the pivotal technologies

for fifth-generation (5G) wireless communication systems [1].
Equipped with multiple transmitters and receivers, massive
MIMO systems have achieved great efficiency in terms of
system capacity and anti-interference ability. In frequency
division duplex (FDD) systems, one of the key procedures
is to exploit CSI at the base station (BS), which is essential
for performance improvement. In conventional FDD MIMO
systems, the downlink CSI is obtained at the user equipment
(UE), and then fed back to the BS through feedback links
without compression. However, this method is prohibited in
massive MIMO systems and it is difficult to acquire a large
amount of accurate CSI in practical FDD systems since the
feedback overhead is extremely huge [2].

Recently, deep learning (DL)-based methods have been
introduced to CSI feedback tasks, and have shown great
potential in CSI recovery [3]. Compared to CS-based methods,
DL-based methods achieve a significant improvement in model
performance and computational speed. Wen et al. [4] proposed
an autoencoder (AE)-based network named CsiNet, which uses
an encoder to compress the channel matrices into codewords,
and a decoder to transform the codewords into recovered chan-
nel matrices. Exploiting convolutional operation and ResNet
architecture [5] in the CSI feedback tasks, CsiNet outperforms
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existing CS-based algorithms at all compression ratios. Recur-
rent neural network (RNN) is widely utilized in new CSI feed-
back frameworks, such as CsiNet-LSTM [6], RecCsiNet [7]
and ConvlstmCsiNet [8]. In addition, CRNet [9] was based
on an inception model to adapt to changes in granularity, and
proposed an advanced training scheme to enhance the network
performance. CsiNetPlus [10] has investigated the influence of
convolutional kernels. CoCsiNet [11] utilized the correlation
between nearby UEs to recover CSI cooperatively. CS-ReNet
[12] can significantly reduce the feedback overhead and lower
the complexity of implementing CS at the UE. Guo et al. [13]
discussed the trend of computational complexity of neural net-
works and introduced compression and acceleration techniques
for communication systems.

To significantly boost the correctness of CSI feedback
and reduce the computational complexity of neural net-
works, we design a novel CSI feedback architecture based
on non-local neural networks [14], where non-local blocks
are applied to extract long-distance dependencies. In addition,
we improve the RefineNet module with dense connectiv-
ity [15] to strengthen the feature propagation and enhance the
information flow.

The main contributions of this letter are listed as follows:
• We propose an innovative DL-based CSI feedback

and recovery mechanism, referred to as DS-NLCsiNet,
which has the potential for practical deployment on real
FDD MIMO systems.

• In DS-NLCsiNet, non-local blocks from non-local neural
networks are applied to modify the feature extraction
module and improve its efficiency in capturing long-
range dependencies. Furthermore, dense connectivity is
utilized to significantly enhance the recovery quality by
encouraging feature reuse.

• Experimental results show DS-NLCsiNet can recover CSI
more accurately and improve the quality of recovered CS
significantly when compared with some existing methods.

II. SYSTEM MODEL

We consider a single-cell downlink FDD massive MIMO
system constituted of Nt (Nt � 1) antennas at the BS as well
as a single antenna at each user equipment (UE). The sys-
tem is operated in orthogonal frequency-division multiplexing
(OFDM) with �Nc subcarriers.

The received signal at the nth subcarrier is given as:

yn = �hH

n vnxn + zn, (1)

where �hH

n ∈ CNt × 1, vn ∈ CNt×1, xn ∈ C and zn ∈ C

denote the channel vector in the frequency domain, precoding
vector designed by the BS, modulated transmit data symbol,
and additive Gaussian white noise at the nth subcarrier, respec-
tively. Then the downlink CSI matrix �H is firstly obtained at
the UE side via the downlink pilots, which can be modeled as:�H = [�h1, �h2, · · · , �h

�Nc
] ∈ C

Nt× �Nc . (2)
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Fig. 1. The architecture of proposed DS-NLCsiNet.

The total number of feedback elements is Nt × �Nc, which
will lead to high feedback overhead that beyond the system
capacity in a massive MIMO system. In order not to concen-
trate on complicated details and challenges, we hypothesize
that perfect CSI has been acquired by the UE, and the BS
can process the precoding vector vn as long as it receives the
downlink CSI feedback �H.

To reduce feedback overhead, �H can be further transformed
into a sparsified matrix H̄ in the angular-delay domain via a
two-dimensional discrete Fourier transform (2D-DFT) opera-
tion as follows:

H̄ = Fd
�HFH

a , (3)

where Fd ∈ C
�Nc× �Nc and Fa ∈ CNt×Nt are both DFT matrices

[6]. Moreover, since the time delay between multipath arrivals
lies within a limited time period, only the first few columns
of H̄ having distinct non-zero values [4]. Thus, we only retain
the first Nc(Nc < �Nc) columns, and remove the rest columns.
H̄ is then truncated to a Nt × Nc sized CSI matrix H, which
still requires huge overhead for the massive MIMO system.

After performing the 2D-DFT and truncation operation,
we separate the channel matrix H into real and imaginary
parts. Then we feed it into the autoencoder network as depicted
in Fig. 1, which includes the encoder and decoder. The
encoding and decoding procedures of CSI can be expressed
as follows, respectively.

t = fen(H), (4)�H = fde(t), (5)

where the encoder compresses the CSI matrix of size q into
a codeword t of length p, and then sends it back to the
BS for CSI recovery. Then, the compression ratio (CR) is
defined as CR = p/q. After the BS finishes decompressing
the codeword t to the original channel, we can obtain the
recovered channel matrix �H by performing zero filling and
inverse DFT procedure.

III. DS-NLCSINET

The architecture of the proposed DS-NLCsiNet is shown
in Fig. 1, constituted of an encoder at the UE and a decoder
at the BS.

In DS-NLCsiNet, it receives the truncated matrix H of size
Nt × Nc × 2 as input and sends it to a 1 × 1 convolution
for initial information interaction. Then a non-local block
is applied to extract features, especially for capturing long-
distance dependencies on the structure of channel matrix. The
output of the non-local block remains the same shape with
the input, and is then fed to the reshaping layer to stretch
into a 2NcNt-sized vector. The dense layer compresses the
vector into the p-sized (p < 2NcNt) real-valued codeword t,
where p satisfies the compression ratio (CR) standard: CR =
p/2NcNt. The codeword is then fed back to the BS.

After the decoder at the BS receives the codeword, it first
decompresses the p-sized codeword and reshapes it into a Nt×
Nc × 2 sized rough recovery of H. Further refinements are
divided into two parts: Global Structure Refinement and Local
Detailed Refinement. A non-local block is first deployed to
help reconstruct the global structure of CSI matrix, utilizing
its high efficiency of transferring information between remote
pixels. Then two DS-RefineNet blocks are used to supplement
the local details, where the convolutions are local operations,
which are more suitable for detailed reconstruction. Following
the DS-RefineNets, a 3×3 convolutional layer is implemented
to scale the values to the [0, 1]. The final reconstruction of H is
generated. For each convolutional layer, we use leaky ReLU as
the activation function and place a batch normalization layer.

A. Non-Local Block

Existing DL-based CSI feedback architectures usually
exploit convolutional or recurrent operations to extract the
features of the channel matrix. However, these two methods
can only deal with one local neighborhood at a time.
To obtain a larger resolution view, we usually need to repeat
these operations, which is computationally inefficient and
will cause optimization difficulties. Therefore, we introduce
non-local (NL) blocks from non-local neural networks [14] to
the CSI Feedback architecture, in order to capture long-range
dependencies well.

The NL-block is specially designed for sequence data
(spatial, temporal or spatial-temporal) and can directly pass
information between any two positions. The main idea comes
from the NL-Mean algorithm for image denoising, that is,
displaying mean operation on all image blocks, which is
calculated by:

u(xi) =
�
y∈Ω

w(xi, y)v(y). (6)

To highlight commonalities and eliminate differences (usually
noise), the normalized weight coefficient w(xi, y) is involved
here, i.e., the more similar block y with the output u(xi),
the higher weight is given.

Similar to the NL-Mean operation as shown in Eq. 6,
the generic NL operation can be expressed as:

yi =
1

C(x)

�
∀j

f (xi, xj) g (xj) , (7)

where x and y denote the input and output feature maps,
respectively, i is the index of a position on feature maps, and j
represents all possible positions on x. C(x) =

�
∀j f (xi, xj)

is the normalization factor. The function g computes the
embedded feature representation of the input feature map at
the position j. Here, we use a 3 × 3 convolution for g. The
function f computes the correlation between index i and j,
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Fig. 2. The structure of a non-local block with embedded Gaussian version.
“×” denotes the channel matrix multiplication, and “+” denotes the element-
wise sum. The Gaussian version can be implemented by removing θ and ∅.
For convenience, the input size is set Nc = Nt = 32 in our model.

i.e. auto-correlation coefficient matrix. Several forms of f
can be selected, e.g., Gaussian, embedded Gaussian and dot
product [14], and we choose the embedded Gaussian form:

f (xi, xj) = eθ(xi)
T ∅(xj), (8)

where θ and ∅ represent the embedding spaces, and the
potential of abstract feature representation can be explored
in training to achieve better performance than the original
Gaussian form. For more details, we use 3 × 3 convolution
for both θ and ∅. Note that the Gaussian multiplication can
be combined with C(x) to exactly form into the expression
of softmax activation.

The structure of NL-block in our model is as depicted
in Fig. 2. The operation involved in a NL-block is given as:

zi = NL(yi) + xi, (9)

where NL(·) stands for NL-Block function and xi denotes
a residual connection. Considering that the matrix product
process may take up a lot of memory, we add down-sampling
operations (3×3 convolution with stride=2) to all θ, ∅ and g to
downsize the feature maps, where the multiplied matrix can
turn from the original shape 1024 × 1024 to the downsized
shape 256 × 256. Meanwhile, the number of channels is
increased to 16 in all θ, ∅ and g to compensate for the
performance loss caused by down-sampling. The up-sampling
operation (3×3 transposed convolution with stride=2) is used
before the addition with the residual connection to recover the
shape of feature maps. For regulation, batch normalization and
ReLU activation layers are applied after all convolutions in the
NL-block.

As shown in Eq. 7, the NL operation calculates the cor-
relation f(xi, xj) at all positions, so that it can directly pass
information as well as extract correlation features between any
two positions (∀j) in one operation. It can also be regarded
as a global convolution with its own self-correlation matrix
as the kernel, which can cover the whole map, providing a
global view for feature extraction. The correlation in long-
distant positions can be efficiently captured, which makes NL-
block more suitable for structural feature extraction. In this
way, it only takes a few layers to achieve the best results
without introducing too many parameters.

Fig. 3. The architecture of proposed DS-RefineNet.

B. DS-RefineNet

To further improve the information flow between layers,
we design a new densely connected convolutional network
structure by utilizing dense connectivity [15], called DS-
RefineNet.

The structure of the proposed DS-RefineNet is shown
in Fig. 3. DS-RefineNet is based on the structure of
RefineNet [4] with the same convolutions. Compared to skip
connection implemented in RefineNet, we introduce direct
connections from any layer to its all subsequent layers. This
procedure can be described as:

xl = Hl([x0, x1, · · · , xl−1]), l = 1, 2, 3, (10)

where Hl denotes the convolution operation, [x0, x1, · · · ,
xl−1] represents the concatenation of the feature map in layers
0, · · · , l − 1 and xl denotes the output of lth convolution
operation.

The structure of dense connectivity has a better effect on
improving NN’s flexibility than skip connection in RefineNet.
In RefineNet, skip connection only allows the origin input
to access the final output, while in DS-RefineNet, every two
layers have directed connections and each layer can access
the origin input as well as the output at any front node. When
facing the NN’s degradation problem, connections are densely
everywhere in the structure of DS-RefineNet, providing nearly
all the selections for the data to choose how to flow the
indispensable layers and jump across those unnecessary ones.

The flexibility of neural networks in DS-RefineNet brings
many benefits. On one hand, by creating a short path from
early layers to later layers, it can largely alleviate the problem
of vanishing gradient; on the other hand, this connection
mode in DS-RefineNet makes the transmission of features
and gradients more efficient, and the network is easier to
train. Each layer can directly access the gradient from the loss
function and the original input signal, resulting in implicit
deep supervision. In the structure of decoder, the received
compressed signal is first input in the non-local block to get
a rough reconstruction of CSI. Then the rough reconstruction
is fed into two DS-RefineNet blocks for more detailed
refinements.

In every DS-RefineNet block, there are three 3 × 3 convo-
lutional layers. The batch normalization layer followed with
leaky ReLU activation is implemented before each convolu-
tional layer. For the lth layer, we concatenate multiple inputs
of Hl(·) as a tensor. The first, second and third convolutional
layer generates 8, 16 and 2 feature maps, respectively. The
final output of DS-RefineNet is the concatenation of each
layer’s output in the channel axis.

Due to the concatenation operation, the neural network in
the second DS-RefineNet may become too wide. To further
reduce the number of feature maps, a transition layer should
be implemented between two DS-RefineNet blocks. Different
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TABLE I

THE NUMBER OF PARAMETERS AND MACCS

from [15], we use 1 × 1 convolution as a substitute for
the transition layer. Since the architecture of CSI feedback
schemes is simpler than that of computer vision networks [9],
the bottleneck before every 3× 3 convolution will not be uti-
lized here to reduce the input feature maps. The implementa-
tion of DS-RefineNet has a significant impact on strengthening
feature propagation and encouraging feature reuse. After these
two DS-RefineNet blocks, the feature maps will pass through
a 3×3 convolution and a sigmoid activation to output the final
reconstructed CSI.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, to verify the effectiveness of the pro-
posed CSI compression feedback algorithm, experimental
simulations are developed for indoor and outdoor scenarios,
respectively, in an FDD massive MIMO system. Compar-
ative analysis of our proposed scheme with several other
methods of CSI feedback compression networks is also
performed.

A. Parameter Setting
To train DS-NLCsiNet, the end-to-end learning for the

encoder and decoder is applied. The output to DS-NLCsiNet
is Ĥi, which can be expressed as:

Ĥi = f(Hi; Θ)
= fde(fen(Hi; Θen); Θde), (11)

where Hi, Θ = {Θen; Θde} and f = fde(fen(·)) denote
the input channel matrices, parameter set and autoencoder
network, respectively.

We use Adam optimizer with default setting to train our
frameworks, and we choose the mean squared error (MSE) as
loss function, which is given as:

L(Θ) =
1
N

N�
i=1

�f(si; Θ) − Hi�2
2 , (12)

where �·�2 is the Euclidean norm, and N is the number of
samples in the training data.

We use the COST2100 channel model [16] to generate the
values of H, considering two different scenarios: the indoor
picocellular scenario at the 5.3GHz band and the outdoor
rural scenario at the 300MHz band. The BS uses �Nt = 32
antennas and Nc = 1024 subcarriers. We reserve the first
Nc = 32 columns of the channel matrix H since only they
have non-zero values. Then H is truncated into the shape
of 32 × 32. We use 100, 000 samples for training, 30, 000
for validation and 20, 000 for testing, respectively. The batch
size, epochs and learning rate are set as 200, 1000 and 0.001,
respectively.

B. Complexity Analysis

Compared with other state-of-the-art CSI feedback methods,
the complexity analysis of the proposed DS-NLCsiNet is
depicted in Table I, where the number of parameters and
MACCs1 stand for space and time complexity, respectively.

As shown in Table I, our frameworks do not introduce too
many parameters when compared with CsiNet, while greatly
enhancing the recovery quality of CSI. The increase in MACCs
mainly comes from convolution layers. When CR is relatively
small, the amount of computation of convolutional layers is
more than that of dense layers. The model parameters and
MACCs of DS-NLCsiNet are much lower than those of RecC-
siNet and ConvlstimCsiNet, which improve the reconstruction
accuracy at the cost of huge space and time complexity,
since the dense layers in LSTM cell substantially increase the
amount of computation.

C. Comparative Analysis

To gain insight into the proposed DS-NLCsiNet, the fol-
lowing CSI feedback methods are implemented in the same
environment for comparison:

• CsiNet [4]: A well-known CSI sensing and recovery
mechanism that applies RefineNet.

• NLCsiNet: Instead of using DS-RefineNet, this scheme
only employs NL-blocks with RefineNet.

• DS-CsiNet: Instead of using NL-blocks, this scheme only
employs DS-RefineNet.

• DS-NLCsiNet: This is the proposed DL-based CSI
feedback scheme that combines NL-blocks and DS-
RefineNet.

Two metrics can be used to evaluate the performance of
different CSI feedback architectures as follows:

• Normalized Mean Square Error (NMSE): It quantifies the
difference between the original channel matrices and the
recovered matrices, which can be defined as:

NMSE = E

����H − �H���2

2

�H�2
2

�
. (13)

• Cosine similarity: It evaluates the similarity between
the input and the output matrices by calculating cosine
similarity of the channel response at each subcarrier,
which can be defined as:

ρ = E

⎧⎪⎪⎨⎪⎪⎩
1�Nc

�Nc�
n=1

�̃hH

n h̃n

����̃hn

���
2

��h̃n

��
2

⎫⎪⎪⎬⎪⎪⎭ . (14)

1MACC: multiply-accumulate operations. A multiplication operation and an
additive operation count for one MACC operation.
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TABLE II

NMSE IN dB AND COSINE SIMILARITY ρ

Fig. 4. The absolute value of original and reconstructed CSI images at
different compression ratios (top: in indoor picocellular scenario; bottom: in
outdoor rural scenario).

We compare DS-CsiNet, NLCsiNet and DS-NLCsiNet with
CsiNet. The corresponding NMSE and ρ of each network are
summarized in Table II, where the best results are marked
in bold font. Simulation results demonstrate that our pro-
posed DS-NLCsiNet outperforms the existing DL-based CSI
feedback methods in terms of both NMSE and ρ. Com-
pared with CsiNet, DS-NLCsiNet also provides significant
gains, which mainly benefits from the use of NL-blocks
in both of the encoder and decoder, and DS-RefineNet in
the decoder. In addition, the performance comparison of
DS-CsiNet, NLCsiNet and DS-NLCsiNet demonstrates that
NL-blocks and DS-RefineNet can indeed enhance the perfor-
mance of CSI feedback network, respectively.

Figure 4 plots original and some reconstructed CSI
images in Pseudo-gray at different compression ratios
for different CSI feedback schemes. The CSI images are
randomly extracted from the test dataset in indoor and
outdoor scenarios, respectively. In the first column from left,
we show the original images of the CSI matrix in the angular-
delay domain after performing the 2D-DFT and truncation
operation. In the right three columns, we demonstrate some

reconstruction samples along with the corresponding pseudo-
gray plots of the strength of recovered matrices, which are
reconstructed by using different CSI feedback schemes.
Obviously, NLCsiNet and DS-NLCsiNet both outperform
CsiNet, especially at low compression ratios. In addition,
NLCsiNet and DS-NLCsiNet can recover the CSI in a more
accurate way, and can also retain some feature which might
be lost in CsiNet feedback procedure.

V. CONCLUSION

In this letter, we have proposed a novel DL-based CSI feed-
back scheme by utilizing non-local block and dense connectiv-
ity in feature extraction and RefineNet modules, respectively.
Experimental results demonstrate that DS-NLCsiNet out-
performs existing methods in terms of recovery accuracy
and reconstruction quality. We believe this architecture has
the potential for practical deployment on real FDD MIMO
systems.
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