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Abstract— This paper addresses the problem of remaining
useful lifetime (RUL) prediction with non-periodical inspection
data. To construct the RUL predictor, a two-stage solution is
presented with the recently proposed time-gated long short-
term memory network (TGLSTM) and a surrogate Wiener
propagation model. The TGLSTM is used to process the non-
periodical time-stamps and the Wiener propagation model
aims to control the sequence-wise uncertainty. Also to process
the high-frequency sensory data during each inspection, the
temporal convolutional network (TCN) is introduced. The
modeling rationale comes from the observed fact that prediction
uncertainty reduces when time tends to the failure time, and the
key insight is to introduce the latent Wiener process to model
the joint probability density to observe the RUL prediction from
the TGLSTM predictor and the actual RUL record simultane-
ously. Moreover, the TGLSTM predictor is interactively trained
with the uncertainty propagation model. Our model is validated
using the non-periodically under-sampled data from a turbofan
engine degradation simulation use case.

I. INTRODUCTION
In modern industrial systems, remaining useful lifetime

(RUL) prediction usually refers to system condition data that
may come from sensors or human-aided inspections in the
field [1], [2]. The RUL prediction is also a widely-adopted
risk indicator for maintenance planning, whose uncertainty
is closely related to the real-time evaluation of system
reliability and predictive maintenance policies [3].

This paper addresses three challenges for RUL prediction
induced by the high-dimensionality, non-periodicity, and
uncertainty of inspection data.

• Feature extraction from high-frequency sensory data:
the inspection data is usually a piece of high-frequency
sequence from sensors. For prediction or decision
needs, directly using the high-frequency data is difficult
such that feature extraction or dimension reduction
are needed for RUL prediction. This paper refers to
the temporal convolutional network [4] to solve this
challenge.

• Information processing for non-periodical inspections:
the inspection intervals may not be equidistant due to
signal delay, unscheduled maintenance, unsynchronized
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system time etc. This leads to the difficulty to max-
imize the use of variable-size, non-periodical inspec-
tion data, and to keep data balance during predictor
training simultaneously. For non-periodical scalar data,
this usually can be partially solved by degradation
process based estimation with the Markov hypothesis
[2], [5]. However facing multi-dimensional data, non-
periodical data makes big trouble for structuring the
input data for popular machine learning models [6]. A
recently proposed time-gated long short-term memory
(TGLSTM) network [7] will be considered to solve this
challenge.

• Uncertainty control in sequential prediction: the inspec-
tion data are noisy and show variety due to different
types of uncertainty, e.g. aleatory and epistemic. The
system uncertainty is propagated to the observation
uncertainty and further RUL prediction uncertainty [8].
Especially when considering the RUL prediction se-
quentially, the sequence-wise uncertainty is not fully
understood and well-controlled by normal point-wise
loss functions, e.g. mean square error (MSE), if the RUL
predictor is trained in a supervised learning way. To
quantify and control the sequence-wise RUL prediction
uncertainty, the Wiener propagation control model for
periodical inspection data [9] will be modified for non-
periodical scenarios in this paper.

Conventional statistical prediction models like time series
focus on periodic scenarios [5], and this paper considers
a hybrid-model for non-periodic data that consists of two
stages: 1) the stacked model of TCN and TGLSTM [7]
will be adopted to construct a RUL predictor, due to its
self-learning capacity for the high-dimensional data in non-
periodical inspection scenarios; 2) the drifted Wiener process
will be considered as a surrogate model to quantify and
control the uncertainty propagation for RUL prediction.

The hybrid model between machine learning and stochas-
tic modeling contributes to uncertainty quantification while
the interpretability and transparency are missing for black-
box-like machine learning models [9], [10]. This is motivated
by the current trend that many machine learning models,
especially deep neural networks, aims at better mapping
between inspection data and RUL records with a focus on
testing accuracy. However RUL prediction and associated
uncertainty are related to all pending future inspection data
before the system failure, and the direct inspection-RUL
mapping does not reveal how the inspection data is pro-
jected to RUL prediction. This paper proposed a two-stage
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model for RUL prediction, such that the RUL prediction is
processed essentially as a health indicator and the system
failure is modeled by first passage time.

Specifically, the TGLSTM will be introduced as a RUL
predictor, and the output is processed as observation to a
Wiener [11] propagation model. The Wiener propagation
model bridges between the feature extracted from high-
dimensional sensor readings and scalar RUL predictions.
Compared with the hidden discrete-state space in classical
hidden Markov models, our work is more flexible and appli-
cable since a continuous-state hidden space is considered.

Our contribution is threefold.
• A solution for the real-time RUL prediction with non-

periodical, high-frequency inspection data is proposed.
• The non-periodical inspection data is processed by the

stacked model of TCN [4] and TGLSTM [7].
• A surrogate Wiener propagation model is introduced to

control the trade-off between prediction accuracy and
uncertainty.

The paper is organized as follows. Section II will introduce
three related research topics. In Section IV, the solution
for RUL prediction with non-periodical inspection data will
be discussed, and the hybrid modeling framework based on
the TGLSTM and the surrogate Wiener propagation will be
presented. Two real-world case studies will be presented in
Section V. Conclusions are made at the end.

II. RELATED WORK

A. Temporal Convolutional Network for Remaining Useful
Lifetime Prediction

The conventional recurrent models, e.g. LSTM and GRU
are almost standard choices for sequence modeling, and RUL
prediction [9], [12], [13]. However, these recurrent models
can hardly process extremely long sequences even different
memory mechanisms are introduced, say a sequence of 250k
data points per second. Also as the information is processed
sequentially over time in recurrent models, the computation
can hardly be parallel and accelerated by GPU.

The temporal convolution network (TCN) [4], [14], [15]
is a promising solution to process high-frequency sensory
data using dilated causal convolution and 1D convolution.
Using different hidden layers for perception of different time
horizons, TCN is also much faster than the recurrent model.
Previous trials are more related to acoustic studies, e.g.
WaveNet [16], but later extend to more general multivariate
time series [17], [18]. For the task of remaining useful
lifetime prediction [5], the input is commonly time series
from different sensors which is essentially the same with
acoustic signals. TCN gets more and more attention from
the reliability engineering society recently [19], [20].

B. Time-Gated LSTM for non-periodical time series

The inspection operation may not be periodically sched-
uled so that the time intervals in an inspection sequence
are not uniform. Conventional sequence models like RNN,
LSTM, GRU [12] and also the aforementioned TCN [4] are
not applied in such a scenario due to the strong assumption of

equidistant time intervals. To process the non-uniform time
intervals, the time-gate is introduced into the normal LSTM
[7], such that the prediction becomes time-dependent.

C. Sequence-wise Uncertainty Propagation Control

Note that the RUL prediction task [21] using machine
learning tools commonly considers the point-wise predic-
tion. However, the degradation modeling using stochastic
processes [5] is usually considered for a scalar time series.
The degradation modeling aims to reveal a latent degradation
process to represent the system state transition, which is dif-
ferent from the point-wise prediction accuracy. To consider
the sequence-wise prediction accuracy, a surrogate Wiener
propagation model was introduced in [9], which accepts the
blackbox predictor’ output as observation to the latent drifted
Wiener process.

III. PROBLEM STATEMENT

Throughout this paper, the following scenario is consid-
ered for an unspecified industrial system.

• The industrial system fails at time τ ≥ 0 which cannot
be observed until the failure happens.

• Inspections can possibly be taken on the system at time
s ∈ [0, τ), which return a multi-dimensional vector xs ∈
Rm.

• Due to the non-periodical inspection policy, the inspec-
tion data may not come periodically. Hence sj , j =
1, · · · , n is denoted as the j-th inspection time, with
τ = sn as the last inspection time. At time s = sj ,
all previous inspection data (including those at time s),
{xsk , k = 1, · · · , j} are represented by x0:sj , or x0:s.

• In the historical data for run-to-failure tests, τ is ob-
served and at time s ∈ [0, τ), the RUL value equals
rs := τ − s.

The aim of RUL prediction is to find a map ϕ from all
previous inspection data x0:sj ∈ Rm×j into the estimate of
RUL rs ∈ R+, say αsj ,

ϕ : Rm×j −→ R+, with ϕ(x0:sj) = αsj . (1)

In the periodical inspection scenarios, the RUL prediction
can be done based on normal recurrent models, e.g. recurrent
neural networks and related variants like LSTM networks
[12]. However, in non-periodical inspection scenarios, nor-
mal recurrent models cannot be applied directly since the
iterative relationship does not hold automatically. The de-
pendence of two consecutive inspections depends largely on
the time interval which cannot be ignored in the prediction
model. To process the non-periodical sequences, in this paper
we consider a time-gated recurrent model [7] formulated as
follows,

ϕ(x0:sj) =


h0 = θ0;

hk = σh(hk−1,xsk ,∆sk; θh), k = 1, · · · , j;
αsj = σa(hj),

(2)
where ∆sk = sk − sk−1 is the inspection interval, σh, σa
are real-valued (vector) functions and θ0, θh are trainable
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vector parameters. It is noted that ∆sk ≡ 1 holds in normal
recurrent models by default. The time-gated recurrent model
(2) will be specified as TGLSTM in the next sub-section.

IV. SEQUENTIAL RUL PREDICTION WITH TIME-GATED
NEURAL NETWORKS

A. Time-Gated LSTM Network

Theoretically, in the input sequences, classic (or “vanilla”)
RNNs can keep track of arbitrary long-term dependence. The
issue with vanilla RNNs is computational (or practical) in
nature: when training a vanilla RNN using back-propagation,
the gradients which are back-propagated can “vanish” (that
is, they can tend to zero) or “explode” (that is, they can
tend to infinity), due to the computations involved in the
process, which use finite-precision numbers. RNNs using
LSTM units partially solve the vanishing gradient problem,
because LSTM units allow gradients to also flow unchanged.

The conventional LSTM can be formulated as follows
[12], [7],

it = σ(Wixt +Riht−1 + bi) (3)
ft = σ(Wfxt +Rfht−1 + bf ) (4)
ot = σ(Woxt +Roht−1 + bo) (5)
c̃t = σg(Wzxt +Rzht−1 + bc) (6)
ct = ft � ct−1 + it � c̃t (7)
ht = ot � σh(ct) (8)

where the initial values are h0 = 0 and c0 = 0, � is

σ σ Tanh σ

σ σ σ

× +

× ×

Tanh

∆t

Time interval

ct−1

Cell

ht−1

Hidden

xtInput

ct

Cell

ht

Hidden

htOutput

ft it ot

fτt iτt oτt

Fig. 1: Time-gated LSTM structure.

the element-wise (Hadamard) product and operates on the
two vectors of the same size. The subscript t denotes the
time step. xt ∈ Rm is the input vector to the LSTM unit,
ct ∈ Rh is the cell state vector and ht ∈ Rh is the hidden
state vector also the output vector at time t. c̃t ∈ Rh is the
cell input activation vector, and it , ft, ot ∈ Rh are the input,
forget and output gates’ activation vectors. W ∈ Rh×m are
the input weight matrices, b ∈ Rh are the bias metrics, and
R ∈ Rh×h are the recurrent weight matrices. These three sets
of parameters are being learned during training. σg(·), σh(·)
and σ(·) are nonlinear activation functions, which apply the
point-wise operations. Hyperbolic tangent function tanh(·)

is usually used for g(·) and h(·) functions and σ(·) is the
sigmoid function.

To introduce the time-dependence into the prediction
model as explained in Eq. (2), TGLSTM [7] introduced three
different time gates which incorporate the time information
as a nonlinear scaling factor on the conventional gates of
LSTM. It enables the original LSTM gates to give different
responses depending on the time intervals. A nonlinear
activation function στ (·) is used to model this scaling effect.
In addition to (7)-(8), the forward-pass process of the new
LSTM architecture in Fig. 1 is modeled by the following
equations [7]:

iτt = στ (W τ
i ∆t+ bτi ) (9)

fτt = στ (W τ
f ∆t+ bτf ) (10)

oτt = στ (W τ
o ∆t+ bτo) (11)

ct = ft � ct−1 � fτt + it � c̃t � iτt (12)
ht = ot � σh(ct)� oτt (13)

where W τ
i , W τ

f , W τ
o are the weight matrices of the time

gates, στ is the point-wise non-linearity, which is set to the
sigmoid function σ(·). ∆t ∈ R is the time intervals for the
input sequence at time t, as the input for the time gates. The
overall TGLSTM unit is illustrated in Fig. 1.

B. A Two-layer Stacked Model using Time-Gated LSTM and
Temporal Convolution Network

To promise the high-fidelity of data acquisition from a
modern industrial system, the sampling rate is usually set
to be a very high frequency; and each inspection operation
returns a piece of high-frequency time series. For instance, by
Nyquist–Shannon sampling theorem [22], the sampling rate
must be at least two times of the rolling frequency 20kHz of
a rolling machine, that is 240k data points per minute. Due
to the data redundancy and the limited computing capacity,
the inspection operation is commonly realized by taking the
data points in a small piece of time, say 1 second.

In such a scenario, TGLSTM can be used to process
the coarse-grained information refined from the inspection.
However, to incorporate the high-frequency data with the
TGLSTM, the temporal convolutional network (TCN) [4]
will be considered to process the piece of high-frequency
data in each inspection.

As illustrated in Fig. 2, the network consists of two parts,
the TCN part and the TGLSTM part. The TCN takes the
high frequency data as input, extract and encode the feature
to a lower dimension. We use the same dilated Convolutions
structure as described in [4], with dilation factors d = 1, 2, 4
and filter size k = 3.

C. Sequence-wise Uncertainty Propagation Control

As the RUL prediction updates over time for a uniform
failure time during the system life-cycle, so the prediction
uncertainty should decrease as new information comes. Fol-
lowing the previous work in [9], we will use a surrogate
Wiener propagation model to control the sequence-wise
uncertainty in RUL prediction. Specifically for t > s, given
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Fig. 2: Stacked TCN and TGLSTM network.

two predictions at time t and s respectively, say αt and αs,
the prediction αt is assumed to be an observation to the
following drifted Wiener process[11], [2],

Yt = −t+
Wt√
c
, t ≥ s, (14)

with Ys = αs as the initial prediction and Wt is a standard
Wiener process. c > 0 measures the uncertainty propagation
rate.

Note that the surrogate modeling for periodical inspections
in [9] can be reproduced in the non-periodical inspection
scenario. Under the assumption ατ = 0 and from the
time-reversal property of Wiener process, αs follows the
normal distribution with mean RUL rs and variance rs/c [9].
Moreover with the latent process Yt, the RUL prediction at
time s is modeled as a first passage time conditional on the
observed value αs, i.e. a random variable given by

Rs := inf
t≥0
{t : Yt+s ≤ 0|Ys = αs, τ > s}. (15)

As the first passage time of a Wiener process follows the
inverse Gaussian distribution [11], Rs ∼ G(αs, c), where
G(α, c) represents the inverse Gaussian distribution with the
probability density function defined by

G(x;α, c) =

[
cα2

2πx3

]1/2

exp

{
−c(x− α)2

2x

}
, x > 0. (16)

Note that if X ∼ G(α, c), then E(X) = α,Var(X) = α/c.
At time s = sj (i.e. the j-th inspection time), given the

prediction sequence α0:sj and the RUL observation rsj , the
prediction loss is established by the negative log-likelihood
function to observe both sequences simultaneously,

`(r0:sj , α0:sj ) = −2

[
log pYs1 (αs1) + log pRsj (rsj |Ysj = αsj )

+

j∑
i=1

log pYsi (αsi |Ysi−1
= αsi−1

)

]
, (17)

where pY (y), pY (y|X = x) represent the probability density
and conditional density function, respectively. It is noted
that (17) depends on the predictor’s parameter and the latent
process parameter.

D. Model Training
The joint likelihood hood (17) provides a pair-wise pre-

diction loss to evaluate the RUL predictor. A batch gradient
descent algorithm naturally comes to train the predictor
using existing inspection-RUL pairs. Moreover, the available
training data Dtrain is specified as follows.

• Inspection data from total N run-to-failure tests are
available for training.

• For the i-th test, totally ni inspections are taken at times
sij , j = 1, ..., ni; the failure happens at τi such that at
sij correspondingly the RUL equals rij = τi − sij ; the
inspection data at sij is denoted as xsij .

Denote the trainable vector parameter for the RUL predic-
tor given by (1) by θ, and αsij denotes the prediction αsij =
ϕ(x0:sij ; θ). Combining with the uncertainty propagation rate
c in (14), the prediction loss naturally comes as the likelihood
for all inspection-RUL pairs from (17),

Lp(θ, c;Dtrain) =

N∑
i=1

`(α0:sij , rij). (18)

Hence the model training is to find the solution to the
following joint optimization problem,

(θ∗, c∗) ∈ arg min
θ,c

Lp(θ, c;Dtrain). (19)

Due to the explicit derivative of Lp w.r.t. c, the optimization
for c can be realized by letting the corresponding derivative
be zero [9]. Hence, the model training can be done with
an alternating direction algorithm that is summarized in
Algorithm 1. For practical convenience, we let the gradient
descent goes for M epochs, and then select the optimal
model that reaches the minimal loss during training.

Algorithm 1 Alternating direction optimization

Require:
1) Training data Dtrain = {(x0:sini

, τi)}Ni=1;
2) Maximum number of training epochs M ∈ N.

Ensure: The RUL predictor ϕ(·; θ∗) and the uncertainty
propagation rate c∗ to minimize the loss Lp(θ, c;Dtrain).

1: Initiate i = 1, c1, θ1;
2: for i ≤M do
3: Solve ci+1 from

∂Lp(θi, c;Dtrain)

∂c
= 0;

4: Update θi+1 for θ by gradient-descent algorithms
using the loss function Lp(θ, ci+1;Dtrain);

5: i+ 1→ i;
6: end for
7: idx = arg mini=1,··· ,M Lp(θi, ci;Dtrain);
8: return θidx → θ∗, cidx → c∗.

V. EMPIRICAL STUDIES

A. NASA CMAPSS Turbofan Engine Dataset
In this section, the performance of the hybrid model of

TGLSTM and Wiener propagation will be presented on the
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CMAPSS Turbofan Engine Degradation Simulation Datasets
[13]. The data was from simulation of engine degradation
using CMAPSS[13].

Under distinct combinations of operational circumstances
and fault modes, four distinct sets were simulated. The
training data consists of multiple multivariate time series with
“cycle” as the time unit, together with 21 sensor readings
for each cycle. Each time series can be assumed as being
generated from a different engine of the same type. The
testing data has the same data schema as the training data.
The only difference is that the data does not indicate when
the failure occurs. Finally, the ground truth data provides the
number of remaining working cycles for the engines in the
testing data. Throughout this paper, those datasets labeled by
FD004 will be considered.

Note that the CMAPSS datasets are constantly recorded.
To make the tests more indicative for non-periodical in-
spection scenarios, the training data-sets are randomly sub-
sampled such that 249 sub-sequence of size 50 with non-
equidistant time-intervals are extracted from training se-
quences. Furthermore, the TGLSTM predictor consists of
256 hidden units with a ReLu output layer, and the optimizer
is selected as the RMSprop with an initial learning rate of
0.001. All tests are done in a workstation with AMD 2950X
and Nvidia GTX 1080Ti, which are coded with Keras [23]
and Tensorflow [24].

We trained and compared the TGLSTM predictor with
Lp-loss (18) and mean absolute percentage error (MAPE)
for 10000 epochs. Trained models are called Wiener-hidden
and MAPE-oriented predictor respectively. The sequence-
wise test performance is illustrated in Fig. 3.

(a) Wiener-hidden prediction (b) MAPE-oriented prediction

Fig. 3: Sequence-wise prediction for the Wiener-hidden and
MAPE-oriented TGLSTM over actual RUL for test data.

To validate the impact of the time interval between sam-
ples on the model, we use different sample rates to generate
non-uniformly sampled data. The sequence length is fixed
to 20. For each sequence, the instances are drawn randomly
without replacement from every 80, 100 and 120 instances
in the training set for S1, S2 and S3 simulations. So the
expectation of the time intervals for these three setups are 4,
5 and 6 respectively, and the corresponding sample rates are
0.25, 0.20 and 0.17. We used the set without under-sampling
as baseline data set. The TGLSTM predictor consists of 100
hidden units with a ReLu output layer, and the optimizer
is selected as the SGD with an initial learning rate of
0.001. And the model is trained with Lp-loss (18) and mean

TABLE I: Results comparison between models with different
loss on different under-sampling data sets

Sampling set Training Loss MAPE

Baseline
MAPE loss 27.08

Lp-loss 27.59

S1
MAPE loss 19.95

Lp-loss 30.28

S2
MAPE loss 19.19

Lp-loss 29.21

S3
MAPE loss 22.29

Lp-loss 29.62

absolute percentage error (MAPE) for 10000 epochs.

(a) Trained with MAPE loss. (b) Trained with Lp-loss

Fig. 4: MAPE for different sample rates on Validation
Dataset

Fig. 4a shows the MAPE on the testing set during training
for different sample rates with MAPE loss. And Table I
shows the MAPE on the testing set of models trained with
different losses and on different sampled data sets at the end
of the training. We can see that on all the sample rates, the
model can ultimately get similar performance on the testing
set. When using the original data set, the MAPE of models
trained with Lp-loss and MAPE loss can get about the same
MAPE on the testing set. As the sample rate goes down,
both MAPE loss based model and Lp-loss based model keep
about the same performance on the testing set.

VI. CONCLUSIONS AND DISCUSSIONS

This paper provided a solution to investigate RUL pre-
diction uncertainty in high-dimensional and non-periodical
inspection scenarios. In such scenarios, directly modeling
uncertainty in inspection data faces the curse of dimension
such that classical stochastic degradation models may not
work. This paper adopted the surrogate modeling idea to
establish the input-output evaluation criterion from historical
RUL records, and the time-dependent uncertainty in RUL
prediction is controlled by the surrogate Wiener propagation
model.

Furthermore, the practical guide for hybrid modeling
with machine learning and stochastic processes is presented.
The hybrid modeling of aforementioned TGLSTM-TCN and
Wiener propagation faces several optimization and modeling
challenges. Our trial to connect parametric statistical models
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and non-parametric machine learning in non-periodical in-
spection scenarios is relatively new. However, the empirical
studies did not provide good prediction results based on the
TGLSTM-TCN model. We are still working towards to figure
out whether the non-periodic problem setting or the model
setup leads to the bad performance.
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