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Abstract

In order to address the insertion, deletion, and substitution (IDS) errors inherent in deoxyribonucleic acid (DNA) storage channels during
DNA synthesis and sequencing, we propose a novel GC-balanced polar code scheme tailored to rectify these errors by incorporating
the unique characteristics of the DNA storage channel into the polar code design. The innovation lies in modeling errors as a drift
vector, reflecting deviations from the desired DNA sequence, aiming to improve the reliability of DNA-based data storage. In this paper,
we developed a GC-balanced polar code scheme named DNA-BP Code, which stands for balanced polar code for DNA storage, that
effectively rectifies IDS errors in DNA storage. The computational complexity of the proposed encoding and decoding algorithms is
O(N log N) with respect to the code length N. Simulation results show the bit error rate and block error rate as functions of the code
length and IDS probability, demonstrating the efficacy of our approach in enhancing the accuracy of DNA storage systems.
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Introduction
Currently, with the rapid development of information technology
and the widespread use of social networking, the demand for
global data storage has exceeded its current capacity. Deoxyri-
bonucleic acid (DNA) molecules, renowned for carrying natural
genetic information, emerge as a stable, resource-efficient, and
sustainable solution for data storage [1–3]. However, the meth-
ods for synthesizing and sequencing DNA sequences are still
imperfect and struggle to maintain pace with the necessity for
accurate DNA storage [4, 5]. Common errors encountered during
DNA synthesis and sequencing include insertions, deletions, and
substitutions (IDS). In addition to addressing IDS errors, another
critical design consideration in DNA coding is GC-content balanc-
ing. Recent studies have shown that maintaining a balanced ratio
of G-C (guanine-cytosine) and A-T (adenine-thymine) nucleotides
can significantly reduce synthesis and sequencing errors in DNA
storage systems [6–9]. Specifically, DNA sequences with mini-
mal GC imbalance demonstrate improved physical stability dur-
ing both storage and retrieval processes. While completely bal-
anced GC content (zero imbalance) would be ideal, research indi-
cates that achieving a small, bounded imbalance of order O(N)

is sufficient for practical error reduction in DNA data storage
applications.

Consequently, the primary obstacle in implementing DNA stor-
age lies in designing effective error-correcting codes capable of
rectifying these errors with high reliability. Numerous sophisti-
cated error correction methods have been proposed to address
this challenge [10–14].

Among various error-correcting codes, the polar code with suc-
cessive cancelation (SC) decoding, introduced by Arikan [15], has
garnered significant attention. Şaşoğlu et al. [16] demonstrated
that this code is the only method capable of achieving the sym-
metric capacity of any binary-input discrete memoryless channel
with a computational complexity of N log N, where N denotes the
code length. This remarkable property positions polar codes as
a promising approach for addressing errors in DNA storage. How-
ever, traditional polar codes are designed for binary-input discrete
memoryless channels (B-DMC), whereas the channels encoun-
tered in DNA storage exhibit memory. Therefore, it is necessary
to enhance traditional polar codes to adapt them for DNA storage
applications. Thomas et al. [17] proposed a polar encoding scheme
tailored for erasure and deletion channels, primarily addressing
single deletion errors. Additionally, Tian et al. [18] introduced SC
decoding of polar codes for channels with d deletions, demon-
strating its capability to achieve symmetric capacity.

In traditional IDS channels, assuming that insertions and dele-
tions happen probabilistically, rather than in isolation, is typical.
This means that a received word may contain multiple inser-
tion and deletion errors simultaneously, making it challenging
to uniquely determine the number of insertions and deletions
based solely on the length of the received word. Consequently,
extending polar coding for d-deletions to accommodate multiple
insertion/deletion error correction codes is not straightforward.

The main contributions of this letter are three-fold:

• We introduce a novel polar code design, termed the DNA-BP
code, an acronym for “balanced polar code for DNA storage.”
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This scheme is specifically engineered to address and correct
the IDS errors that are prevalent in DNA storage systems.

• We have enhanced the traditional SC decoding method
specifically for DNA storage, resulting in a new decoding
approach that is faster and more accurate.

• The novel polar code is GC-balanced to deal with GC-content
constraints inherent in DNA storage systems.

Methods
In this work, we adopt specific notations as follows: the code
length is represented by N = 2n. We define finite subsets
of integers as ZM = {0, 1, . . . , M − 1}, B = Z2 = {0, 1}, D =
Z4 = {A, T, C, G}. Bold letters are utilized to denote sequences,
while plain letters signify symbols within those sequences. For
instance, x = (x0, x1, . . . , xN−1). In the case of a binary vector
x = (x0, x1, . . . , xN−1) ∈ B

N of length N, the sub-vector xj
i is defined

as:

xj
i =

⎧⎨
⎩

(xi, xi+1, . . . , xj), 0 ≤ i ≤ j ≤ N − 1,

ε, otherwise,
(1)

where ε is the vector of length zero.
Since the IDS errors occupy the majority of DNA storage errors

during DNA synthesis and sequencing operations, we denote
the probabilities of these errors as pi, pd, and ps, respectively.
To effectively model DNA storage operations, we consider DNA
alphabet sequences transmitted through a specific channel that
encompasses IDS errors. We refer to this channel as the IDS
channel.

Let x denote a binary word of length N. We utilize μ(x) to
represent its imbalance. In logarithmic expressions with a base of
2, we express log N as shorthand for log2 N throughout this paper.
For DNA storage, we represent the alphabet by Z4 = {A, T, C, G}.
Let σ = (σ0, σ1, · · · , σN−1) ∈ Z

N
4 denote the input vector, and τ =

(τ0, τ1, · · · , τN′−1) ∈ Z
N′
4 denote the channel output. We also estab-

lish a one-to-one bijection � between Z4 and two-bit sequences
as follows:

A ↔ 00, T ↔ 01, C ↔ 10, G ↔ 11. (2)

Thus, given any DNA nucleotides sequence σ ∈ Z
N
4 , we will have

a corresponding binary sequence x ∈ {0, 1}2N = Z
2N
2 , and we write

x = �(σ), where x = x2N−1
0 = (x0, x1, · · · , x2N−1) ∈ Z

2N
2 .

Given two sequences x = (x0, x1, . . . , xN−1) and y = (y0, y1, . . . , yN−1),
we denote the concatenation of the two sequences as xy. In
the special case where x, y ∈ Z2, we use x||y to represent their
interleaved sequence x0y0x1y1 . . . xN−1yN−1. The XOR of binary
vectors x and y is defined as:

x ⊕ y = (x0 ⊕ y0, x1 ⊕ y1, . . . , xN−1 ⊕ yN−1). (3)

Definition 1. For any DNA nucleotide sequence σ ∈ Z
N
4 , a

corresponding binary sequence x ∈ {0, 1}2N = Z
2N
2 can be

obtained, represented as x = �(σ), where
x = x2N−1

0 = (x0, x1, . . . , x2N−1) ∈ Z
2N
2 . Define

Eσ = x0x2 · · · x2N−2, Oσ = x1x3 · · · x2N−1; thus,
�(σ ) = Eσ ||Oσ . The sequences Eσ and Oσ are referred to
as the even-indexed sequence and odd-indexed
sequence of σ , respectively.

Example 1. Given σ = ACATAG, then
x = �(σ) = 001000010011, then even index sequence
and odd index sequence of σ are Eσ = 000101 and
Oσ = 010001.

Definition 2. For a binary vector
v = (v0, v1, . . . , v2N−1) ∈ B

2N of even length 2N, the
definitions of E(v) and O(v) are as follows:

E(v) = (v0, v2, . . . , v2i, . . . , v2N−2), (4)

O(v) = (v1, v3, . . . , v2i+1, . . . , v2N−1), (5)

where i is any non-negative integer.

The probability of a random variable X taking the value x is
denoted as p(x) � Pr(X = x). Conditional and joint probabilities
are denoted as p(x|y) � Pr(X = x|Y = y) and p(x, y) � Pr(X = x, Y =
y).

Let x and y denote the transmitted and received sequences,
respectively, where x = x0x1 . . . xN−1 ∈ B

N and y = y0y1 . . . yN′−1 ∈
B

N′
. According to [19], insertion and deletion errors between x and

y are expressed by the drift vector:

d = (d0, d1, . . . , dn − 1, dN) ∈ DN+1, (6)

where D represents the maximum absolute value of drift between
x and y, and D = {−D, · · · , −1, 0, 1, · · · , D} denotes the set of drift
values.

The drift vector is determined by the Markov process in our
hypothesis, with the following state transition probabilities:

p(di+1|di) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi, di+1 = di + 1 & di �= D,

pd, di+1 = di − 1 & di �= −D,

1 − pi − pd, di+1 = di & − D < di < D,

1 − pi, di+1 = di & di = −D,

1 − pd, di+1 = di & di = D,

0, otherwise,

where the initial drift value is d0 = 0.
Let S(i; di, di+1) = {i′ | i + di ≤ i′ < (i + 1) + di+1} ⊂ ZN′ , then, we

have:

|S(i; di, di+1)| =

⎧⎪⎪⎨
⎪⎪⎩

2, di+1 = di + 1(insertion),

1, di+1 = di,

0, di+1 = di − 1(deletion).

(7)

We present our DNA-BP code scheme for DNA storage. First,
we provide an overview of the encoding and decoding workflow
in Fig. 1. Then, we detail the GC-balanced polar encoder in Fig. 2
and the modified SC decoder in Fig. 3.

Given a message sequence m ∈ Z
2N
2 , and considering the

bijection between Z
2N
2 and Z

N
4 , we define σ ∈ Z4 as the DNA

nucleotide representation sequence of the encoded sequence
x. Then, Eσ and Oσ represent the even index sequence and
odd index sequence of σ , respectively. Treating Eσ and Oσ as
two distinct sequences, we encode and decode them separately.
This approach allows us to analyze the encoding and decoding
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Figure 1. The workflow of DNA-BP code encoding and decoding.

problem in the quaternary system within the binary system
framework.

Let the length of the polar code under consideration be N = 2n.
Additionally, let A and AC denote sets of information and frozen
bits, respectively, where A ∩ AC = ∅ and A ∪ AC = ZN.

Encoding
Different from the traditional encoding scheme of Arikan, we
adopt the encoding scheme from [20], where it has been proved
that we can significantly reduce the imbalance of all codewords to
the smallest imbalance by sacrificing only log N information bits
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4 | Zhang and Wu

Figure 2. The workflow of GC-balanced polar encoder.

in O(N log N) time. As mentioned in the introduction, for error
reduction in DNA data storage, it suffices to have DNA strings
with minimal GC imbalance [6–8]. Therefore, rather than aiming
for an imbalance of 0, our focus is on finding a code where the
imbalance is O(N). Let the information word be m = uN−1

0 , which
will be encoded as xN−1

0 using the following calculation:

xN−1
0 = uN−1

0 BNF⊗n, (8)

where BN = RN
(
I2 ⊗ BN/2

)
, and RN is the permutation matrix and

its effect is as follows:

(u0, u1, u2, u3, u4, · · · , uN−1) × RN

= (u1, u3, u5, · · · , uN−1, u0, u2, u4, · · · , uN−2.) (9)

According to [20], we can pick a subset B from the information
set A to reduce the imbalance of codewords. Specifically, we can
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Figure 3. The workflow of modified SC decoder for IDS channels.

reduce the number of information bits to k′ = N−|AC|−|B| so that
a k′-bit message m′ is encoded to a polar codeword c = xN−1

0 with
small imbalance μ(c). We pick a set of balancing indices B so that
AC ∩B = ∅ and let B be the linear span of the rows corresponding
to B. We transmit k′-bit messages(instead of k-bit, k = N − |AC|).

We first insert |B| = k − k′ zeros to m′ at positions corresponding
to B and compute the corresponding encoding c′. Next, we find
a balancing vector b ∈ B so that the corresponding imbalance
μ(c′ + b) is minimized. Then, we transmit the word c � c′ + b. For
more details, see Algorithm 2. Let the GC balanced polar encoder
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Algorithm 1: Framework of polar code for DNA storage.

Input: Message DNA sequence: m = m0m1 · · · m2N; Error rate of IDS
channel pi, pd, ps

Output: prediction sequence: m∗.

1: Divide the sequence m into two parts according to the parity
of index.

2: Em = m0m2 · · · m2N−2, Om = m1m3 · · · m2N−1

3: m = Em||Om

4: Encode Em and Om separately in polar code.
5: xE = ENC(Em) = x0x2 · · · x2N′−1

6: xO = ENC(Om) = x1x3 · · · x2N′

7: Merge and map to DNA sequences.
8: x = xE||xO

9: σ = �−1(x)

10: DNA sequence σ goes throught the IDS channel with error
rates pi, pd and ps, and outputs sequence τ and divide the
corresponding binary sequence y into two parts according to
the parity of index.

11: y = �(τ) = yE||yO

12: Decode yE and yO with polar code decoder.
13: E∗

m = DEC(yE), O∗
m = DEC(yO)

14: Merge.
15: m∗ = E∗

m||O∗
m

16: Output m∗

be denoted as ENC, then we have c = ENC(m′), and the imbalance
μ(c) is small.

Decoding
To decode a noisy word c̃, we can simply apply a slightly modified
polar-decoding algorithm and find the k-bit vector m = DEC(c̃).
The desired message m̂′ is then the k′-prefix of m. That is to say, if
m is successfully decoded under the polar coding scheme, we also
successfully recover our message m′. We use a slightly modified
SCL decoding method to deal with the codewords, which has been
given the frozen bit set AC ⊂ Z and the values of the frozen bits,
and details of the IDS channel parameters, pi, pd, ps, and D. The
decoder inputs received word yN′−1

0 ∈ B
N′

, and outputs decoded
word ũN−1

0 = (ũ0, ũ1, . . . , ũN−1) ∈ B
N. We modified the traditional

SCL decoding method to deal with the Markov drift value di as
follows.

We use the following formula to estimate the ith information
bit ui:

ûi =
⎧⎨
⎩

hi

(
N′, yN′−1

0 , ûi−1
0

)
, if i ∈ A

ui, if i ∈ Ac
(10)

where

hi

(
N′, yN′−1

0 , ûi−1
0

)
=

⎧⎨
⎩

0, if L(i)
N

(
dN, yN′−1

0 , ûi−1
0

)
≥ 0

1, if L(i)
N

(
dN, yN′−1

0 , ûi−1
0

)
< 0

and

L(i)
N

(
dN, yN′−1

0 , ûi−1
0

)
� ln

⎛
⎜⎝

W(i)
N

(
dN, yN′−1

0 , ûi−1
0 |ui = 0

)

W(i)
N

(
dN, yN′−1

0 , ûi−1
0 |ui = 1

)

⎞
⎟⎠ (11)

We can now consider the polar bit IDS channel of level k = n as
follows:

W(i)
2n

(
dN, yN′−1

0 , ui−1
0 |d0 = 0, ui

)

= p(dN, yN′−1
0 , ui−1

0 |d0 = 0, ui) (12)

Consistent with the traditional polar code decoding method,
we need to find a recursion method so that the probability of
level k can be calculated using the probability of level k − 1. The
difference is that we need to take di into account when calculating
the probability.

Recuisions for level k ∈ {1, 2, . . . , n}
We first list notations that are used in our recursion:

a = 2km, b = 2k(m + 1), c = (a + b)/2,

ṽ = (ṽ0, ṽ1, . . . , ṽ2k−1−1) = u(k − 1)c−1
a ∈ Z

2k−1
2 ,

w̃ = (w̃0, w̃1, . . . , w̃2k−1−1) = u(k − 1)b−1
c ∈ Z

2k−1
2 ,

ũ = ṽ + w̃ = (ṽ0, ṽ1, . . . , ṽ2k−1−1) = u(k − 1)b−1
a ∈ Z

2k

2 ,

e = E(ũ2j−1
0 ) ⊕ O(ũ2j−1

0 ) ∈ Z
j
2,

f = O(ũ2j−1
0 ) ∈ Z

j
2.

Now, we can calculate the probabilities for bits of even indices
as follows:

W(2j)
2k

(
db, yb+db−1

a+da
, ũ2j−1

0 | da, ũ2j

)

= 1
2

∑
dc∈D

∑
ũ2j+1∈Z2

W(j)
2k−1

(
dc, yc+dc−1

a+da
, ṽj−1

0 = e | da, ṽj = ũ2j⊕

ũ2j+1
) × W(j)

2k−1

(
db, yb+db−1

c+dc
, w̃j−1

0 = f | dc, w̃j = ũ2j+1

)
, (13)

The odd indices are calculated similarly as follows. Due to
limited space, we omit the calculation process:

W(2j+1)

2k

(
db, yb+db−1

a+da
, ũ2j

0 | da, ũ2j+1

)

= 1
2

∑
dc∈D

W(j)
2k−1

(
dc, yc+dc−1

a+da
, ṽj−1

0 = e | da, ṽj = ũ2j⊕

ũ2j+1
) × W(j)

2k−1

(
db, yb+db−1

c+dc
, w̃j−1

0 = f | dc, w̃j = ũ2j+1

)
. (14)

where p
(
ũ2j | ũ2j+1

) = p
(
ũ2j+1 | ũ2j

) = 1
2
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Calculation for level k = 0
For i ∈ {0, 1, . . . , N − 1}, the probability is calculated as

W(i)
20

(
di+1, y(i+1)+di+1−1

i+di
| di, u(0)i

)

=p
(
yi+di+1

i+di
| di, di+1, xi

)
· p(di+1 | di), (15)

where the second factor of the right-hand side is given already,
and the first factor is calculated as:

p
(
yi+di+1

i+di
| di, di+1, xi

)

=
⎧⎨
⎩

pδ
s(1 − ps)

l−δ , |di+1 − di| ≤ 1, i + di ≥ 0, i + di+1 < N′,

0, otherwise,
(16)

where l = |S(i; di, di+1)|, and

δ = |i′ ∈ S(i; di, di+1) | yi′ �= xi| =
∑

i′∈S(i;di ,di+1)

(xi ⊕ yi′ ).

Determination of frozen bits
Let I(W(i)

N ) denote the symmetric capacity of W(i)
N , defined as:

I(W(i)
N ) = 1

2N

∑
u∈ZN

2

∑
y∈B

p
(
yN′−1

0 | uN−1
0

)

× Ĩ
(
dN, yN′−1

0 , ui−1
0 | ui

)
, (17)

where B = ⋃
d∈D Z

N+d
2 , and

Ĩ
(
dN, yN′−1

0 , ui−1
0 | ui

)

= log
2p

(
dN, yN′−1

0 , ui−1
0 | ui

)

p
(
dN, yN′−1

0 , ui−1
0 | ūi

) . (18)

For a given code length N and rate R, the set of positions of
frozen bits is determined as:

AC = {i0, i1, . . . , im−1}, m = �N(1 − R)�, (19)

I(W(i)
N ) ≤ I(W(j)

N ), ∀i, j ∈ ZN, i ∈ AC, j ∈ A. (20)

Calculating the exact value of the symmetric capacity I(W(i)
N )

for the polar bit IDS channel is challenging. Therefore, we employ
a simulation method to estimate the symmetric capacity of vari-
ous channels, as outlined in Algorithm 3.

Complexity analysis
As per [20], the encoding complexity is O(N log N). However, the
complexity of calculating probabilities experiences an increase by
a factor of D = (2D + 1)2, and the number of calculations for each
probability increases by a factor of |D| = 2D+1. Consequently, the
complexity of the presented SC decoding is O(D3) concerning the
maximum drift value D, while it maintains O(N log N) complexity
with respect to the code length N.

Theorem 1 (Time complexity of drift vector computation).
The time complexity of computing the drift vector
d = (d0, d1, . . . , dN−1, dN) for a transmitted sequence of
length N is O(N).

Proof. Computing the drift vector requires determining each drift
value di sequentially using the Markov process defined by the
transition probabilities p(di+1|di). For each position i ∈ {0, 1, . . . , N−
1}, we perform a constant-time operation to determine di+1 based
on di and the transition probabilities. Since we compute the
drift values for all N positions, the overall time complexity is
O(N). �

Theorem 2 (Encoding complexity). As established in [20],
the time complexity of the encoding process for polar
codes is O(N log N), where N is the length of the
codeword.

Proof. The encoding operation for polar codes involves multi-
plying the message vector by the generator matrix GN. This can
be implemented efficiently using a butterfly network structure
that requires log N stages, with each stage involving N operations.
Thus, the total complexity is O(N log N). �

Theorem 3 (Computational complexity of modified SC
decoding). The time complexity of the modified SC
decoding algorithm for the IDS channel with maximum
drift D is O(D3N log N), where N is the length of the
original sequence.

Proof. The standard SC decoding algorithm for polar codes has
a time complexity of O(N log N). However, for the IDS channel
model, additional complexities arise due to the drift considera-
tions:

1. The complexity of calculating probabilities increases by a
factor of D = (2D + 1)2, as we must consider all possible
combinations of drift values at both the beginning and end
of each segment.

2. The number of calculations for each probability increases by
a factor of |D| = 2D + 1, due to the summation over all pos-
sible intermediate drift values in the recursive formulations.

Therefore, the overall complexity concerning the maximum
drift value D is O(D3), while maintaining O(N log N) complexity
with respect to the code length N. The total computational com-
plexity is thus O(D3N log N). �

Theorem 4 (Asymptotic error performance bound). For the
IDS channel with IDS probabilities pi, pd, and ps

respectively, and maximum drift D, the error probability
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8 | Zhang and Wu

of the DNA-BP code with length N is bounded by:

Pe ≤ 2−Nβ

, (21)

for any β < 1
2 and sufficiently large N, when the code

rate R < I(W), where I(W) is the symmetric capacity of
the IDS channel.

Proof. The proof follows from the polarization theorem for gen-
eral binary-input discrete memoryless channels (B-DMC) . For any
B-DMC W with symmetric capacity I(W), and for any rate R < I(W),
there exists a sequence of polar codes with block length N = 2n

and rate RN → R such that the block error probability satisfies:

Pe(N, RN) ≤ 2−Nβ

, (22)

for any β < 1
2 and sufficiently large N.

The IDS channel with fixed parameters pi, pd, and ps can be
modeled as a B-DMC when conditioned on a particular drift
sequence. By taking expectation over all possible drift sequences
and applying the polarization theorem, we obtain the desired
bound.

The key insight is that the drift sequence follows a Markov
chain with a finite state space (determined by the maximum drift
D), and the error events for different bits become asymptotically
independent after polarization transformation as N → ∞. �

Complexity analysis
The computational complexity of processing sequences through
the IDS channel is a critical factor in evaluating the efficiency of
our coding scheme. Below, we present formal proofs regarding the
time and space complexity of operations within the IDS channel
model.

Theorem 5 (Time complexity of drift vector computation).
The time complexity of computing the drift vector
d = (d0, d1, . . . , dN−1, dN) for a transmitted sequence of
length N is O(N).

Proof. Computing the drift vector requires determining each drift
value di sequentially using the Markov process defined by the
transition probabilities p(di+1|di). For each position i ∈ {0, 1, . . . , N−
1}, we perform a constant-time operation to determine di+1 based
on di and the transition probabilities. Since we compute the drift
values for all N positions, the overall time complexity is O(N). �

Theorem 6 (Encoding complexity). As established in [20],
the time complexity of the encoding process for polar
codes is O(N log N), where N is the length of the
codeword.

Proof. The encoding operation for polar codes involves multi-
plying the message vector by the generator matrix GN. This can
be implemented efficiently using a butterfly network structure
that requires log N stages, with each stage involving N operations.
Thus, the total complexity is O(N log N). �

Theorem 7 (Computational complexity of modified SC
decoding). The time complexity of the modified SC
decoding algorithm for the IDS channel with maximum

drift D is O(D3N log N), where N is the length of the
original sequence.

Proof. The standard SC decoding algorithm for polar codes has
a time complexity of O(N log N). However, for the IDS channel
model, additional complexities arise due to the drift considera-
tions:

1. The complexity of calculating probabilities increases by a
factor of D = (2D + 1)2, as we must consider all possible
combinations of drift values at both the beginning and end
of each segment.

2. The number of calculations for each probability increases by
a factor of |D| = 2D + 1, due to the summation over all pos-
sible intermediate drift values in the recursive formulations.

Therefore, the overall complexity concerning the maximum
drift value D is O(D3), while maintaining O(N log N) complexity
with respect to the code length N. The total computational com-
plexity is thus O(D3N log N). �

Theorem 8 (Asymptotic error performance bound). For the
IDS channel with IDS probabilities pi, pd, and ps

respectively, and maximum drift D, the error probability
of the DNA-BP code with length N is bounded by:

Pe ≤ 2−Nβ

, (23)

for any β < 1
2 and sufficiently large N, when the code

rate R < I(W), where I(W) is the symmetric capacity of
the IDS channel.

Proof. The proof follows from the polarization theorem for gen-
eral binary-input discrete memoryless channels (B-DMC). For any
B-DMC W with symmetric capacity I(W), and for any rate R < I(W),
there exists a sequence of polar codes with block length N = 2n

and rate RN → R such that the block error probability satisfies:

Pe(N, RN) ≤ 2−Nβ

, (24)

for any β < 1
2 and sufficiently large N.

The IDS channel with fixed parameters pi, pd, and ps can be
modeled as a B-DMC when conditioned on a particular drift
sequence. By taking expectation over all possible drift sequences
and applying the polarization theorem, we obtain the desired
bound.

The key insight is that the drift sequence follows a Markov
chain with a finite state space (determined by the maximum drift
D), and the error events for different bits become asymptotically
independent after polarization transformation as N → ∞. �

Results
Channel polarization
The numerical results illustrate the relationship between the bit
index i of W(i)

2n and the symmetric capacity I(W(i)
2n ), depicted in

Fig. 4. Here, we set N = 1024, pi = pd = 1.0 × 10−2, and ps =
1.0×10−2. The simulation outcome suggests that the polarization
of W(i)

2n resembles that of memoryless channels.
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Figure 4. Polarization of IDS channel (pi = pd = 1.0 ∗ 10−2, ps = 1.0 ∗ 10−2).

Block and bit error rates
The block error rate (BLER) and bit error rate (BER) of the presented
coding scheme are evaluated through simulations. In this context,
a “block” refers to a complete polar codeword. BLER measures the
probability that at least one bit in the entire decoded codeword is
incorrect compared to the originally transmitted codeword, which
can be formulated as BLER = Number of blocks with errors

Total number of transmitted blocks . On the
other hand, BER represents the ratio of incorrectly decoded bits
to the total number of transmitted bits, calculated as BER =

Number of error bits
Total number of transmitted bits . The positions of frozen bits are deter-
mined according to Algorithm 3 with 104 iterations. Specifically,
the value of the frozen bit is ui = 0 for all i ∈ AC. Additionally,
for SCL decoding, the CRC is defined by the generator polynomial
g(x) = x8 + x7 + x6 + x4 + x2 + 1.

Relation to the code length N = 2n

Figure 5 shows the BLER and BER for code lengths N = 2n, where
n ∈ {11, 12, 13, 14}. The insertion and deletion probabilities are
the same, which becomes the horizontal axis, the substitution
probability is 0.01. The error rate becomes lower with increasing
length of the polar code.

Relation to the insertion/deletion/substitution probability
pi,pd,ps

Figure 6 shows the BLER and BER for code length N = 214, the
insertion and deletion probabilities are the same, the substitution
increases, and the BLER and BER increase at the same time.

Statistical analysis of BER improvements
To rigorously quantify the performance improvements across
different code lengths, we conducted a comprehensive statistical
analysis using paired t-tests. The analysis, based on 1000 exper-
iments per code length, reveals statistically significant improve-
ments in BER as the code length increases (Fig. 7). Specifically

• Comparing n = 14 with n = 13: The mean BER difference
is statistically significant (P < .001), with n = 14 showing a
60.2% lower error rate.

• Comparing n = 13 with n = 12: The analysis demonstrates a
significant improvement (P < .001), with a 60.5% reduction in
error rate.

• Comparing n = 12 with n = 11: The most substantial improve-
ment is observed here (P < .001), with a 71.8% decrease in
error rate.

These results statistically confirm that increasing the code
length consistently yields significant performance improvements,
with all P-values well below the conventional 0.01 threshold. The
violin plots in Fig. 7 illustrate the complete distribution of BER
values for each code length, showing not only the improvement
in mean performance but also the reduction in variance as code
length increases. This suggests that longer codes perform better
and provide more consistent error correction capabilities.

GC content
In DNA storage systems, the GC content balance of codewords
is an important consideration. Imbalanced GC content causes
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Figure 5. The BLER and BER in relation to code length with pi = pd, ps = 0.01.

Figure 6. The BLER and BER in relation to pi, pd, ps, n = 14.

Figure 7. Statistical analysis of BER distribution across different code
lengths (n = 11 to n = 14), based on 1000 experiments per length. The
violin plots show the probability density of BER distributions, with means
and error bars showing 95% confidence intervals. Downward arrows with
percentages indicate the significant improvements between adjacent
code lengths, all with P < .001.

DNA molecules to have varying melting points (Tm values),
which directly affects the efficiency of PCR amplification
during sequence retrieval. This occurs because DNA polymerase
enzymes operate optimally within specific temperature ranges,

and sequences with significantly higher or lower Tm values can
lead to reduced amplification efficiency, potentially causing data
loss or corruption during the reading process [21, 22]. In order
to evaluate the impact of the encoding scheme on the balance
of GC content, this paper conducted experimental simulations
and analyzed the GC content ratio under different codeword
lengths. For n ∈ {10, 11, 12, 13, 20, 30}, 10 random input codewords
are randomly generated for each of the six code lengths, and
the GC content ratio of the corresponding output codewords is
calculated, as shown in Fig. 8 presents an integrated visualization
of GC content distribution across different codeword lengths (128,
256, 512, 1024, 2048, and 4096 nucleotides). This comprehensive
figure, combining box plots, violin plots, and error bars from 1,000
random experiments per code length, provides statistically robust
evidence for understanding the impact of codeword length on GC
content balance.

The results demonstrate that as codeword length increases,
the GC content ratio consistently converges toward the ideal
50% balance. For shorter codewords (n = 128), the GC con-
tent typically ranges between 46% and 54%, while for longer
codewords (n = 4096), this range narrows significantly to
approximately 48.5%–51.5%. The statistical analysis confirms
this trend, with both reduced standard deviation and smaller
average deviation from the ideal 50% ratio as codeword length
increases.
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Figure 8. GC content ratio distribution across different codeword lengths
(n = 128 to n = 4096), based on 1000 random experiments per length.
The box plots show the interquartile range, median (horizontal line), and
mean (red dots with 95% confidence intervals) of the GC ratio for each
codeword length. The violin plots illustrate the probability density of the
distributions. As codeword length increases, the GC content consistently
converges toward the ideal 50% balance, demonstrated by narrowing
distribution ranges and reduced statistical variance.

This observed convergence toward balanced GC content with
increasing codeword length is particularly beneficial for large-
scale DNA storage systems. In such systems, longer codewords are
often inevitable, and maintaining balanced GC content becomes
crucial for ensuring the stability and reliability of DNA synthesis,
storage, and sequencing processes. The statistical significance of
our findings, supported by 1000 experiments per code length,
provides strong evidence that the encoding scheme can reliably
produce increasingly balanced GC content as codeword length
grows.

Overall, these experimental results demonstrate that the stud-
ied encoding scheme performs exceptionally well in terms of GC
content balance across various codeword lengths. While practical
DNA storage applications currently may use shorter codewords
due to synthesis and sequencing limitations, this proven trend of
improving balance with length provides a positive indication for
future scaling of DNA storage systems.

Comparison of error correction performance
Current research is relatively limited in error correction codes for
DNA storage, especially those schemes that meet the GC balance
requirements. To comprehensively evaluate the error correction
performance of the encoding and decoding scheme proposed in
this study, we selected the research by Xue et al. [23] and the
unencoded raw DNA sequences as the comparative benchmarks.
In [23], they adopted a systematic encoding approach based on
Varshamov-Tenegolts codes (VT codes) and Levenshtein codes.
Through this comparative analysis, we can more clearly demon-
strate the advantages and uniqueness of our proposed scheme in
terms of error correction capability, as shown in Figs 9 and 10.

In this comparative experiment, we evaluated three different
encoding schemes for scenarios where only substitution errors
exist in DNA sequences, as well as cases where insertion, deletion,
and substitution errors occur simultaneously. The experimental
results indicate that both the polar code scheme proposed in this
study and the systematic encoding scheme proposed by Xue et al.
[23] significantly outperform the unencoded DNA sequences in
terms of error correction performance. This observation suggests

Figure 9. A comparison of error correction performance between the
polar code scheme, the systematic code scheme, and uncoded DNA. The
dash-dotted line represents the performance of the polar code scheme
proposed in this study, the dashed line denotes the research findings by
Xue et al. [23] based on a systematic coding strategy, and the solid line
illustrates the natural behavior of random uncoded DNA sequences. In
this analysis, we only examined the substitution error probability ps,
which ranges from 10−3 to 10−2, while the insertion and deletion error
probabilities pi = pd = 0.

Figure 10. Comparison of error correction performance among the polar
code scheme, the systematic code scheme, and uncoded DNA. The dash-
dotted line plots the error correction performance of the polar code
scheme proposed in this study. The dashed line reflects the research out-
comes by Xue et al. [23] based on a systematic coding strategy. Meanwhile,
the solid line depicts the natural behavior of randomly uncoded DNA
sequences. In this analysis, we investigated the insertion error probability
pi, the deletion error probability pd, and the substitution error probability
ps, all of which were varied from 10−3 to 10−2.

that both encoding strategies effectively handle IDS errors. In par-
ticular, the polar code scheme of this study exhibits exceptional
error correction capabilities, implying its significant potential in
practical biological information storage applications.

Performance analysis
Our comprehensive evaluation of the DNA-BP coding scheme
demonstrates significant advantages over existing approaches
across multiple performance metrics. The analysis encompasses
BER performance, GC balance capabilities, comparison with liter-
ature results, and overall feature assessment.

BER performance analysis
The BER performance analysis (Fig. 11a) reveals several key
advantages of DNA-BP codes:
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Figure 11. Comprehensive performance analysis of DNA-BP code.

• Superior error resistance: DNA-BP consistently maintains
lower BER across all tested insertion/deletion error prob-
abilities, showing approximately one order of magnitude
improvement over traditional approaches.

• Stability: The error bars indicate a smaller variance in perfor-
mance compared to other schemes, suggesting more reliable
and predictable behavior in practical applications.

• Scalability: The performance advantage becomes more
pronounced as error probabilities increase, demonstrating
robust scalability under challenging conditions.

GC balance characteristics
Analysis of GC balance distribution (Fig. 11b) highlights the fol-
lowing achievements:

• Optimal balance: DNA-BP codes maintain a mean GC ratio of
0.5 ± 0.02, significantly closer to the ideal 0.5 ratio compared
to other schemes.

• Tight distribution: The violin plot shows a notably narrower
distribution for DNA-BP, indicating consistent GC balance
across different codewords.

• Reliability: The small error bars demonstrate high repro-
ducibility and stability in maintaining GC balance, crucial for
DNA data storage applications.

Comparison with literature
The literature comparison (Fig. 11c) demonstrates the following
advantages:

• State-of-the-art performance: DNA-BP outperforms both
recent schemes (Xue et al., Thomas et al.) and traditional
approaches (Reed-Solomon, LDPC).

• Theoretical bounds: Our scheme operates closer to the the-
oretical performance bounds, particularly at higher error
probabilities.

• Consistent improvement: Maintains a 60%–70% reduction
in BER compared to the following best-performing scheme
across all error rates.

Feature comparison
The radar chart (Fig. 11d) illustrates the balanced excellence of
DNA-BP:

• Comprehensive superiority: Achieves high scores across all
four critical metrics: encoding complexity, decoding complex-
ity, GC balance capability, and IDS error correction.

• Balanced design: Unlike other schemes that excel in one area
but compromise in others, DNA-BP maintains high perfor-
mance across all metrics.
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• Practical advantages: The combination of low complexity and
high performance makes DNA-BP particularly suitable for
real-world DNA storage applications.

Conclusion
The proposed DNA-BP code demonstrates significant theo-
retical advantages for DNA storage systems, yet its practical
implementation requires careful consideration of synthesis
constraints and sequencing throughput. DNA synthesis cost,
particularly with phosphoramidite chemistry at $0.05–0.10 per
base, remains a primary bottleneck, limiting scalability and acces-
sibility in biotechnology. Our scheme’s O(N log N) complexity
and GC-balancing properties directly address key challenges
in DNA synthesis and decoding. Specifically, we achieve the
following: (i) Reducing synthesis errors through minimized
GC-imbalance (Fig. 8), potentially decreasing error-correction-
induced redundancy by 30%–40% compared to unbalanced codes
[6]; (ii) Enabling fast decoding throughput of 1 Gb/hour on FPGA
platforms [18]. While this decoding process occurs after the
NGS sequencing is completed, this theoretical throughput is
efficient for processing large amounts of sequenced data. This
capability is particularly crucial for DNA storage systems, where
rapid and accurate decoding is essential for retrieving stored
information. The efficiency of our decoding method, combined
with the GC-balanced design discussed earlier, ensures robust
error correction without compromising the stability of DNA
molecules during synthesis and sequencing processes. However,
current synthesis technologies still limit oligo lengths to 200–
300 bases [2], suggesting our code should be deployed in 100–
200 mer blocks with hierarchical addressing [12]. Future work
will integrate with enzymatic DNA synthesis techniques [4] that
promise longer writes (> 1 kb) and lower error rates (< 0.1%).

In this paper, we introduced a novel GC-balanced polar code
scheme named DNA-BP code tailored for correcting IDS errors in
DNA storage systems. Both encoder and decoder exhibit compu-
tational complexity of O(N log N) with respect to the code length
N. Through our analysis, we elucidate the correlation between
BLER and BER, and how they relate to the code length as well as
IDS error rates. Future endeavors will explore the incorporation
of homopolymers, conduct theoretical investigations into the IDS
channel and its symmetric capacity, and assess the decoded error
rate of the modified SCL decoding algorithm.

Key Points

• Design of DNA-BP code: A novel GC-balanced polar cod-
ing scheme called DNA-BP is designed specifically to
correct insertion, deletion, and substitution (IDS) errors
in DNA storage channels, enhancing data reliability and
accuracy.

• Enhanced successive cancelation (SC) decoding: Adapt
the traditional SC decoding methodology to effectively
address the memory characteristics inherent in DNA
storage channels, resulting in improved decoding speed
and accuracy.

• Low computational complexity: Both encoding and
decoding algorithms achieve a computational complex-
ity of O(N log N) relative to the code length N, ensuring
efficiency and scalability for large-scale DNA storage
applications.

• GC-content balancing: Design the polar code to main-
tain GC-content balance, addressing critical GC-content

constraints in DNA storage systems. This balance is
essential for ensuring the stability and reliability of DNA
molecules during synthesis and sequencing processes.

• Robust simulation validation: Conduct comprehensive
simulations to evaluate the performance of the DNA-BP
code, demonstrating significant reductions in both bit
error rate and block error rate. The results underscore
the scheme’s superior error correction capabilities com-
pared to existing methodologies, validating its potential
for enhancing the accuracy of DNA-based data storage
systems.
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