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ABSTRACT With the development of deep learning, deep metric learning (DML) has achieved great
improvements in face recognition. Specifically, the widely used softmax losses in the training process often
bring large intra-class variations, and feature normalization is only exploited in the testing process to compute
the pair similarities. To bridge the gap, we impose the intra-class cosine similarity between the features and
weight vectors in softmax loss larger than a margin in the training step and extend it from four aspects. First,
we explore the effect of a hard sample mining strategy. To alleviate the human labor of adjusting the margin
hyper-parameter, a self-adaptive margin updating strategy is proposed. Then, a normalized version is given
to take full advantage of the cosine similarity constraint. Furthermore, we enhance the former constraints
to consider the intra-class and inter-class constraints simultaneously in the exponential feature projection
space. The extensive experiments on the labeled face in the wild (LFW), youtube faces (YTF), and IARPA
Janus benchmark A (IJB-A) datasets demonstrate that the proposed methods outperform the mainstream
DML methods and approach the state-of-the-art performance.

INDEX TERMS Deepmetric learning, face recognition, convolutional neural network, intra-class similarity,
inter-class similarity, cosine similarity.

I. INTRODUCTION
Face recognition has been one of the most challenging and
attractive areas in computer vision, due to its close rela-
tionship with some actual applications, such as biometrics
and surveillance. However, face recognition problem is far
from solved, since it is closely related to face detection,
face alignment, feature extraction (or face representation)
and classification, which influence the final performance
from different aspects. Especially, feature extraction plays
a paramount role. Conventional feature extraction methods
(such as LBP, Gabor and SIFT) always work with suitable
metric distances (such as Euclidean distance and cosine dis-
tance). However, the features extracted by these methods are
not discriminative enough to meet the demands for more
complex face recognition scenarios. And the situation may be
worse when accompanied by inappropriate metric distances.

The associate editor coordinating the review of this manuscript and
approving it for publication was Minho Jo.

Convolutional Neural Network (CNN), which emerges
as a powerful feature extraction method, has drawn much
attention due to its excellent performance in computer vision
community. Several Deep Metric Learning (DML) methods,
which unify deep learning and metric learning into a joint
learning framework, have been proposed and successfully
employed in various visual tasks, such as objection classi-
fication [1], [2], image retrieval [3], [4], person reidentifi-
cation [5], and so on. Specifically, DML has surpassed the
humans’abilities on some benchmark datasets in the field of
face recognition [6]–[12].

Face recognition can be classified into two tasks, namely
face identification and face verification (Fig. 1). The former
aims to classify an input image to a specific identity, while
the latter is to determine whether a pair of face images are
from the same identity or not. In general end-to-end CNN
based face recognition, Euclidean distance is used to mea-
sure the similarities between features in the training process.
Whereas, the cosine similarity or normalized inner product
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FIGURE 1. The face recognition pipeline in this paper.

is widely used in the testing process. As illustrated in [9],
Euclidean distance or Euclidean margin-based loss is not
always suitable for learning discriminative features, and using
normalized features to compute the pair similarities for test-
ing can boost the performance. These properties motivate
some work [13], [14] to incorporate the cosine similarity
constraint into training stage to keep the consistency with
testing. However, they have not explored the effect of impor-
tant samples which violate the margin constraint between
intra-class and inter-class variations. Inspired by the large
intra-class variation of softmax loss, which is not expected in
classification task, we first force the intra-class cosine simi-
larity larger than a given margin in this paper. Combined with
the separability of softmax loss, our original method achieves
0.6% ∼ 0.8% accuracy improvement on Labeled Face in the
Wild (LFW) dataset and 1% ∼ 1.5% accuracy improvement
on Youtube Faces (YTF) dataset. Some previous work [7],
[15] have clarified the importance of hard sample mining
procedure in training CNN, but they haven’t exhibited the
specific comparative experiment results about whether to use
it or not. Here, we compare the effect of cosine similarity
constraint on the original training set and the misclassified
hard samples of softmax loss. For the diversity of data and
the ubiquitously heterogeneous distribution, the global cosine
similarity is insufficient to faithfully characterize the true
feature distance, as stated in [16]. A self-adaptive margin
updating technique is exploited afterwards, so that the local
uniqueness of each identity is considered and the human
labor of adjusting the margin is largely saved. To acquire
more discriminative features, only imposing the intra-class

cosine similarity larger than a margin doesn’t seem to be
the best choice. So we improve the former constraints to a
more powerful case, which enforces the intra-class cosine
similarity larger than the mean of the nearest neighboring
inter-class cosine similarities in the normalized exponential
feature projection space.

In conclusion, to improve the performance on face recogni-
tion, we have explored some different strategies from the view
of loss function. The major contributions can be summarized
as follows: 1) We first propose a novel metric loss function
to directly force the intra-class cosine similarity larger than
a fixed margin, so that the training process coincides with
the normalized testing criterion. 2) We conduct a contrastive
experiment to show the effect of a hard sample mining strat-
egy on the proposed loss function. 3) A self-adaptive margin
strategy about the updated feature space is incorporated to
strengthen the supervision in training. 4) To avoid the side
effects of infinitely growing norm of features, we further
normalize the features and weight vectors of softmax loss
to the same value in each mini-batch. 5) A more progressive
metric loss function to consider the intra-class and inter-class
variations simultaneously is proposed to achieve the discrim-
inative features. Finally, we conduct extensive experiments
on three face recognition benchmark datasets, namely LFW
[17], YTF [18] and IARPA Janus Benchmark A (IJB-A) [19],
to verify the excellent performance of our approaches.

II. THE PROPOSED APPROACHES
In this section, we reveal the existing phenomenon of large
intra-class variation in deeply learned features trained by
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FIGURE 2. Visualization of the deeply learned 2-D features on MNIST with (a) MNIST network and
(b) LeNet++ network.

softmax loss, and propose several novel metric loss functions
to alleviate this problem.

A. RECALLING SOFTMAX LOSS
From the viewpoint of probability, softmax function aims to
convert a vector of real weights to a probability distribution.
The original softmax loss is the cross entropy of softmax
function, which can be written as

LS = −
1
M

M∑
i=1

log
eW

T
yi
xi+byi∑N

j=1 e
W T
j xi+bj

, (1)

whereM is the number of training samples, N is the number
of classes, xi is the feature of the i-th sample, yi is the
corresponding class label in range [1,N ], W and b are the
weight matrix and bias vector of the last inner-product layer
before softmax loss, Wj is the j-th column of W and bj is the
corresponding bias term. For simplicity, we omit the bias term
in the following experiments, as in [13]. Understandingly,
if all classes are well-separated,Wj will roughly correspond to
themean of features in j-th class, and it can also be recognized
as the center of j-th class in general cases.

To visualize the effects of softmax loss on diverse cases,
we conduct a contrastive experiment on the MNIST dataset
[20] with two different CNNs, namely MNIST network [21]
and LeNet++ network [8]. We reduce the number of the
last feature dimension to 2, so the features can be plotted

directly on the 2-D surface. The resulting 2-D features of
training and testing sets with the above two different networks
are shown in Fig. 2. We can see that the deeply learned
features are separable under the supervision of softmax loss,
but not discriminative enough. Especially, there exist signif-
icant intra-class variations in the feature space of LeNet++
network, which coincides with the phenomenon elaborated in
[13] that softmax loss encourages the features to have larger
magnitudes.

B. LMC LOSS AND HLMC LOSS
To remove the large intra-class variation of softmax loss and
to keep the consistency between training and testing, we first
propose the LargeMargin Cosine (LMC) loss function, which
enforces the intra-class cosine similarity between a sam-
ple xi and the corresponding weight vector Wyi in the last
inner-product layer before softmax loss larger than a given
margin α. The LMC loss function is formulated as follows:

LC =
1
M

M∑
i=1

{
α − W̃ T

yi x̃i
}
+

, (2)

where {·} is the hinge loss used in SVM, α ∈ [0, 1], W̃yi =
Wyi
‖Wyi‖2

, x̃i =
xi
‖xi‖2

, and W̃ T
yi x̃i corresponds to the cosine

similarity ofWyi and xi.
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Specifically, the joint supervision of softmax loss and LMC
loss is necessary to train the CNN for learning discriminative
features. The final LMC loss function for training is

LLMC = LS + λLC

= −
1
M

M∑
i=1

log
eW

T
yi
xi∑N

j=1 e
W T
j xi
+
λ

M

M∑
i=1

{
α−W̃ T

yi x̃i
}
+

,

(3)

where λ is a weighting parameter that is used for balancing
the two loss functions.

It is widely observed that there are often many more easy
examples than the meaningful hard ones, an effective data
sampling strategy is thus crucial to ensure the learning effi-
ciency of deep features. Therefore, the Hard Large Margin
Cosine (HLMC) loss function is proposed to impose the
previous intra-class cosine similarity constraint on the hard
samples. Here, we refer to the hard samples as the ones
misclassified by softmax loss, which alleviates the costly
computational complexity of pair/triple samples mining strat-
egy adopted in the contrastive/triplet loss [7], [15].

LHLMC = −
1
M

M∑
i=1

log
eW

T
yi
xi∑N

j=1 e
W T
j xi

+
λ

M

M∑
i=1

γi

{
α − W̃ T

yi x̃i
}
+

, (4)

where γi ∈ {0, 1} is amisclassified sample indicator, and γi =
1 if xi is the misclassified sample of softmax loss.

C. MALMC LOSS
The existing metric loss functions like contrastive loss,
triplet loss and L-Softmax loss, often bring in additional
hyper-parameters as their fixed margins throughout the train-
ing process. An intractable hyper-parameter searching pro-
cess is thus crucial to the successful training. Following the
work [22], we have to suspend training and search for a new
margin for every several epochs. In this part, we provide a
Margin-Adaptive Large Margin Cosine (MALMC) method,
which gives each class an independently updated margin and
set it as the maximum of an initially given value and the mean
of p × Intra(j) largest intra-class cosine similarities in the
mini-batch.

LMALMC = −
1
M

M∑
i=1

log
eW

T
yi
xi∑N

j=1 e
W T
j xi

+
λ

M

M∑
i=1

{
αyi − W̃

T
yi x̃i

}
+

, (5)

where αj = max
(
α0,

∑M
i=1 δ(j=yi,i∈Sp×Intra(j))W̃

T
j x̃i

1+
∑M

i=1 δ(j=yi,i∈Sp×Intra(j))

)
, α0 is an

initially given margin, δ(·) is the indicator function where
δ(·) = 1 if the condition is satisfied and δ(·) = 0 for
else, Intra(j) is the number of intra-class cosine similarities

between xi andWj in class j and these similarities are sorted in
descending order, p is a predefined percentage to control the
valid number of intra-class similarities. We refer to Sp×Intra(j)
as the set including the indices of the largest p × Intra(j)
similarities. Analytically, this self-adaptive margin strategy
is more suitable for the realistic data distribution, relating the
margin to the dynamic feature space and largely alleviating
the multifarious human labor of adjusting the margin.

D. NLMC LOSS
Accompanying the cosine similarity constraints in previous
parts is the changing norm of features and weight vectors in
a mini-batch. As illustrated in Fig. 2, softmax loss is prone to
amplifying the norm. The trade-off between dynamic norm
and intra-class cosine similarity constraint seems to be harm-
ful to the final testing accuracy computed by the pair cosine
similarities. To better exert the power of proposed constraints
in the training process without sacrificing most of the time
on amplifying the norm, we normalize both the features and
weight vectors of the last inner-product layer before softmax
loss to a same value s, which is automatically learned as in
[13]. The Normalized Large Margin Cosine (NLMC) loss
function is formulated as follows:

LNLMC = −
1
M

M∑
i=1

log
es

2W̃ T
yi
x̃i∑N

j=1 e
s2W̃ T

j x̃i

+
λ

M

M∑
i=1

{
α − W̃ T

yi x̃i
}
+

, (6)

where we substitute sW̃j for Wj and s̃xi for xi in original
softmax loss.

In this case, the training process will pay more attention
to the intra-class cosine similarity constraint, because all the
deeply learned features are distributed on a circle with the
same radius in each iteration and the angular between them is
an appropriate distance metric.

E. DLMC LOSS
It seems that the intra-class constraint alone is not enough
to obtain discriminative features. Inspired by the form of
softmax loss, we extend the NLMC loss to Discriminative
Large Margin Cosine (DLMC) loss, which aims to enforce
the intra-class cosine similarity larger than the mean of p ×
Inter(j) nearest neighboring inter-class cosine similarities
with a fixed margin in the normalized exponential feature
space.

LDLMC = −
1
M

M∑
i=1

log
es

2W̃ T
yi
x̃i∑N

j=1 e
s2W̃ T

j x̃i

+
λ

M

M∑
i=1

− log
eW̃

T
yi
x̃i−α

∑p×Inter(yi)
j=1 e

W̃T
j x̃i

p×Inter(yi)


+

,

(7)
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FIGURE 3. Flow chart of the relationships among the proposed approaches.

where Inter(j) is the number of different inter-class cosine
similarities between a sample of class j and the weight vectors
of other classes in a mini-batch, and these cosine similarities
are sorted in descending order, α is a predefined margin
to discriminate the intra-class and inter-class similarities, p
is a predefined percentage to control the valid number of
inter-class similarities.

For datasets withmany classes, most inter-class similarities
are too small that they are useless to the final calculation of
Eq. 7. While, the proposed neighborhood sampling strategy
can incorporate the most meaningful classes to acquire the
reliable mean inter-class similarity. Specifically, when p ×
Inter(j) = 1, the DLMC loss immediately reduces to a variant
of triplet loss.

L
′

DLMC = −
1
M

M∑
i=1

log
es

2W̃ T
yi
x̃i∑N

j=1 e
s2W̃ T

j x̃i

+
λ

M

M∑
i=1

{
W̃ T
j x̃i − W̃

T
yi x̃i + α

}
+

. (8)

Compared to the Euclidean distance constraint in the orig-
inal feature space of triplet loss, this variant loss function
imposes the cosine similarity constraint between a sample
and the weight vectors in the normalized feature space, ana-
lytically strengthening the robustness in the training process.
The relationships of these proposed approaches are shown
in Fig. 3.

III. EXPERIMENTS
The implementation details are given in Section III.A.
In Section III.B, some exploratory experiments are conducted
to find the best settings of hyper-parameters in each method.

Finally, we evaluate our approaches on three face recognition
benchmark datasets in Section III.C and III.D.

A. IMPLEMENTATION DETAILS
1) BASIC TRAINING SETTINGS
To test the sensitivity of face recognition results regarding
different face detectors, we preprocess the face images by
MTCNN [23] and SeetaFace [24] detectors, respectively.
We use the publicly available CASIA-WebFace [22] as
the training set, which originally has 494,414 labeled face
images from 10,575 individuals. After removing the unde-
tected images, the resulting datasets have 490,869 images for
MTCNN and 437,633 images for SeetaFace. The obvious
difference between these two detectors is that there is a
high false negative rate of SeetaFace, such that the result-
ing training set has fewer false positive samples. We use
the Caffe library [25] to implement the CNN model [8]
in this part, which is a reduced version of ResNet with
only 27 convolutional layers. The input faces are cropped to
112 × 96 RGB images, followed by subtracting 127.5 and
dividing by 128. The batch size is set to 256 in all the
experiments, and the images are horizontally flipped for data
augmentation. For LMC, HLMC and MALMC, we train the
models from scratch. The initial learning rate is set to 0.1,
then divided by 10 at 16K, 24K iterations. The complete
training terminates at 28K iterations. While, we fine-tune the
networks of NLMC, NLMC+MALMC and DLMC from the
softmax baseline model and a relatively small learning rate
of 0.001 is applied. For other compared metric loss functions,
we train them to achieve their best performance. The classical
back-propagation algorithm and mini-batch based Stochastic
Gradient Descent (SGD) work well for the training, and the
momentum and weight decay are set to 0.9 and 0.0005.
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FIGURE 4. Verification accuracies on LFW of LMC and HLMC (a) with different λ and fixed α = 0.5. (b) With different
α, λ = 0.1 for LMC and λ = 0.005 for HLMC.

FIGURE 5. Verification accuracies on LFW of some proposed methods (a) with different λ and fixed
α0 = 0.2, α = 0.5. (b) With different α and the best setting of λ in each method according to (a).

2) EVALUATION
The proposedmethods are evaluated on three face recognition
datasets, namely LFW, YTF and IJB-A datasets. 10-fold val-
idation is used to acquire the final performance. We extract
the features from both the frontal face and its mirror one,
andmerge the two features by element-wise summation. PCA
dimension reduction is applied to the final representations.
Nearest neighbor and threshold comparison are used for both
identification and verification tasks. Note that we only use
single model for all the testings.

B. EXPLORATORY EXPERIMENTS
All the experiments in this section are conducted on the
resulting datasets by MTCNN detector, if not specified.

1) EFFECT OF THE HARD SAMPLE MINING STRATEGY
To ensure the learning efficiency in the training process,
we explore a new hard sample mining strategy, where the
hard samples refer to the ones misclassified by softmax loss.
The hyper-parameters λ and α dominate the balance between
intra-class and inter-class variations. Properly selected val-
ues of them can improve the performance of the proposed

methods. So we conduct a pair of contrastive experiments on
LMC and HLMC to investigate the sensitivity of these two
parameters (Fig. 4).

In this experiment, we can see that both LMC and HLMC
perform much better than the softmax loss. The accuracies
fluctuate with different λ and α. The best settings are λ =
0.1, α = 0.5 (98.42% on LFW) for LMC and λ = 0.005, α =
0.5 (98.45% on LFW) for HLMC. Though the accuracies are
almost the same, HLMC simplifies the training process by
discarding the easy samples, and we will not deeply explore
it in the following experiments.

2) EFFECT OF λ AND α

We can find the importance of choosing the appropriate val-
ues of λ and α in Fig. 5. Here, we explore the best settings
of these two hyper-parameters only in some of the proposed
methods.

In the first experiment, we fix α to 0.5 and vary λ from
0.001 to 0.1. In the second experiment, we fix λ as their
respective best settings in the first experiment (0.005 for LMC
and 0.001 forNLMC) and varyα from 0.3 to 0.9. Specifically,
we setα0 = 0.2 and p = 0.6 inMALMC.We can observe that
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FIGURE 6. (a) Verification accuracies on LFW with different p, fixed λ = 0.1 for MALMC by MTCNN and
λ = 0.03, α = 0.01 for DLMC by SeetaFace. (b) The margin distribution of each class with different training
iteration steps in MALMC, where λ = 0.1, α0 = 0.2 and p = 0.6.

the performance of our models is always stable with different
λ and α at most of the time, and simply using the softmax loss
is not a good choice.

3) EFFECT OF p IN MALMC AND DLMC
In this part, we explore the effect of different neighbors on the
performance ofMALMCandDLMC, namely the verification
accuracies on LFW with different p in MALMC and DLMC,
while keeping other parameters fixed as their best settings in
the previous experiments (Fig. 6a).
It is obvious that MALMC is sensitive to p, and its best

setting is 0.6, which controls the valid number of intra-class
similarities in a mini-batch. While, DLMC is robust to p
across a wide range. The reason is that there exists an incon-
sistent distribution in each mini-batch, a fixed p doesn’t seem
suitable for measuring the updated feature subspace of each
class in MALMC. However, the robustness of DLMC stems
from its similarity to softmax loss which is accompanied
by significant inter-class separability, so that the first largest
inter-class similarities play the most important role in the
training process.

4) SELF-ADAPTIVE MARGIN STRATEGY IN MALMC
To make clear the margin updating process in MALMC,
we perform a toy example of the margin statistics of each
class with different iteration steps (10000, 18000 and 25000)
during training (Fig. 6b). One can find that themargin is prone
to be larger, and eventually fluctuates around the best value
of 0.6. The distribution illustrates the necessity to assign a
respective margin to 10,575 classes in CASIA-WebFace.

C. EXPERIMENTS ON LFW AND YTF DATASETS
LFW This dataset contains 13,233 face images of 5,749
different identities from the Internet, with large variations
in pose, expression and illumination. For comparison, algo-
rithms typically report the mean face verification accu-
racies and the ROC curves on 6,000 given face pairs,
following the standard protocol of unrestricted with labeled
outside data [17].

TABLE 1. Face verification performance on LFW and YTF datasets, where
[m] refers to the result by MTCNN detector and [s] refers to the result by
SeetaFace detector.

YTF This dataset consists of 3,425 videos from 1,595 dif-
ferent people, with an average of 2.15 videos for each identity.
Just as the experiments on LFW, we follow the standard
protocol of unrestricted with labeled outside data [18], and
report the results on 5,000 video pairs. The final similarity
score of each video pair is computed by the average of the
cosine similarities from 100 frame pairs.

In this experiment, we test the methods presented in
Section II on datasets preprocessed by two different face
detectors, namely MTCNN and SeetaFace. Some state-
of-the-art methods (High-dim [26], DeepFace [27], Gaus-
sian Face [28], DeepID [6], DeepID-2+ [29], Center Loss
[8], FaceNet [7], CASIA-WebFace [22]) are incorporated as
a contrast, even though most of their high performance is
achieved by huge training data or model ensemble. As can be
observed in Table 1, while using a single model trained on the
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FIGURE 7. ROC curves of compared metric loss functions on LFW and YTF datasets by two different face detectors.

publicly available small dataset, our methods are still compet-
itive with other models using high-quality private datasets,
such as DeepFace (4M) and FaceNet (200M).

For a fair comparison, some typical metric loss functions
(Triplet [7], L-Softmax [21], NormFace [13], SphereFace [9])
are also tested in our own settings. Among these compared
loss functions, the proposed methods consistently outperform
softmax loss by a significant margin. Specifically, the DLMC
loss performs superior by MTCNN (98.80% accuracy on
LFW and 94.16% accuracy on YTF) and SeetaFace (99.07%
accuracy on LFW and 94.16% accuracy on YTF). Compared
with NormFace, the NLMC, NLMC+MALMC and DLMC
methods obviously show the advantages of margin based
cosine similarity constraint in the training process. Simi-
larly, the performance of triplet loss is also not satisfactory.
As illustrated in Section II, the DLMC loss immediately
reduces to a variant of triplet loss when p × Inter(j) = 1.
And the hard triplet mining strategy in triplet loss is avoided
here, largely reduces the exponentially increased computa-
tional complexity of training dataset. The results in Table 1
convincingly demonstrate that the DLMC loss can alleviates
the difficult convergence and big data dependence of triplet
loss. The Receiver Operating Characteristic (ROC) curves
of them are shown in Fig. 7. One should notice that there

exists a discrepancy between the results of the two different
face detectors, and the trends vary from one loss to another.
Though, our DLMC method always among the top perfor-
mance.

D. EXPERIMENTS ON IJB-A DATASET
IJB-A This dataset contains 5,712 images and 2,085 videos
of 500 subjects, with an average of 11.4 images and 4.2 videos
per subject. The IJB-A evaluation protocol consists of
open-set verification (1:1 comparison) and identification (1:N
search) over 10 random training and testing splits. Unlike
the LFW and YTF datasets, the IJB-A dataset divides the
testing images/video frames into gallery and probe sets, and
the subjects are described by templates. Moreover, the images
in the IJB-A dataset contain extreme pose, illumination and
expression variations without being filtered by a commercial
face detector. These factors essentially make IJB-A a chal-
lenging unconstrained face recognition dataset [19]. We use
the Softmax operator [30] to compute the similarity score of
two sets described by templates.

For simplicity, we only present the results by MTCNN
detector here. As in the experiments of LFW and
YTF, we compare our methods with some state-of-
the-art approaches (GOTS [19], Deep Multi-Pose [31],
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TABLE 2. Results on the IJB-A dataset. The True Accept Rate (TAR) at False Accept Rate (FAR)=0.01 and 0.001 for the ROC curves. The Rank-1, Rank-5, and
Rank-10 retrieval accuracies for the CMC curves. The True Negative Identification Rate (TNIR) at False Positive Identification Rate (FPIR)=0.1 and 0.01 for
the DET curves.

FIGURE 8. Recognition accuracies on IJB-A dataset. (a) ROC curves for the compare protocol. (b) CMC curves for the search protocol. (c) DET
curves for the search protocol.

Template Adaptation [32], All-In-One Face [33]) using larger
training datasets or model ensemble. Whereas, simply com-
paring our methods to those state-of-the-art results is unfair,
because their system designs and implementation details are
different from ours, and the difficult access to their codes
and data makes it hard to say exactly how much improve-
ment our proposed methods acquire. So several mainstream
DML approaches (Triplet [7], L-Softmax [21], NormFace
[13], SphereFace [9]) under the same settings as ours are
compared. From the results in Table 2, we can find that
our proposed methods significantly improve over the off the
shelf commercial systems GOTS. Compared to some deep
learning based methods, our approaches still achieve satis-
factory performance. To better show the comparison results
with some typical DML methods under our own settings,
the ROC curves for face verification and the Cumulative
Match Characteristic (CMC) curves for face identification
are plotted in Fig. 8. Obviously, our methods exhibit promi-
nent advantages consistently over other DML methods, and

always among the top performance. However, the perfor-
mance of triplet loss and L-Softmax loss on the IJB-A dataset
is not as good as that on the LFW and YTF datasets, due to
the large variations of IJB-A.

IV. CONCLUSION AND FUTURE WORK
In this paper, we introduce the margin based intra-class
cosine similarity constraint into the training process, to alle-
viate the large intra-class variation of softmax loss and
keep consistency with the testing process. Accompanied
by the inter-class separability of softmax loss, the original
LMC loss achieves a significant improvement. Based on
this, the MALMC loss is proposed to mitigate the fussy
human labor of adjusting the margin hyper-parameter. Fur-
thermore, the NLMC loss is given to take full advantage
of the intra-class cosine similarity constraint with all the
features and weight vectors in a mini-batch fixed to the same
norm. To acquire more discriminative features, a profound
idea of considering the intra-class and inter-class constraints
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simultaneously is proposed to form the DLMC loss. Exten-
sive experiments on several public face recognition bench-
mark datasets convincingly demonstrate the effectiveness and
robustness of these proposed methods, even on a small train-
ing dataset.

Noticeably, these loss functions are not differentiable
everywhere, and some smoothed versions seem to be a
meaningful research direction. We will apply the proposed
methods on other metric leaning tasks in the future, such
as person re-identification or image retrieval. Furthermore,
how to develop robust DMLmethods regarding different face
detectors is an interesting future direction for research.
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