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Abstract. Recently, mobile devices have multiple wireless interfaces to
use, but how to choose an appropriate network interface? Energy-efficient
data transmission is a key issue in mobile cloud computing due to energy-
poverty of the mobile devices. In this paper, we study an energy-delay
tradeoff and address the issue of energy-efficient offloading that migrates
data-intensive but delay-tolerant applications from the mobile devices to
a remote cloud. Through dynamic scheduling and link selection based on
Lyapunov optimization for data transmission between the mobile devices
and the cloud, we are able to reduce battery consumption of the mobile
devices for transferring large volumes of data. We derive a control algo-
rithm which determines when and on which network to transmit data so
that energy-cost is minimized by leveraging delay tolerance. Further, we
propose and compare three kinds of transmission schedulers with energy-
efficient link selection policies under heterogeneous wireless network in-
terfaces (e.g., 3G and WiFi), where the average energy consumption is
optimized.

Keywords: energy-efficient; transmission scheduling; link selection; op-
timization; delay-tolerant; mobile cloud computing.

1 Introduction

Mobile cloud computing [1] is emerging as a new computing paradigm that aims
to augment resource-poor mobile devices, taking advantage of the abundant re-
sources hosted by clouds. Offloading programs from mobile devices to a remote
cloud is becoming an increasingly attractive way to reduce execution time and
extend battery life time[2]. It makes running computing/data-intensive applica-
tions feasible on resource-constrained mobile devices. Apple’s Siri and iCloud
[3] are two examples. However, cloud offloading critically depends on a reliable
end-to-end communication and on the availability of the cloud. Access to the
cloud is usually influenced by uncontrollable factors, such as the instability and
intermittency of wireless networks.

Mobile devices often have multiple wireless interfaces, such as 3G/EDGE, 4G
LTE and WiFi for data transfer. While in most situations 4G LTE uses most en-
ergy and WiFi the least, normally WiFi has the highest bandwidth, 3G/EDGE

B. Sericola, M. Telek, and H. Gábor (Eds.): ASMTA 2014, LNCS 8499, pp. 61–79, 2014.
c© Springer International Publishing Switzerland 2014

wu huaming
Highlight




62 H. Wu and K. Wolter

the lowest. However, the bandwidth, the energy-efficiency and even the avail-
ability of these networks can vary significantly, such that the stated ordering
does not always hold true. Not only the availability and quality of access points
(APs) may vary from place to place, but also the uplink and downlink band-
widths fluctuate frequently due to multiple factors such as weather, mobility,
building shield and so on [4]. If we can adaptively select one of the available
links in every slot, energy consumption may be reduced.

Energy consumption in mobile devices has become an important issue for net-
work selection. Gribaudo et. al. [5] developed a framework based on the Marko-
vian agent formalism, which could model the dynamics of user traffic and the
allocation of the network radio resources. Rahmati et. al. [6] suggested on-the-
spot network selection by examining tradeoff between energy consumption for
WiFi search and transmission efficiency when the WiFi network was intermit-
tently available. In [7], a power control scheme suitable for a multi-tier wireless
network was presented. It maximizes the energy-efficiency of a mobile device
transmitting on several communication channels while at the same time ensur-
ing the required minimum quality of service. More recently, “delayed” offloading
has been proposed: if there is no WiFi available, traffic can be delayed up to
some chosen deadline [8]. Some studies like [9] and [4], suggested energy-efficient
delayed network selection by exploring the tradeoff between transmit power of
heterogeneous network interfaces (e.g., 3G, WiFi) and transmission delay.

Many mobile applications are dealing with video, audio, sensor data, or are
accessing large databases on the Internet. Delay-tolerant applications are less
sensitive to network delays. Participatory sensing applications are a good ex-
ample of data-intensive but delay-tolerant applications. Participatory sensing is
the collective sampling of sensor data by a number of sensor nodes. This creates
a body of knowledge on parameters such as personal resource consumption, di-
etary habits and urban documentation [9]. Data is uploaded from a smartphone
to a back-end cloud server either through the cellular network or any available
WiFi network. Some of the sensor information is not time-critical and its sub-
mission to the server may be delayed until the device enters an energy-efficient
network. Users can browse or search the obtained archives through a website at
the server side.

In this paper, we address the operation of a mobile user terminal equipped
with multiple radio access technologies. We focus on energy-efficient offloading of
delay-tolerant data to a remote cloud. To this end, we propose a framework based
on Lyapunov optimization and contribute the following: (i) minimization of the
average energy consumption for the link selection and transmission scheduling
problem, and (ii) formulating a number of transmission schedulers when using
3G and WiFi interfaces to transmit data.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the link selection problem in mobile cloud computating systems. Section 3
analyzes the energy-delay tradeoff by using Lyapunov optimization. Three kinds
of transmission schedulers are proposed and investigated in Section 4. Section 5
gives some simulation results. Finally, the paper is concluded in Section 6.
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2 Problem Formulation

We provide a brief introduction of the studied adaptive link selection problem
and consider a Markovian queueing model for dynamic transmission scheduling
and link selection in mobile cloud computing systems.

2.1 Multiple Wireless Interfaces

Mobile devices usually have multiple wireless interfaces that can be used for
data transfer, such as EDGE (Enhanced GPRS), 3G, WiFi and so on. The time
intervals of cellular connectivity (EDGE or 3G) are usually much longer than
for WiFi. Especially, EDGE has very high coverage. In addition, the data rates
differ significantly (from hundreds of Kbps for EDGE, to a few Mbps for 3G,
to ten or more Mbps for WiFi). The achievable data rate for different radio
transmission depends on the environment and can vary widely. It is sometimes
far below the nominal value. Also energy-efficiency of the different technologies
is different. The energy usage for transmitting a fixed amount of data can differ
by an order of magnitude or more [9]. In general, the WiFi interface is more
energy-efficient than the cellular interface, and data transmission using a good
connection requires much less energy than under bad conditions [4].

Thus, offloading large data items from a mobile device to the cloud using WiFi
can be more energy-efficient than using cellular radio, but WiFi connections are
not always available. Therefore it must be decided when to transmit data and
across which network interface. However, this decision is not easy to take since
we know neither the future availability of APs nor their transmission quality.

2.2 Adaptive Link Selection

The problem when to transmit data and which mobile interface to use can be
formulated as an adaptive link selection problem as depicted in Fig. 1. Given
a set of available links with energy information, AP availability information as
obtained from traces and data system queues, determine whether to use any of
the available links (the appropriate network interface) to transfer data, while
keeping the transmission delay bounded [9]. In Fig. 1, the 3G interface is chosen
for data transfer.

The mobile device selects the link with the best connection quality by running
a series of probe-based tests to the cloud. Even after a particular link is selected,
the connectivity can still be unstable as it is affected by user mobility, limited
coverage of the WiFi APs and other factors. Because it sacrifices delay for en-
ergy, the problem of link selection and transmission scheduling for delay-tolerant
applications can be naturally formulated using an optimization framework.

Suppose there are M channels available, let Bj(t) denote the bandwidth be-
tween the mobile device and the cloud in time slot t when using channel j, where
j ∈ {1, · · · ,M}. Let bj(t) or b̂j(α(t)) denote the amount of data transmitted over
channel j between the mobile device and the cloud in slot t. It is determined by a
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Fig. 1. A mathematical model of adaptive link selection

transmission decision α(t), which is the choice made in slot t, either to transmit
data over channel j or not to transfer, and can be expressed as:

bj(t) = b̂j(α(t)) =

{
Bj(t) · τ, if α(t)=“Transmit over channel j”,
0, if α(t)=“Idle”,

(1)

where α(t)=“Idle” means that no transmission takes place in slot t and τ is the
time duration that the interface is on. For convenience, τ is assumed to be a
constant, which is based on the bandwidth estimation and should neither too
large to too small [4].

We denote the energy consumption caused by data transmission on the mobile
device in time slot t as E(t) = Ê(α(t)), which depends on the current link
bandwidth and the transmission decision α(t). Over a long time period T , the

total amount of transmitted data is
∑T−1

t=0

∑M
j=1 bj(t), correspondingly, the total

energy consumption of the mobile device for transmitting such an amount of data
can be denoted as

∑T−1
t=0 E(t).

Suppose there are N queues of data to be sent from the the mobile device to
the cloud, and we define the vector of current queue backlogs by:

Q(t) =
(
Q1(t), Q2(t), · · · , QN(t)

)
, ∀t ∈ {0, 1, · · · , T − 1}, (2)

where the queues are maintained in the mobile device’s memory and for each
queue i, Qi(t) represents its queue backlog of data to be transmitted from the
mobile device to the cloud at the beginning of time slot t.

Further, letAi(t) denote the amount of newly arriving data added to each queue
i in time slot t. We assume that each random variable Ai(t) is i.i.d. over time slots
with expectation E{Ai(t)} = λi. We call λi the arrival rate to queue i.

Therefore, the queue length of queue i in time interval t + 1, i.e., Qi(t + 1)
has the following dynamics:

Qi(t+1) = max
[
Qi(t)−bi(t), 0

]
+Ai(t), ∀i ∈ {1, 2, · · · , N}, ∀t ∈ {0, 1, · · · , T−1}. (3)
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Given this notation, we can formally state the queueing constraint that is
imposed on our adaptive link selection algorithm. We require all the queues to
be stable in the time average sense, i.e.,

Q̄ � lim sup
T→∞

1

T

T−1∑
t=0

N∑
i=1

E{Qi(t)} < ∞, (4)

the stability constraint ensures that the average queue length is finite and we
should not always defer the transmission.

While maintaining a stable queue we seek to design an adaptive link selection
algorithm and dynamic transmission scheduling such that the time-averaged
expected transmission energy is minimised [9]:

min
[
Ē � lim sup

T→∞

1

T

T−1∑
t=0

E{E(t)}
]
, (5)

where the required transmission energy E(t) depends on the selected link for
transmission during slot t.

3 Energy-Delay Tradeoff

In this section, an optimization model is formulated, with the objective of min-
imizing the average energy consumption subject to a stability constraint on the
queue of data to be transmitted.

3.1 Problem Analysis Using Lyapunov Optimization

To solve the adaptive link selection problem we employ a Lyapunov optimization
framework, which enables us to derive a control algorithm that determines when
and on which network to transmit our data such that the total energy-cost is
minimized. This optimization is not strict with respect to transmission delay.

For each slot t, we define a Lyapunov function [10] as:

L(Q(t)) =
1

2

N∑
i=1

Q2
i (t), (6)

which represents a scalar measure of queue length in the network.
We then define the Lyapunov drift as the change in the Lyapunov function

from one time slot to the next:

L(Q(t+ 1))− L(Q(t)) =
1

2

N∑
i=1

[
Q2

i (t+ 1)−Q2
i (t)

]

=
1

2

N∑
i=1

[(
max[Qi(t)− bi(t), 0] +Ai(t)

)2 −Q2
i (t)

]

≤
N∑
i=1

A2
i (t) + b2i (t)

2
+

N∑
i=1

Qi(t)[Ai(t)− bi(t)]. (7)
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The conditional Lyapunov drift Δ(Q(t)) is the expected change in the Lya-
punov function over one time slot, given that the current state in time slot t is
Q(t). That is:

Δ(Q(t)) = E
{
L(Q(t+ 1))− L(Q(t))|Q(t)

}
. (8)

From (7), we have that for a general control policy Δ(Q(t)) satisfies:

Δ(Q(t)) ≤ E

{ N∑
i=1

A2
i (t) + b2i (t)

2
|Q(t)

}
+

N∑
i=1

Qi(t)λi − E

{ N∑
i=1

Qi(t)bi(t)|Q(t)

}
,(9)

where we have used the assumption that arrivals are i.i.d. over slots and hence
independent of current queue backlogs, so that E{Ai(t)|Q(t)} = E{Ai(t)} = λi.

Let C be a finite constant that bounds the first term on the right-hand-side
of (9), so that for all t, all possible Q(t) and all possible transmission decisions
we have:

E

{ N∑

i=1

A2
i (t) + b2i (t)

2
|Q(t)

}
=

1

2
E

{ N∑

i=1

A2
i (t)

}
+

1

2
E

{ N∑

i=1

b2i (t)|Q(t)

}
≤ C. (10)

There exist constantsA2
max and b

2
max that satisfy the conditions:E

{∑N
i=1 A

2
i (t)

}
≤ A2

max and E
{∑N

i=1 b
2
i (t)|Q(t)

} ≤ b2max, where Amax ≥ Ai(t) represents the
maximum amount of data that can arrive per time slot, and bmax ≥ bi(t) denotes
the maximum amount of data that can be transmitted via the wireless network in
a time slot. Hence, we have C = 1

2 (A
2
max + b2max).

To stabilize the data queue by making sure that there is a balance of arriving
data and transmitted data, while minimizing the time-averaged energy E(t), we
incorporate the expected energy consumption over one slot t. It can be designed
to make transmission decisions that greedily minimize a bound on the following
drift-plus-penalty term in each slot t [10]:

Δ(Q(t)) + V E{E(t)|Q(t)}, (11)

where V ≥ 0 is a control parameter that represents an “importance weight” in
deciding relative importance among queue backlog, estimated rate, and energy
cost. In other words, V can be thought of as a threshold on the queue backlog
beyond which the control algorithm decides to transmit, so V controls the energy-
delay tradeoff [9].

From (9) and (10) we have:

Δ(Q(t)) + V E{E(t)|Q(t)} ≤ C +

N∑

i=1

Qi(t)λi + V E{E(t)|Q(t)} − E

{ N∑

i=1

Qi(t)b̂i(α(t))|Q(t)

}

= C +

N∑

i=1

Qi(t)λi + E

{[
V E(t) −

N∑

i=1

Qi(t)b̂i(α(t))
]
| Q(t)

}
. (12)
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Using the concept of opportunistically minimizing an expectation, the opti-
mization of the right-hand-side of (12) is accomplished by greedily minimizing
the following term:

arg min
α(t)

[
V E(t)−

N∑
i=1

Qi(t)b̂i(α(t))
]
, (13)

where we choose the transmission decision α(t) that will minimize (13).

We denote a decision function as d(t) = V E(t)−∑N
i=1 Qi(t)b̂i(α(t)), which is

the decision results that depends on the current link bandwidth and the trans-
mission decision α(t). In order to understand the intuition behind this decision,
we would like to see when d(t) can have a low value.

1. Link with a Good Quality: d(t) can be small when the link has a high
estimated rate. It makes sense that we would like to use any high-quality
link to transfer data over a low-quality link.

2. Queue Backlog is High: d(t) can achieve a low-value if the queue backlog
Q(t) is high. This is also intuitive: when data has been in the queue for long,
there should be a higher incentive to transmit.

3. Link Energy Cost is Low: d(t) is small when the energy cost E(t) of a link
is low (e.g., a WiFi link). Such a link should be preferred over a high-energy
cellular link [9].

In other words, the link selection model based on Lyapunov optimization
defers transmission until good-quality and low-energy links become available,
unless the queue backlog is too high.

Further, considering the decision α(t), the decision function d(t) can be de-
noted as:

d(t) =

{
V Ei(t)−Qi(t)bi(t), if α(t)=“Transmit over channel i”,
0, if α(t)=“Idle”.

(14)

3.2 Performance Bounds

For any control parameter V > 0, we assume that the data arrival rate λi is
strictly within the network capacity region, which is defined as the region that
can be achieved by the mobile device in communication networks [9]. We can
achieve a time-averaged energy consumption and queue backlog satisfying the
following constraints [11]:

Ē = lim sup
T→∞

1

T

T−1∑
t=0

E{E(t)} ≤ E∗ +
C

V
, (15)

Q̄ = lim sup
T→∞

1

T

T−1∑
t=0

N∑
i=1

E{Qi(t)} ≤ C + V (E∗ − Ē)

ε
, (16)
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where ε > 0 is a constant denoting the distance between arrival pattern and
the capacity region boundary [9], E∗ is a theoretical lower bound on the time-
averaged energy consumption using any control policy that achieves queue sta-
bility.

Proof. Because the transmission decision α(t) minimizes the right-hand-side of
the drift-plus-penalty in inequality (12), in every slot t (given the observedQ(t)),
we have:

Δ(Q(t)) + V E{E(t)|Q(t)} ≤ C + V E
{
Ê(α∗(t))|Q(t)

}
+

N∑
i=1

Qi(t)λi

− E

{ N∑
i=1

Qi(t)b̂i(α
∗(t))|Q(t)

}
, (17)

where α∗(t) is any other (possibly randomized) transmission decision that can
be made in slot t. Fixing any value ε > 0 in the capacity region boundary further
yields:

Δ(Q(t))+V E{E(t)|Q(t)}≤C + V E
{
Ê(α∗(t))|Q(t)

}
+

N∑

i=1

Qi(t)λi −
N∑

i=1

Qi(t)(λi + ε)

=C + V E
{
Ê(α∗(t))|Q(t)

}−ε

N∑

i=1

Qi(t). (18)

Taking expectations for (18) with respect to Q(t) and using the law of iterated
expectations, yields:

E{L(Q(t+ 1))} − E{L(Q(t))}+ V E{E(t)} ≤ C + V E∗ − ε

N∑

i=1

E{Qi(t)}, (19)

where E∗ � E
{
Ê(α∗(t))

}
.

Summing the above inequality over t ∈ {0, 1, · · · , T − 1} for some positive
integer T , yields:

E{L(Q(T ))}−E{L(Q(0))}+V
T−1∑

t=0

E{E(t)} ≤ CT +V TE∗−ε
T−1∑

t=0

N∑

i=1

E{Qi(t)}. (20)

Then, dividing (20) by V T and after a simple manipulation we obtain:

1

T

T−1∑

t=0

E{E(t)} ≤ C

V
+ E∗ − ε

∑T−1
t=0

∑N
i=1 E{Qi(t)}
V T

− E{L(Q(T ))}
V T

+
E{L(Q(0))}

V T
.

(21)

Since the Lyapunov function is non-negative by definition and so is E∗, ne-
glecting that we subtract non-negative quantities in (21) yields:

1

T

T−1∑
t=0

E{E(t)} ≤ P ∗ +
C

V
+

E{L(Q(0))}
V T

. (22)
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Similarly, dividing (20) by εT , and after rearranging terms we obtain:

1

T

T−1∑
t=0

N∑
i=1

E{Qi(t)} ≤ C + V (E∗ − 1
T

∑T−1
t=0 E{E(t)})

ε
+

E{L(Q(0))}
εT

. (23)

Finally, taking a lim sup as T → ∞ in inequalities (22) and (23), we can
derive (15) and (16), respectively. �	

It can be seen that (15) and (16) demonstrate an [O(1/V ), O(V )] tradeoff
between energy consumption and delay. We can achieve an average energy con-
sumption Ē arbitrarily close to E∗ while maintaining queue stability. However,
this is achieved at the expense of a larger delay because the average queue back-
log Q̄ increases linearly with V . Choosing a large value of V can thus push the
average energy arbitrarily close to its optimal value. However, this comes by
sacrificing average queue backlog or average delay that is O(V ) [10]. A good V
value is one that achieves a good energy and delay tradeoff, where a unit increase
in V yields a very small reduction in Ē with consistently growing delays [9]. In
mathematical terms we can choose a k < 0 that satisfies:

d(E∗ + C/V )

dV
≥ k =⇒ V ≥

√
C

−k
, (24)

where k is the slope of Ē curve.

4 Performance Analysis Models

To understand this link selection algorithm, we consider the two most prominent
networks: WiFi and 3G. Typically, the WiFi interface is much more energy-
efficient, but its availability is limited while the 3G network is available almost
everywhere. Besides, channel quality can be affected by environmental factors
and interference. The channel bandwidth can be reduced due to competing users
in the same cells. Therefore, for data-intensive but delay-tolerant applications,
we can save energy by delaying transmissions until a good-quality or a low-energy
interface such as WiFi becomes available, unless the queue backlog is too high.

4.1 Bandwidth Estimation and Energy Models

Since our transmission scheduling model uses the knowledge of current states
(i.e, the current network bandwidth is supposed to be known), it closely de-
pends on the bandwidth estimation. We use a predictor proposed in [12], which
considers the classical bandwidth predictors (such as Last value, Mean filter,
Network weather service forecaster, etc.) synthetically. The framework unifies
such decision models by formulating the problem as a statistical decision prob-
lem that can either be treated “classically” or using a Bayesian approach. The
experimental result shows that the Bayes strategy performs significantly better
than the traditional predictors. Thus, this prediction model is more general and
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Table 1. Energy model for 3G and WiFi networks

Items 3G WiFi

Ramp and Transfer Energy R(x) 0.025x + 3.5 0.007x + 5.9

Tail power P 0.62J/s NA

Tail time T 12.5s NA

could be used by our offloading system. Further, we assume that the network
bandwidth is constant in one time slot.

Table 1 lists the measured energy consumption models according to [13]. The
energy needed to transmit x bytes of data over the cellular network can be split
into three components: ramp energy, transmission energy and tail energy. R(x)
denotes the sum of the ramp and the transfer energy to send x KB, P denotes
the tail power and T denotes the tail time.

Obviously, the energy consumption depends on the type of interface that is
selected. For the 3G interface, the sum of the ramp and the transfer energy
is R(x) = 0.025x + 3.5. After transmitting a packet, instead of transitioning
from high to low power state, the 3G interface spends substantial time in the
high state, which incurs considerable energy, referred to as the tail energy. For
the WiFi interface, the sum of the ramp and the transfer energy is R(x) =
0.007x+ 5.9, and the tail energy is zero. Using WiFi, the data transfer itself is
significantly more efficient than using the 3G connection for all transfer sizes. In
addition to the transfer cost, the total energy to transmit a packet also depends
on the time that the interface is on.

Therefore, the energy consumption for the 3G and WiFi interfaces in time
slot t can be expressed as follows:

E3G(t) = 0.025 · b3G(t) + 3.5 + 0.62 · 12.5, (25)

EWiFi(t) = 0.007 · bWiFi(t) + 5.9. (26)

4.2 Transmission Scheduler I (N �= M)

The model of the transmission scheduler I for only one queue of arriving jobs is
depicted in Fig. 2. The arrival vector A(t) is assumed to be i.i.d over the time
slot and E{A(t)} = λ.

We take decisions of transmission scheduling according to the estimate of the
current network bandwidth. In Fig. 2, “B3G(t)” represents the estimated 3G
bandwidth in slot t, “BWiFi(t)” represents the estimated WiFi bandwidth and
“Idle” denotes that no transmission takes place in time slot t. If B3G(t) is larger
than BWiFi(t), the mobile device will be linked to the 3G interface in time slot t
to transmit data, otherwise it will be linked to the WiFi interface. The decision
criterion can be denoted as max{B3G(t), BWiFi(t)}. Therefore, the bandwidth of
the selected interface is as follows:

B(t) =

{
B3G(t), if B3G(t) > BWiFi(t),
BWiFi(t), otherwise.

(27)
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Idle

( )A t b(t)

Q(t)

( )

ˆargmin ( ) ( ) ( )
t

VE t Q t b t

3G WiFimax ( ), ( )B t B t

WiFi ( )B t

3G ( )B t

Fig. 2. Model of transmission scheduler I

According to the Lyapunov optimization, the minimization of the average en-
ergy consumption is accomplished by greedily minimizing the following criterion:

arg min
α(t)

[
V E(t)−Q(t)b̂(α(t))

]
. (28)

Denoting the decision function as d(t) = V E(t) − Q(t)b̂(α(t)), when consid-
ering the transmission decision α(t) we have:

d(t) =

{
V E(t)−Q(t)B(t) · τ, if α(t) = “transmit”,
0, if α(t) = “idle”,

(29)

where α(t) ∈ {“transmit” and “idle”}, taking on two possible values and

E(t) =

⎧⎨
⎩

E3G(t), if α(t) = “transmit” and B3G(t) > BWiFi(t),
EWiFi(t), if α(t) = “transmit” and B3G(t) ≤ BWiFi(t),
0, if α(t) = “idle”.

If the transmission decision is α(t) = “transmit”, we choose to transfer data
according to the current channel bandwidth. If α(t) = “idle”, no data is trans-
mitted in slot t, so E(t) = 0 and b(t) = 0, and then we have d(t) = 0. Therefore,

transmission takes place only if V satisfies: V E(t)−Q(t)b̂(α(t)) < 0. This hap-

pens when the bandwidth is high, making a large b̂(α(t)), or the queue Q(t) is
already congested in time slot t.

Over time, the queuing dynamic is given by:

Q(t+ 1) = max[Q(t)− b(t), 0] +A(t), ∀t ∈ {0, 1, · · · , T − 1}. (30)

By Little’s Theorem [14], the average delay can be calculated as:

D̄ =
Q̄

λ
. (31)

The disadvantage of transmission scheduler I is that only the estimated band-
width of 3G and WiFi in time slot t is considered and the energy usage of
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3G and WiFi is not taken into account. For example, if B3G(t)=50Kbps and
BWiFi(t)=49.99Kbps, since B3G(t) is larger than BWiFi(t) we choose the 3G in-
terface to transmit data, even though it consumes much more energy than WiFi.
In this situation we should also consider the energy demand of 3G and WiFi.

4.3 Transmission Scheduler II (N �= M)

The model of transmission scheduler II is shown in Fig. 3. There are two links
(M = 2) available for selection. We also use one queue (N = 1) to represent
data transmission during each slot.
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1 3G

2

( ) ( )
( ) 0

b t B t
b t
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2

( ) 1
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( )Q t

( )b t1

2

( ) 0
( ) 0

b t
b t

1

2 WiFi

( ) 0
( ) ( )

b t
b t B t

Fig. 3. Model of optimal transmission scheduler II

Using the concept of opportunistically minimizing the expectation, the mini-
mization of average energy consumption is accomplished by greedily minimizing:

arg min
α(t)

[
V E(t)−Q(t)

M∑
j=1

b̂j(α(t))
]
. (32)

Similarly, let d(t) = V E(t)−Q(t)
∑M

j=1 b̂j(α(t)). Since M = 2, there are three
possible results according to the transmission decision of α(t):

d(t) =

⎧⎨
⎩

V E3G(t)−Q(t)B3G(t) · τ, if α(t)=“transmit via 3G”,
V EWiFi(t)−Q(t)BWiFi(t) · τ, if α(t)=“transmit via WiFi”,
0, if α(t)=“idle”,

(33)

where α(t) ∈ {“transmit via 3G”, “transmit via WiFi” and “idle”} is the trans-
mission decision in slot t, taking on three possible values.

According to (33), we not only consider the estimated bandwidth but also
take into account the energy usage of 3G and WiFi in time slot t. We thus
compare the above values and choose the transmission decision corresponding
to the smallest outcome. The queuing dynamics and the average delay are given
by (30) and (31), respectively.

If the 3G and WiFi interfaces can be used simultaneously, the model of trans-
mission scheduler II in Fig. 3 can be further extended as in Fig. 4.
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Fig. 4. Model of transmission scheduler II for the combined scheme

Since the combined transmission works just like an extra channel, we have
M = 3. Thus, there are four possible results in (32) according to the transmission
decision of α(t):

d(t) =

⎧
⎪⎪⎨

⎪⎪⎩

V E3G(t) − Q(t)B3G(t) · τ, if α(t)=“transmit via 3G”,
V EWiFi(t) − Q(t)BWiFi(t) · τ, if α(t)=“transmit via WiFi”,
V · [

E3G(t) + EWiFi(t)
] − Q(t) · [

B3G(t) + BWiFi(t)
] · τ, if α(t)=“transmit via 3G and WiFi”,

0, if α(t)=“idle”,

where α(t) ∈ {“transmit via 3G”, “transmit via WiFi”, “transmit via 3G and
WiFi”, and “idle”} is the transmission decision in slot t, taking on four possible
values.

4.4 Transmission Scheduler III (N = M)

The model of transmission scheduler III is depicted in Fig. 5. To overcome the
problem pointed out above and to take more accurate decisions, we divide the
data into two queues. The number of channels is equal to the number of queues,
that is N = M = 2.
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Fig. 5. Model of transmission scheduler III

It can be seen from Fig. 5 that A1(t) is only transmitted through the 3G
interface while A2(t) is only transmitted through the WiFi interface. We assume
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that A1(t) and A2(t) take integer units of packets, the arrival vector A(t) is
i.i.d over slot and E{A(t)} = λ. The question whether or not to allocate A(t)
to A1(t) and A2(t) in equal shares still remains. To analyze this problem, we
simplify the model as shown in Fig. 6, such that it involves routing decisions
besides scheduling decisions.
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Fig. 6. Equivalent model of transmission scheduler III

There are two separate queues depicted in Fig. 6, the arrival vectors A1(t) and
A2(t) are i.i.d over slot, E{A1(t)} = λ1 and E{A2(t)} = λ2. Since A1(t)+A2(t) =
A(t), according to the property of the Poisson distribution we have:

λ1 + λ2 = λ, (34)

where λ1 = ρλ, λ2 = (1− ρ)λ, and 0 ≤ ρ ≤ 1 is the ratio of arrival rate to queue
1. There are two extreme cases: when ρ = 0, the mobile device only uses the
WiFi interface to transmit data and when ρ = 1, the mobile device only uses
the 3G interface.

Similarly, using the concept of opportunistic minimization of the expectation,
the minimization of the average energy consumption is accomplished by greedily
minimizing:

arg min
α(t)

[
V E(t)−

2∑
i=1

Qi(t)b̂i(α(t))
]
. (35)

Let d(t) = V E(t) −∑2
i=1 Qi(t)b̂i(α(t)). Then there are three possible results

according to the transmission decision of α(t) as given by:

d(t) =

⎧⎨
⎩

V E3G(t)−Q1(t)b1(t), if α(t)=“transmit via 3G”,
V EWiFi(t)−Q2(t)b2(t), if α(t)=“transmit via WiFi”,
0, if α(t)=“idle”,

(36)

where α(t) ∈ {“transmit via 3G”, “transmit via WiFi” and “idle”} is the trans-
mission decision in slot t, taking on the three possible values.

The amount of data transmitted between the mobile device and the cloud in
slot t is as follows:

{b1(t), b2(t)} =

⎧⎨
⎩

{B3G(t) · τ, 0}, if α(t)=“transmit via 3G”,
{0, BWiFi(t) · τ}, if α(t)=“transmit via WiFi”,
{0, 0}, if α(t)=“idle”,
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and the queuing dynamics are given by:

Qi(t+1) = max[Qi(t)−bi(t), 0]+Ai(t), ∀i ∈ {1, 2}, ∀t ∈ {0, 1, · · · , T−1}. (37)

Similarly, the average delay for this system is:

D̄ =
Q1 +Q2

λ1 + λ2
. (38)

Furthermore, the transmission scheduler III can be extended in the same way
to more general scenarios as depicted in Fig. 1, where several traffic queues can
be concurrently distributed over several communication channels.

5 Simulation Results

As for parameter setting, we assume that data arrivals follow Possion Process
with λ = 4 packets/minute and the size of each packet is 100 KB. Suppose that
the network bandwidths stay the same during each time slot. Our algorithms are
simulated in 1,000 time slots for each of the V value ranging from 1 to 300. We
study the impact of parameter V on time-averaged energy consumption, queue
backlog, delay and transmit data. The energy consumption models are according
to (25) and (26) for the 3G and WiFi interfaces, respectively.

We first estimate the achievable network bandwidth B(t) at the beginning
of every time slot t. Since data communication time between the mobile device
and the cloud depends on the network bandwidth and the bandwidth of wireless
LAN is remarkably higher than the bandwidth provided by radio access on a
mobile device, we suppose that the bandwidth for the 3G interface follows a
uniform distribution on [1, 100] KB/s and the bandwidth for the WiFi interface
follows a uniform distribution on the interval [1, 300] KB/s. We set the length
of each slot τ = 60, and the bandwidth in the corresponding time slot t is used
for every 60 seconds.

It can be seen from Fig. 7 (transmission scheduler I, refer to Fig. 2) that
the time-average energy consumption and transmit data fall quickly at the be-
ginning and then tend to descend slowly while the time-average queue backlog
grows linearly with V . This finding confirms the [O(1/V ), O(V )] tradeoff as cap-
tured in (15) and (16). According to different delay-tolerant and data-intensive
applications, we can adjust the value of V to control the energy-delay tradeoff.
Especially, there exists a sweet spot of V , and at this point, the marginal energy
conservation is not worth the consistently growing delay with increasing of V .
For example, when V increases from 100 to 200, it shows a negligible decrease of
the average energy consumption while the average delay increases significantly,
thus we should not trade energy with delay. Further, according to (24), the slope
of the curve is k ≈ 0 at this point.

The numerical results of using transmission scheduler II are depicted in Fig.
8. We compare the scheme that combines 3G and WiFi (refer to Fig. 4) with the
one that transmit separately (refer to Fig. 3). It can be seen that the average
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Fig. 7. The impact of V on time-averaged energy consumption, queue backlog and
transmit data for transmission scheduler I

number of transmitted packets and average delay in both schemes almost coin-
cide with each other while the combined scheme achieves a lower average energy
consumption than both individual schemes when the control factor V is small
(e.g., V ≤ 50).
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Fig. 8. Comparison of different schemes for transmission scheduler II

The numerical results of using transmission scheduler III for the scenario (refer
to Fig. 6) are depicted in Figs. 9-11.

It is known that when ρ = 0 (ρ is defined before as the dispatching ratio
of arrival rate to queue 1), the mobile device only uses the WiFi interface to
transmit data and when ρ = 1, it only uses the 3G interface. As shown in Fig.
9, when V is small, it has the minimum energy consumption when only using
3G for data transfer, while it has the maximum energy consumption when only
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Fig. 9. The impact of V on time-averaged energy consumption
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Fig. 10. The impact of V on time-averaged delay

using WiFi. The average energy increases with the increase of ρ when V ≤ 37.
However, when V arrives to a certain value (V ≈ 37), the scheme that only uses
WiFi for data transfer has the minimum energy consumption while the one that
only uses 3G has the maximum energy consumption. The time-averaged energy
consumption increases with the increment of ρ when V > 37. Therefore, the
energy consumption for such a transmission scheduler closely depends on the
value of ρ.

The impact of V on the time-averaged delay is shown in Fig. 10. It is found
that the average delay is minimal when only using WiFi to transmit data. With
the increase of ρ, the average delay at first increases, but it then decreases after
ρ arrives at some value, for example, the average delay is smaller for ρ = 1 than
for ρ = 0.75.
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Fig. 11. The impact of V on time-averaged transmit data

The impact of V on time-averaged transmitted data is depicted in Fig. 11. It
can be seen that when V is small, the average transmit data decreases with the
increment of ρ, thus the mobile device can transfer the largest amount of data
when only using the WiFi interface to transmit data due to its high bandwidth.
However, when V is large, the average transmitted data is almost the same and
does not change with increasing of V .

6 Conclusion and Future Work

In this paper, we present a fundamental approach for designing an online algo-
rithm for the energy-delay tradeoff in “delayed” mobile data offloading through
the Lyapunov optimization framework. Considering the changing landscape of
network connectivity, the problem of link selection and data transmission schedul-
ing can be formulated as an optimization problem, in which a significant amount
of energy can be saved without sacrificing on the transmission delay too much.
Three types of transmission schedulers are proposed and compared based on
simulation results. These energy-efficient transmission schedulers consider sev-
eral factors: data backlog, channel quality and energy consumption of the wire-
less interface, when making transmission decisions. They will choose to transmit
data when the connectivity is good enough or when the queues in the mobile
device are congested.

So far the validation of the approach is based on simulation under simplifying
assumptions. For future work, validation based on real workloads and more re-
alistic application examples will be provided to gain insights about efficiency of
the proposed algorithm in practice. Besides, a mobile-cloud offloading middle-
ware will be developed to apply those schedulers to reduce energy consumption
for delay-tolerant applications on mobile devices.
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